RADIOCARBON DATING IN A KARSTIFIED COASTAL AQUIFER IN CUBA

D. M. ARELLANO\, J. E. FAGUNDO\, PAVEL HLEK\, JAN ŠILAR\,

\[1\text{ Instituto de Recursos Hidrálicos, La Habana, Cuba} \]
\[2\text{ Centro Nacional de Investigaciones Científicas, La Habana, Cuba} \]
\[3\text{ Faculty of Science, Charles University, Praha, Czechoslovakia} \]

Abstract: The intrusion of marine water into a coastal karstified aquifer in western Cuba results in oversaturation of the solution in respect to calcite, in low \(^{13}\text{C}\) activity and, consequently, in apparent high radiocarbon ages of ground water. The \(^{14}\text{C}\) activity of ground water in limestones is affected by diffusivity in the fissured medium with a porous matrix.

INTRODUCTION

During the study of groundwater in the Pinar del Río Southern Coastal Plain, Cuba, radiocarbon dating was used together with measurements of tritium in wells and with determination of stable isotopes concentration \(^{13}\text{C}, \ ^{18}\text{O}, \ ^{2}\text{H}\) in rainfall, springs and wells. The area investigated is characterized by a karstified aquifer of Miocene age and by a sea water intrusion to the aquifer; it is an open groundwater basin.

The purpose of the present investigation has been to explain how radiocarbon dating may be influenced by the kinetics of the water-rock system. This is the first work of this kind which has been done in the Republic of Cuba.

REVIEW OF THE NATURAL CONDITIONS OF THE AREA STUDIED

The investigated area is located in the Pinar del Río province southwest of Havana. Its southeastern part belongs to the Southern Coastal Plain; in the northwest it extends into a mountainous area. Its eastern boundary is the San Juan River, its northern limit is located within the Cordillera de Guaniguanico mountain range, its western boundary is the Guama River, and the southern limit the coast of the Caribbean sea. The surface area is approximately 4,600 km\(^2\) (see fig. 1).

The prevailing relief is plain-shaped and vertically little dissected. It covers the whole southern part of the investigated area.
The Cordillera de Guaniguacuico consists of the Sierra de los Organos in the west and of the Sierra del Rosario in the east. The Sierra de los Organos consists of two parallel mountain ranges (Alturas de Pizarras del Norte and Alturas de Pizarras del Sur) with a karstified zone, the Plaza de los Mogotes, in between. The latter is formed of cupola-shaped karst hills (mogotes) or mountains the surface area of which is no to 5 km². Their slopes are steep, even vertical. Between the karst hills and mountains there are karst valleys (poljes) the surface of which is composed of unconsolidated rocks. They form aquifers with groundwater originating in the karstified limestone. The altitude of the highest hills is between 400 m and 700 m above sea level.

The rainfall in the mountain range is subject to fluctuations depending on the physical and geographical conditions. Although two seasons are distinguishable, namely the wet season (from May to October) and the dry season (from November to April), two maximum rainfall in June and September and one minimum rainfall in December are observed in a four observation period (more than 20 years).

TRUSOV, IZQUIERDO, DIAZ (1983) have pointed out that the rainfall
amount to 25% of probability reaches 1600 mm to 1800 mm in the mountain range and 1000 to 1500 mm in the plain. 17.7 percent of the rainfall is falling during the dry season and 82.3 percent in the wet season (BATISTA 1973). In the depressions and valleys, rainfall is less frequent. Its amount increases with altitude (100 mm/100 m at altitude on the average). Higher vertical gradients (222 mm/100 m) are observed in the lower part of the mountains to 400 m of altitude. Over 400 m (400-525 m), the mean gradient is 39 mm/100 m. In general, the rainfall distribution is different during the year. Extreme rainfalls may occur during a tropical cyclone (3-5 days).

The air temperature in the Southern Coastal Plain is typical for tropical zones. The average daily air temperature in the coldest month (January) is 20°C and in the hottest month, August, and in some days of July it reaches 30-4°C. In the Pinar del Río Southern Coastal Plain there is no evidence of groundwater of deep origin. At least it has not been found in wells and hydrogeological investigation boreholes, which are 300 to 400 m deep.

KARST PROCESSES: TROPICAL KARST

According to LEHMANN (1960), tropical karst is a particular karst evolution caused by the tropical climate. Organic components forming CO₂ and organic acids apparently play an important role under tropical conditions. In Cuba, karst is developed in surface and subsurface forms. In a relatively small and quasi homogeneous area, from the climatological point of view, there is a set of different types and subtypes of karst.

According to NÚÑEZ [JIMÉNEZ ET AL. (1983)], the following types and subtypes occur:

1. Coastal plain karst:
 - coastal plain karst below the sea level;
 - coastal plain karst recently emerged;
 - coastal plain karst with overburden of swamps in which saline and fresh waters are present;
 - coastal plain karst with overburden of continuous and thick alluvial deltaic or mixed sediments (Pinar del Río Southern Plain).

2. Highland karst.

3. Diapiric-structure karst.

4. Coastal karst of the so-called "sebaruco" type which is due to biocenotic, chemical, chemical and mechanical processes which are typical in tropical seas.

All types and subtypes mentioned ad 1 and ad 2 occur in the area studied.
GEOLOGICAL CONDITIONS

A schematic geological section (A—A') of the Pinar del Río province is shown in Fig. 2. From the geological point of view the mountainous zone consists of Jurassic limestones which are highly karstified. Fractures, grikes, sinkholes, labyrinths, underground rivers and mogotes occur frequently. In the mountainous zone (Sierra del Rosario, Sierra de los Organos and Alturas de Pizarras) abandoned dry riverbeds and large caves occur in karstified limestone massifs.

In the front-range zone the San Cayetano formation (the oldest geological formation in Cuba) extends. It is composed of an aluvialitic terrigenous shale -- carbonate sequence of Lower Jurassic to Upper Jurassic age.

Metamorphic rocks (of the Faja Cangre series) are represented by quartzose shales and terrigenous rocks of the Lower Jurassic to Eocene. These rocks occur along the Pinar Fault. The Pinar Fault is one of the

Fig. 2 Schematic geological section of the Pinar del Rio Province (A—A' in the map Fig. 1).
deepest structures in Cuba. It is of Jurassic age and it strikes NE forming a long arc bending a little towards E. The Pinar Fault has a length of 100 km. The plane of the fault is steeply inclined towards SE. The vertical amplitude of the fault is considered to be about 3000 m. The width of the fault zone is 4 km and it constitutes a foredeep fault forming a fan-shaped fold. In the Paleogene deposits which crop out in the front-range zone, parallel to the Pinar Fault, various groundwater outflows occur. These deposits are composed of terrigenous carbonate facies with a low permeability.

The Pinar del Río Southern Coastal Plain is of Miocene age. It is composed of carbonate and terrigenous-carbonate layers. In the Lower and Middle Miocene limestone deposits occur which are very karstified. Their maximum thickness is 100 m. According to the data collected during drilling operations, the thickness of these terrigenous-carbonate deposits is higher than 600 m.

Quaternary and contemporary lake and swamp deposits are composed of alluvial and proluvial deposits (sandstone, sandy clay, gravel). Their thickness can reach up to 80 m in isolated areas (e.g., in the eastern part of the Southern Coastal Plain).

HYDROGEOLOGICAL AND HYDROCHEMICAL DATA

The Pinar del Río Southern Coastal Plain has been studied during the last years (KALASNIK et al. 1981; ARELLANO 1986 and others).

The piezometric levels of groundwater depend on the lithological composition of the sedimentary rocks which form the aquifer. According to the position of the piezometric level, this coastal plain has been divided into three hydrogeological zones (western, central, eastern). Table No. 1 shows the main hydrogeological parameters which give a rough characterization of each hydrogeological zone. The average value of the infiltration coefficient is 0.09 and the mean yearly recharge is 120 mm year\(^{-1}\); the coefficient of storage has a wide range from \(1.10^{-1}\) to \(1.10^{-3}\). The hydraulic gradients of the groundwater flow are low, in the order of \(1.10^{-3}\) to \(1.10^{-4}\), although in the zone near the sea they may reach \(4.10^{-4}\).

Table No. 1 Main parameters of the hydrogeological zones

<table>
<thead>
<tr>
<th>Zone</th>
<th>Discharge of wells [L s(^{-1})]</th>
<th>Transmissivity [m(^{2}) d(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern</td>
<td>275—400</td>
<td>(10.10^5—20.10^5)(^{-1})</td>
</tr>
<tr>
<td>Central</td>
<td>200—250</td>
<td>(2.10^5—10.10^5)(^{-1})</td>
</tr>
<tr>
<td>Western</td>
<td>200—250</td>
<td>(2.10^3—20.10^5)(^{-1})</td>
</tr>
</tbody>
</table>
Besides the geological and hydrogeological data, hydrochemical data are very significant for the interpretation of radiocarbon dating. Fig. 3 shows the location of wells where hydrochemical analyses were made. Fig. 4 shows a representative hydrochemical profile in the eastern hydrogeological zone. The sea water intrusion is evident. In the eastern zone, the situation is similar.

During the geochemical zoning of the whole area (ARELLANO, FA- GUNDO 1985), geochemical parameters such as the total dissolved solids (TDS, ppm), $\rho{\text{CO}}_2$ (atm), calcite saturation ratio (CSR), specific conductivity (SPC, μhos.cm$^{-1}$ at 25°C), dolomite saturation ratio (DSR), and hardness (as ppm of CaCO$_3$) were calculated in sixteen wells distributed within the three hydrogeological zones. The ionic concentration [HCO_3^-, Cl^-, SO_4^{2-}, Na^+, Ca^{2+}, Mg^{2+}] values were determined in each well in two to five depths.

In addition to the above mentioned parameters, pH values were reported. The ionic concentrations, SPC, TDS and pH were measured.
The groups of four numbers in the Table correspond to four sampling depths, respectively indicated in the figure.

<table>
<thead>
<tr>
<th>TDS (ppm)</th>
<th>2346.00</th>
<th>2308.00</th>
<th>3146.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.30</td>
<td>7.40</td>
<td>7.40</td>
</tr>
<tr>
<td>Mg/Ca</td>
<td>0.18</td>
<td>0.30</td>
<td>0.49</td>
</tr>
<tr>
<td>Na/Ca</td>
<td>0.74</td>
<td>1.34</td>
<td>1.80</td>
</tr>
<tr>
<td>HCOOn/Ca</td>
<td>1.09</td>
<td>1.06</td>
<td>1.38</td>
</tr>
<tr>
<td>Cl</td>
<td>6.65</td>
<td>1.17</td>
<td>1.32</td>
</tr>
</tbody>
</table>

Fig. 1 Hydrochemical profile in the western zone: metamorphic level.
Upper part: wells with indicated specific conductivity (SPC) and total dissolved solids (TDS).
Lower part: TDS, pH and ion ratios at different depths.
Table No. 2: Chemical composition of sea water near the area studied

Locality: La Colonia (Date of sampling: 29 Jan. 1984)

<table>
<thead>
<tr>
<th>Distance from the seashore (km)</th>
<th>pH</th>
<th>SPC</th>
<th>TDS</th>
<th>CO₂ H</th>
<th>Cl</th>
<th>SO₄²⁻</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Na⁺</th>
<th>K⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>7.3</td>
<td>29420.0</td>
<td>31360.0</td>
<td>134.0</td>
<td>17750.0</td>
<td>1800.0</td>
<td>10010.0</td>
<td>8800.0</td>
<td>900.0</td>
<td>441.0</td>
</tr>
<tr>
<td>0.6</td>
<td>7.2</td>
<td>29500.0</td>
<td>32611.0</td>
<td>121.0</td>
<td>17750.0</td>
<td>3750.0</td>
<td>10000.0</td>
<td>1456.0</td>
<td>9500.0</td>
<td>6010.0</td>
</tr>
</tbody>
</table>

The analyses were made in the oceanography and biological laboratory of the Instituto de Hidroecología, Republic of Cuba (A. Santos, 1984, *personal communication*).

In the sea, in two distances from the seashore, Table No. 2 shows the chemical composition of these waters. It should be noted that in both points the Mg/Ca ratio is 2.6 and 3.8, i.e. higher than one, as could be expected. Figs. 5 and 6 show the dependency between the CSR and DSR with depth, respectively. In both cases, oversaturation occurs in the zone of fresh water — sea water mixing. This oversaturation was...
also found by HANSHAW, BACK and DEIKE (1971) during their investigations in the Tertiary limestone aquifers of the Florida and Yucatán Peninsulas. Such saturation with respect to the two carbonates increases in the direction of the flow until the solution apparently becomes over saturated.

ISOTOPIC INFORMATION ANALYZED

The Pinar del Rio Southern Coastal Plain has been studied using isotopic techniques. The aim of this investigation is to clear up the local conditions of groundwater circulation. Measurements of ^{18}O, 2H and 3H in rainfall, springs and wells were made for this purpose at selected sampling points and intervals.

The preliminary results indicate that:
1. There is a stratification of groundwater.
2. The area studied consists of three hydrogeological zones. The main particular facts which distinguish each of these zones, besides the lithological factors and tectonics, are:
 a. In the eastern zone possible contribution of rivers to the groundwater circulation
b) in the central zone the contribution of water from the neighbouring zones and from the mountainous zone in the NW.
c) in the western zone the local infiltration of rainfall.

3. The component of groundwater due to the recent rainfall has a residence time close to 18 years, according to the 11H units found.

In 22 wells the values of 11H concentration, measured in two different depths range from 9.2 to 0.9 T.U. In all cases if TH - 3 the groundwater is affected by intrusion of sea water. This fact has been proved by means of chemical analysis of these waters.

4. According to the results of the isotopic composition of water measured in springs, rainfall and wells (ARELLANO, SEILIN in preparation), there is a connection between the groundwater in plain and the water in mountainous and premountainous zones.

FACTORS AFFECTING GROUNDWATER DATING IN THE NATURAL CONDITIONS OF THE AREA UNDER STUDY

In the karstified aquifers in tropical climatic conditions where, moreover, sea water intrusion is present, complex physico-chemical and mechanical processes have developed which influence the radiocarbon dating, among them:

1. **Saturation of water with respect to calcite**

If fresh water is not saturated with calcite, it will dissolve calcite until equilibrium between calcite and the dissolved species is achieved.

According to VERNON [1989], the karstification along the coast may be caused by dissolving of limestone due to mixing of fresh and saline water. That is, mixing of saline and fresh water in the interface zone.

Table No. 3 Hydrochemical and hydrogeological parameters of water in the wells studied

<table>
<thead>
<tr>
<th>Well No</th>
<th>Depth (m)</th>
<th>Static level (m)</th>
<th>CSR</th>
<th>DSR</th>
<th>ΔCO_2 (atm)</th>
<th>Hardness (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUR-5</td>
<td>57.1</td>
<td>18.2</td>
<td>-0.37</td>
<td>-0.71</td>
<td>10 7.16</td>
<td>313.4</td>
</tr>
<tr>
<td>CUR-6</td>
<td>80.0</td>
<td>31.0</td>
<td>-0.03</td>
<td>-0.94</td>
<td>10 7.96</td>
<td>216.2</td>
</tr>
<tr>
<td>CUR-7</td>
<td>10.0</td>
<td>1.0</td>
<td>-1.01</td>
<td>-2.47</td>
<td>10 1.35</td>
<td>269.6</td>
</tr>
<tr>
<td>CUR-8</td>
<td>43.0</td>
<td>29.5</td>
<td>0.27</td>
<td>-0.08</td>
<td>10 7.06</td>
<td>658.3</td>
</tr>
<tr>
<td>CUR-9</td>
<td>40.0</td>
<td>21.5</td>
<td>0.20</td>
<td>0.06</td>
<td>10 7.05</td>
<td>636.6</td>
</tr>
<tr>
<td>CUR-10</td>
<td>34.0</td>
<td>14.4</td>
<td>0.29</td>
<td>0.56</td>
<td>10 7.06</td>
<td>408.4</td>
</tr>
<tr>
<td>CUR-11</td>
<td>30.0</td>
<td>10.4</td>
<td>0.19</td>
<td>0.24</td>
<td>10 7.34</td>
<td>601.9</td>
</tr>
</tbody>
</table>

The pH values were measured in the field. The CSR, DSR and ΔCO_2 values were calculated by means of a computer program [AGMAR Program, FAGUNDO, VALDES, 1981].
may cause limestone dissolution. In this process the concentration of both Ca\(^{2+}\) and CO\(_3^{2-}\) would increase in the solution phase which could cause oversaturation.

It seems that the indication of NORDSTROM et al. [1985] concerning the CO\(_3\) and pH values may be applied to the karstified limestone with saline intrusion: in groundwater which has pH values near 8 and CO\(_3\) about 10 bars (10\(^{-4}\) atm, approx.), calcite is unstable and tends to dissolve under partially closed conditions until water reaches pH values of about 8 at saturation. Then if calcite begins to be precipitated, pH should be maintained close to 8 [see fig. 7]. According to the table No. 3, this fact may be considered.

![Fig. 7. Schematic evolutionary diagram of bicarbonate, pH and \(1\text{CO}_2\) during calcite dissolution (after NORDSTROM et al. 1985)]
2. Ion exchange reactions

Regardless that saturation with respect to calcite is reached, ion exchange reactions may be expected:

\[\text{H}^{+}\text{CO}_3^- + \text{Ca}^{2+}\text{CO}_3^- \rightarrow \text{Ca}^{2+}\text{CO}_3^2^- + \text{H}^{+}\text{CO}_3^- \]

3. Salting out effect

Another mechanism through which the \(^{14}\text{C}\) activity may decrease is the "salting out effect". In this case the quantity of non biogenic carbon from \(^{14}\text{CO}_3^2^-\) may increase as a result of a higher solubility when alkaline ions occur. That is:

\[\text{K}_c = [\text{Ca}^{2+}][\text{CO}_3^2^-] \]

where \(K_c\) is the calcite solubility product.

4. Diffusive loss of radiocarbon into the rocks

The diffusive loss of radiocarbon into the cavernous zone may become very significant, depending on spacing, width, and communication between the conduits. The residence time of the individual carbonate ions is longer than the residence time of water flowing through narrow fissures because of their larger size compared to the molecules of water. Both residence times depend on the porosity values.

All these physico-mechanical processes in rocks have a great influence on the \(^{14}\text{C}\) activity. The geochemical models formulated to estimate the "initial" activity of the total dissolved carbon do not seem to be sufficient to explain the values obtained.

MATERIAL AND METHODS

Fig. 8 shows the wells where samples for determining \(^{14}\text{C}\) and \(^{13}\text{C}\) were taken. The samples were collected in the field following the method reported by the IAEA (1983). \(^{14}\text{C}\) activity of the samples was measured in the \(^{13}\text{C}\) laboratory at the Charles University in Prague. The \(^{3}\text{H}\) values of carbonates in the water samples were determined in the laboratory of the Central Geological Survey in Prague by BUZEK and HLADIKOVA (personal communication 1985).

All the samples were taken from water-supply wells. The water comes directly from the aquifer by continuous pumping, with the exception of CUB—7 which is a shallow farm well ("criollo well").
For this reason the 14C values obtained in the latter were used only as additional and qualitative information. The samples from the wells CUB—1 and CUB—2 were taken in 1981 (ARELLANO, SANTOS 1984). The well CUB—1 is located in the recharge area. The 14C activity values are in table No 5. In all the samples the initial 14C activity was estimated to 70 % of 0.95 NBS activity.

![Map of CUB wells](image)

Fig. 8 Location of points in which 14C activity and 14C-12C ratio were measured

Table No. 4 shows the results of the chemical analyses of water in the wells where 14C activity and 8C were determined. Additional hydrogeochemical and hydrogeological parameters are shown in table No. 3.

The 14CO$_2$ values (atm) were determined in the recharge zone. They are indicated in table No. 6.

Table No. 5 14C activities in wells

<table>
<thead>
<tr>
<th>Well</th>
<th>Activity with respect to 0.95 act. of NBS [%]</th>
<th>14C age (years BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUB—1</td>
<td>72.22 ± 1.80</td>
<td>contemporary</td>
</tr>
<tr>
<td>CUB—2</td>
<td>99.42 ± 1.98</td>
<td>1300</td>
</tr>
</tbody>
</table>
Table No. 6 pCO$_2$ values in the recharge zone

<table>
<thead>
<tr>
<th>Place of measurement</th>
<th>Locality</th>
<th>pCO$_2$ [atm]</th>
<th>pH</th>
<th>Other SREC [ppm]</th>
<th>Parameters (1)</th>
<th>Parameters (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface water</td>
<td>A. Pizarras</td>
<td>10$^{-2.5}$</td>
<td>7.56</td>
<td>170</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Streambed in the cave</td>
<td>La Viuda</td>
<td>10$^{-2.5}$</td>
<td>7.84</td>
<td>370</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Cave spring</td>
<td>La Castaña</td>
<td>10$^{-2.4}$</td>
<td>7.88</td>
<td>350</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>La Vaguas</td>
<td>10$^{-2.6}$</td>
<td>7.32</td>
<td>450</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>Cropping water</td>
<td>Sierra</td>
<td>10$^{-2.8}$</td>
<td>7.99</td>
<td>210</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Well (h=10 m)</td>
<td>Ceaguambo</td>
<td>10$^{-1.7}$</td>
<td>7.10</td>
<td>437</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Well (h=10 m)</td>
<td>La Guira</td>
<td>10$^{-1.8}$</td>
<td>7.65</td>
<td>603</td>
<td>2.7</td>
<td></td>
</tr>
</tbody>
</table>

parameters:
(1) — Ca$^{2+}$/Mg ratio; (2) — Ca$^{2+}$/HCO$_3^-$ ratio

Table No. 7 δ^{13}C values in plants

<table>
<thead>
<tr>
<th>Plant</th>
<th>δ^{13}C [‰ (PDB)]</th>
<th>Photosynthetic cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar cane</td>
<td>-11.42</td>
<td>Hatch-Stack</td>
</tr>
<tr>
<td>Rice</td>
<td>-28.94</td>
<td>Calvin-Benson</td>
</tr>
<tr>
<td>Coffee</td>
<td>-28.68</td>
<td>Calvin-Benson</td>
</tr>
</tbody>
</table>

The determination of δ^{13}C values in typical vegetation (sugar cane, coffee, rice) was carried out. The measurements were made in the Isotopic Hydrology and Geochemistry Laboratories, University South Paris, France, by FONTES [1983, personal communication]. The values obtained are in table No. 7. The samples of carbonates extracted from water in the field as BaCO$_3$ were processed in the radiocarbon laboratory of the Charles University in Prague in the following way: They were converted to CO$_2$ by acidification and purified to a high degree by repeated freezing in a vacuum line with liquid nitrogen traps and by adsorption in sodium hydroxide. During the processing a small amount of the CO$_2$ sample was separated by freezing in an ampoule for measuring δ^{13}C. The purified carbon dioxide was filled into a proportional counter with an effective volume of 723 ml to a pressure of about 0.25 MPa. The background of the counter is decreased by using a vacuum-silver-plated tube of pure quartz as a cathode in a copper tube purchased from an old brewery pipeline. A molybdenite wire 0.03 mm in diameter is used as an anode. The proportional counter is shielded by a plastic-scintillator.
mantle with two large-diameter photomultipliers, each at one front, and is closed in a light-tight case. The whole counter with the anticoincidence shielding is in a passive mechanical shielding box consisting of a double layer of old lead (150 mm thick in total) with a neutron shielding in between (boric acid dispersed in polymers) and a layer of soft steel.

The background in this arrangement is about 2.1 cpm, depending on the barometric pressure. The samples are measured for about 1200 minutes. The measurements are registered automatically and calculated to radiocarbon ages on a computer. Corrections for barometric pressure as well as for room temperature, δ13C and dilution of the sample of inactive carbon dioxide (if necessary) have been incorporated into the programme for evaluating the measurements. The radiocarbon ages are rounded up only to whole years to facilitate statistical evaluation and comparisons. The results are in table No. 9.

RESULTS OBTAINED AND THEIR DISCUSSION

1. Partial pressure of CO₂ and its relation to the radiocarbon dating in the area, ¹⁴C values.

The geological and morphological complexity of the recharge zone (development of karst, caves, underground streams, surface streams, springs) results in different flow patterns and different behavior of CO₂ in water.

The CO₂ content in karst surface water and in the water from caves is small, the escaping of CO₂ in these waters is high. The values of hardness, mineralization and specific conductivity are generally low. In confined aquifers these values develop towards a higher CO₂ content, hardness, mineralization, specific conductivity, Ca/Mg ratio, and towards a lower pH (FAGUNDO, PAJON and SPASOV in press). The southern coastal plain may be considered a closed system with regard to CO₂.

In all the hydrogeological zones the ¹⁴C values are in the order from 10⁻⁴ to 10⁻⁵ atm. This means that the dissolution of the rock occurs. Therefore a contribution of CO₂ of inorganic origin should be expected. This is a hydrogeochemical point of view of the problem. Besides that, the difference between the ¹⁴C values depends on whether the groundwater flows through fissured or porous media. This is a hydrodynamic point of view of the problem.

The contribution of carbonates of inorganic origin has been tested by the CSR values which, with the exception of the well CUB—7 (CSR = 1.01), indicate oversaturation with respect to calcite.

In the well CUB—7 there is a major contribution of carbonates of bio-
genic origin, if we take into account that $\delta^{13}C = -12.9 \%_o$ is a highly negative value among the values examined. It should be remarked that this well is a shallow farm well 3 m deep, in Quaternary sediments.

The values found in the well CUB—5 ($\delta^{13}C = -7.2 \%_o$) and in the well CUB—8 ($\delta^{13}C = -8.7 \%_o$) are due to the dissolution effect of calcite. In both wells the groundwater is oversaturated with respect to calcite due to the effect of sea water intrusion. In these wells the total dissolved solids (TDS) at the sampling point are 895.0 and 1431.0 ppm, respectively, with a corresponding specific conductivity of 1370 μhos cm$^{-1}$ and 2000 μhos cm$^{-1}$ at 25°C.

The $\delta^{13}C$ values obtained in the wells CUB—9, CUB—10 and CUB—11 indicate the contribution of carbonates of inorganic origin. The extreme value found in the well CUB—6 ($\delta^{13}C = -15.2 \%_o$) is a particular case. This well is located in a part of the basin (25 km2, approx.) where the unconfined aquifer conditions are evident. Thus, a major contribution of CO_2 of biogenic origin can be expected.

2. Possibility of deeper origin of groundwater

Table No. 6 shows the available information on the 3H concentration [RAUER, personal communication, (1985)] measured in wells located near those where 14C activity was determined. The distances between the wells vary between 1 and 10 km, approximately.

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth [m]</th>
<th>Corresponding 3H well</th>
<th>Depth [m]</th>
<th>3H concentration [TU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUB—5</td>
<td>22</td>
<td>PS8—5</td>
<td>20—30</td>
<td>1.8—1.6</td>
</tr>
<tr>
<td>CUB—8</td>
<td>36</td>
<td>PS8—7A</td>
<td>40—70</td>
<td>3.4—4.4</td>
</tr>
<tr>
<td>CUB—7</td>
<td>33</td>
<td>PS11—2A</td>
<td>80—90</td>
<td>5.5—6.1</td>
</tr>
<tr>
<td>CUB—9</td>
<td>32</td>
<td>PS15—5A</td>
<td>25—35</td>
<td>2.8—1.8</td>
</tr>
<tr>
<td>CUB—9</td>
<td>27</td>
<td>PS17—3</td>
<td>60—80</td>
<td>7.0—3.5</td>
</tr>
<tr>
<td>CUB—10</td>
<td>18</td>
<td>PS19—6</td>
<td>40—50</td>
<td>5.0—9.0</td>
</tr>
<tr>
<td>CUB—11</td>
<td>37</td>
<td>PS18—1A</td>
<td>80</td>
<td>2.7</td>
</tr>
</tbody>
</table>

The two different 3H concentrations in the last column correspond to the respective depths in the previous column. According to the 3H concentration values in these wells, the occurrence of old groundwater of deep origin does not seem to be realistic.

It should be remarked that in wells where tritium-concentration values are lower than 3 TU, the sea water intrusion is present and those values are caused by its effect.
An important fact is that the mean oxygen 18 content ($\delta^{18}O$) measured in these wells, where 3H concentration was determined, is in the same range as it is in the mountainous recharge zone. The variations found are due to the local infiltration of rainfall in zones where the aquifer is unconfined or where the infiltration from rivers into the aquifer occurs.

3 Interpretation of the ^{14}C activity measurements

For calculating the ^{14}C activities to groundwater ^{14}C ages (t) the conventional Libby half life of ^{14}C $T_{1/2} = 5568 \pm 30$ years was used according to

$$t = \frac{T_{1/2}}{\ln 2} \cdot \ln \left(\frac{A_0}{A} \right)$$

where A is the measured ^{14}C activity of the sample and A_0 is its assumed initial ^{14}C activity.

For comparison three different empirically found values of the initial ^{14}C activity A_0 were used for the calculation as found in sedimentary rocks (MÜNNICH and VOGEL, 1959; VOGEL, 1970; GEYH, 1972), i.e. 60 %, 70 % and 85 % of modern standard activity (0.95 activity of NBS oxalic acid). The fourth value of A_0 was calculated according to Cianciotti's model (as reported by SALEM et al. 1980) according to the following equation:

$$A_0 = \frac{100(\delta - \delta_0)}{\delta + \delta + \varepsilon} \cdot \left(1 + 2\varepsilon/1000 \right)$$

The values adopted for the calculation were

δ \ldots $\delta^{14}C$ value in the solid carbonate, equal zero

δ \ldots $\delta^{14}C$ value in the bicarbonate of the water sample

δ \ldots $\delta^{14}C$ value in the soil CO$_2$, equal $-25 \%_0 \div 1 \%_0$ (PDB)

ε \ldots fractionation factor between bicarbonate of the water sample and soil CO$_2$, equal $-8 \%_0$

The indicated value of δ_0 is generally found for dicotyledonous plants (FONTES 1983). This type of vegetation is very common in the area where the investigated wells are located. The resulting ^{14}C groundwater ages are given in table No. 9.

CONCLUSIONS

The ^{14}C activity values of 11.51 %, 42.42 %, 43.79 %, 49.62 % obtained in the wells CUB—5, CUB—6, CUB—9 and CUB—10, respectively, sug-
Table No. 9 Calculation of groundwater age on the basis of ^{14}C activity

<table>
<thead>
<tr>
<th>Well</th>
<th>Number of sample</th>
<th>Number of measure</th>
<th>^{14}C activity (% G.95 NBD)</th>
<th>^{14}C age 80 %</th>
<th>^{14}C age 70 %</th>
<th>^{14}C age 60 %</th>
<th>Data for chronological model [in PHB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUB-5</td>
<td>201</td>
<td>CU—562</td>
<td>11.51 ± 0.31</td>
<td>11281 ± 567</td>
<td>14500 ± 507</td>
<td>18035 ± 507</td>
<td>10052 ± 507</td>
</tr>
<tr>
<td>CUB-6</td>
<td>202</td>
<td>CU—563</td>
<td>12.42 ± 2.85</td>
<td>2786 ± 227</td>
<td>423 ± 227</td>
<td>6581 ± 227</td>
<td>6117 ± 227</td>
</tr>
<tr>
<td>CUB-7</td>
<td>203</td>
<td>CU—564</td>
<td>164.52 ± 1.61</td>
<td>Contemporary</td>
<td>Contemporary</td>
<td>Contemporary</td>
<td>Contemporary</td>
</tr>
<tr>
<td>CUB-8</td>
<td>204</td>
<td>CU—565</td>
<td>114.10 ± 1.57</td>
<td>Contemporary</td>
<td>Contemporary</td>
<td>Contemporary</td>
<td>Contemporary</td>
</tr>
<tr>
<td>CUB-9</td>
<td>205</td>
<td>CU—569</td>
<td>43.79 ± 2.35</td>
<td>2531 ± 159</td>
<td>5120 ± 159</td>
<td>4480 ± 159</td>
<td>14480 ± 159</td>
</tr>
<tr>
<td>CUB-10</td>
<td>206</td>
<td>CU—560</td>
<td>49.32 ± 2.15</td>
<td>1575 ± 159</td>
<td>2313 ± 159</td>
<td>1772 ± 159</td>
<td>2585 ± 159</td>
</tr>
<tr>
<td>CUB-11</td>
<td>207</td>
<td>CU—567</td>
<td>88.16 ± 1.89</td>
<td>Contemporary</td>
<td>Contemporary</td>
<td>1772 ± 159</td>
<td>Contemporary</td>
</tr>
</tbody>
</table>
sustained the presence of "old" groundwaters in the karst area, where the existence of such waters had not been evidenced. However, the following conclusions should be considered:

1. In karst conditions with intrusion of sea water the low 14C activity values seem to be due to chemical processes, which are similar to those explained by NORDSTROM et al. [1985], i.e. due to the increased dissolution of calcite. The intrusion of water from the sea promotes the oversaturation of groundwater; the dissolution of calcite decreases the 14C activity and it affects the calculation of the 14C age. Moreover, in this case the salting out effect should be expected, too.

2. In karst conditions the diffusive loss of radiocarbon into the rock seems to have a great influence on the radiocarbon concentration. This loss is a physico-mechanical process which has not been considered in the existing geochemical models, but it is significant.

3. The first investigations using isotopic techniques in Cuba should continue in future on a larger scale. It is desirable to perform comparative measurements in other laboratories.

Both the physico-chemical and geochemical processes which occur in the karstified medium where the 14C activity is measured should be taken into account during the detailed interpretation of the results.

ACKNOWLEDGEMENT

We wish to thank Dr. Jean Ch. Fontes for his comments and recommendations. We also wish to thank Rita Romero, Roman Company and Cecilia March for their invaluable help in the presentation of this paper, Aida Santus for the chemical analysis of water samples, and Dr. Helena Dubrová for editing the manuscript.

RADIOHULÍKOVÉ DATOVÁNÍ VODY V KRASOVÝCH HYDROGEOLOGICKÝCH KOLEKTORECH V TROPICKÝCH KLIEMATICKÝCH PODMÍNKÁCH

D. M. ARELLANO AGONTA, J. K. FAGUNDO, F. JILEN, J. ŠILÁK

V současné většině provádění datování podzemní vody pomocí krasového hydrogeologického kolektoru lze měřit násycení vzhledem ke kalcitu, CO_3^-, a radiouhlíková aktivita, z níž bylo z počítačových datও morbido podzemní vody.

Pomocí měření specifické vodivosti, celkové mineralizace a iontových poměrů ($\text{Mg}^2+, \text{Ca}^2+, \text{Cl}^-, \text{HCO}_3^-$, $\text{Na}^+, \text{Ca}^2+$ a dalších) byla zkonstruována intrusie mořské vody do palivového kolektoru. Tato intrusie určuje kinetické faktory hydrogeologického systému.

Intrusie mořské vody do vajíček má za následek přesycení roztoču a nízkou radio
DATACION POR RADIOCARBONO DEL AGUA SUBTERRANEA EN AQUIFEROS KARSTICOS COSTEROS EN CUBA

D. M. ARELLANO ACOSTA, J. E. FAGUNDO, P. ILLEK, J. SILAK

En siete pozos de la provincia de Pinar del Río, en Cuba, en un acuífero kárstico costero, se midió la saturación a cálcico, ρCO$_2$, y la actividad de radiocarbono y a partir de esto por medio de varios métodos, se calculó la edad del agua subterránea.

A través de la medición de la conductividad específica, de la mineralización total y de proporciones idélicas [Mg$^{++}$, Ca$^{++}$, Cl$^{-}$, HCO$_3^{-}$, Na$^{+}$, Ca$^{++}$ y otros] se investigó la intrusión de agua marina en el acuífero costero. Esta intrusión determina las fuentes genéticas del sistema hidrogeológico.

La intrusión de agua marina provoca la sobre-saturación de la solución disolución de la actividad de radiocarbono y por ello la edad del agua desde 1.000 hasta 5.000 años. Estas edades no corresponden con datos preliminares disponibles sobre las concentraciones de isótopos estable [14C, 3H] medidas en precipitaciones marítimas y pozos y con las mediciones de tritio que indican la presencia del agua de regalía moderna.

Las cavidades kársticas y fracturas influyen en la baja actividad de radiocarbono de difusión en las rutas afecta la actividad medida como se deriva de consideraciones teóricas y de experimentos en ambiente parojo fracturado.

En climas húmedos tropicales la actividad biológica en muy intensa y los valores calculados de ρCO$_2$ son de 10^{-5} hasta 10^{-2} MPa.

En acuíferos kársticos confinados los valores de trasvasamiento son entre 5.000 hasta 20.000 m3.d (0.06 m$^3.s^{-1}$ hasta 0.21 m$^3.s^{-1}$) y el gas de los pozos alcanza durante años hasta 390 l.s$^{-1}$

REFERENCES

ARELLANO D. M., SEILER K. P. [in print]: Estudio isotópico de los acuíferos de la provincia de Pinar del Río. Programa DIFSA/GSF.

