Академия наук СССР
Среда Ленина Институт физики земли им. О.Ю.Шмидта

Академия наук Кубы
Институт Геофизики и Астрономии

На превех рукописи

Альварес Гомес Хосе Леонардо

УДК 550.34(729.16)

Сеи Сильность Восточной Кубы

/Специальность 01.04.12 — геофизика/

Диссертация на соискание ученой
степени кандидата физико-математических наук

Научный руководитель:
доктор физико-математических наук
Буне В. И.

Москва — 1985
ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ ... 4
РАБОТЫ ПО ИЗУЧЕНИЮ СЕЙСМИЧНОСТИ КУБЫ И МЕТОДОВ ОЦЕНКИ
СЕЙСМИЧЕСКОЙ ОПАСНОСТИ .. 9

1.1. Развитие сейсмологических исследований на Кубе .. 9

1.2. Оценка сейсмической опасности ... 15

ИСХОДНЫЕ СЕЙСМОЛОГИЧЕСКИЕ МАТЕРИАЛЫ И СОСТАВЛЕНИЕ
КАТАЛОГА ЗЕМЛЕТРЯСЕНИЙ .. 24

2.1. Краткое описание использованных источников ... 24

2.2. Затухание макросейсмической интенсивности и модели изоейст ... 36

2.3. Описание каталога землетрясений региона за 1551-1969 гг ТЕКТОНИЧЕСКАЯ ОСТАНОВКА И СЕЙСМИЧНОСТЬ КАРИБСКОГО РЕГИОНА. ВЫДЕЛЕНИЕ ЗОН ВОЗ ... 48

3.1. Обзор основных работ по тектонике и сейсмичности Карибского региона 48

3.2. Сейсмичность Карибского региона .. 52

3.3. О механизмах оценок землетрясений Карибской дуги .. 58

3.4. Выделение зон ВОЗ в регионе 16° - 24° с.ш. и 71° - 87° з.д. .. 61

ПАРАМЕТРЫ СЕЙСМИЧЕСКОГО РЕЖИМА И ПРОГРАММА ДЛЯ РАСЧЕТА
СОТРЯСАЕМОСТИ ... 70

4.1. График повторяемости землетрясений. Оценка параметров для разных зон ВОЗ 70

4.2. Вероятность возникновения сильных землетрясений в Сантитьго-де-Куба 87

4.3. Программа для расчета сотрясаемости ... 97

4.4. Расчеты сотрясаемости Крыма, Восточного Кариб (глубокий
осад в горах Бранча) с целью отладки программы .. 106
Сейсмическая сопротяжемость восточной Кубы

5.1. Подготовка исходных данных

5.2. Сопротяжемость восточной Кубы

5.3. Исследование устойчивости полученных оценок сопротяжемости

ЗАКЛЮЧЕНИЕ

Литература

Приложение 1. Каталог землетрясений региона, ограниченного координатами 16° - 24° с.ш. и 71° - 81° з.д.

Приложение 2. Параметры землетрясений и механизмы их очагов, определенных в 3.3.
ИВЕДЕНИЕ

Актуальность темы. Куба расположена на Северо-Американской плите, на границе с Карибской плитой. Сейсмичность Кубы объясняется процессами, происходящими на границах этих плит /72/. Основные землетрясения концентрируются в узкой зоне, проходящей непосредственно у южного берега Восточной Кубы /55/. На островах Ямайки и Гаити также происходят сильные землетрясения, которые вызывают сотрясения на Восточной Кубе. Территория Восточной Кубы характеризуется высокой сейсмичностью. Город Сант-яго-де-Куба, один из первых городов, созданных испанцами в Америке, неоднократно испытывал сильные землетрясения, среди них два с интенсивностью 9 баллов /7/. В настоящее время в этом районе Кубы ведется интенсивное строительство. Этим определяется важность проведения работ по изучению сейсмичности Восточной Кубы.

Для оценки сейсмической опасности нужны данные о повторяемости сотрясений и их вероятности /32, 33/.

Цель работы. Цель работы — расчет сейсмической сопротивляемости территории Восточной Кубы и оценка устойчивости периодов сотрясений при варииации параметров сейсмического режима и моделей изосейс.

Основные задачи:
1. Анализ макросейсмического поля сильных и слабых землетрясений и выбор теоретической модели изосейс;
2. Составление каталога землетрясений региона Восточной Кубы с X век до настоящего времени;
3. Выделение зон ВОЗ на основе анализа сейсмологических, геолого-геофизических и геоморфологических данных, оценка параметров сейсмического режима и подбор моделей изосейс для каждой
4. Написание программ для расчетов сейсмичности, оценивающих программу в хорошо изученных регионах СССР.
5. Проведение расчетов сейсмичности Восточной Кубы, представление результатов расчетов в виде различных карт.
6. Исследование устойчивости оценок периодов сейсмичности при верификации исходных данных: максимальной магнитуды M_{max}; глубины очага h (км), моделей изосейс и наклона графика повторяемости (параметра b).

Начальная новизна. Впервые использована программа расчетов сейсмичности, учитывающая эллиптическую модель изоизошней и графика повторяемости, имеющиеся в области максимальных магнитуд. Для расчетов используется карта зоны ВОЗ с параметрами сейсмического риска и моделей изоизошней, характерные для всей зоны ВОЗ. Результаты представлены в виде обычных карт сейсмичности и карт непременения максимальной интенсивности с вероятностью 0.9 для разных периодов сейсмичности. Получены первые карты сейсмической сейсмичности Восточной Кубы, которые значительно улучшают представления о сейсмической опасности этой территории. Получены следующие конкретные результаты:

1. Предложена теоретическая модель эллиптических изоизошней. Доказана ее применимость для расчетов изоизошней землетрясений Большого Антарктического острова и Восточной зоны ВОЗ в ЦРР.
2. Для расчетов сейсмичности использован график накопленной повторяемости землетрясений с изгибом в области максимальных магнитуд.
3. Составлена программа для расчета сейсмичности, которая кроме обычных карт сейсмичности, позволяет строить карты с вероятностными оценками неправильности максимальной интенсивности для различных периодов сейсмичности.
4. Для территории Восточной Кубы построены различные виды карт сейсмической сопрассаемости.

АВТОР ЗАМЕЧАЕТ:

1. Модели амплитудных взаимнов, определяемые отношением полусумм эпицентров и уравнением макросейсмического поля типа Ковес-литета.

2. Формулы для расчета накопленной повторяемости землетрясений, характеризующейся графиком, имеющим пик в области максимальной магнитуд землетрясений.

3. Программы для расчета сопрассаемости, учитывающие вышеуказанные разработки. В качестве исходных данных используются карты ВОЗ с параметрами сейсмического режима и модели взаимнов, характерные для каждой зоны ВОЗ. Результаты получены в виде обычных карт сопрассаемости и карт с разными вероятностями оценками сейсмической опасности.

4. Расчеты сейсмической опасности Восточной Кубы, представленные в виде карт сопрассаемости и карт непревышения максимальной интенсивности с вероятностью 0,9 для периодов ожидания 50 и 100 лет.

5. Оценки средних периодов сопрассений с интенсивностью 7-9 баллов в г. Сантано-де-Куба.

Практическая ценность. Полученные оценки сейсмической сопрассаемости Восточной Кубы могут быть использованы при составлении карты сейсмического районирования этой территории.

Расчеты сопрассаемости реализованы в виде программ на языке ФОРТАН, что позволяет применять их для расчетов сопрассаемости любой территории.

АПРОБАЦИЯ РАБОТЫ. Основные положения диссертационной работы обсуждались на Карибском сейсмологическом совещании в СантаДоминго (Доминиканская Республика, 1983г). Симпозиуме
КАП "Прогнозирование 84" в Сейнне (Болгария, 1984 г.), школе-семинаре по стихийным бедствиям (Организация ООН по оказанию помощи при стихийных бедствиях - UNDRR) в Гаване (Куба, 1984 г.) и IV Научном симпозиуме Института геофизики и астрономии АН Кубы в Гаване (Куба, 1984 г.).

Содержание работы

В первой главе описаны сейсмологические исследования на Кубе и работы по оценке сейсмической опасности в Карибском регионе. Обсуждается вопрос о возможности проведения работ по оценке сейсмической опасности на территории Кубы с учетом всех особенностей сейсмичности региона. Описаны методы оценки сейсмической опасности в СССР, США и других странах. Обсуждается актуальность количественного подхода к оценке сейсмической опасности восточной Кубы.

Во второй главе дано краткое описание источников сейсмологической информации, использованных в работе. Инструментальные данные взяты из международных сводок. Макросейсмические данные представлены картами изосейс. В работе предложены теоретические модели в виде эллиптических изосейс. Модель определяется отношением полюсов эллипсов и формулой макросейсмического поля типа Коносвети. Анализируются три варианта моделей в зависимости от направления, вдоль которого справедлива формула макросейсмического поля. Проводится сопоставление моделей с экспериментальными изосейсами и определяются параметры модели для разных районов Больших Антильских островов.

Список каталог землетрясений, составленный для региона, ограниченного координатами 15° - 24° с.ш. и 71° - 81° в.д.

В третьей главе рассматривается тектоника, сейсмичность и механизмы очагов землетрясений, выделение зон ВОЗ. Карибский регион характеризуется наличием нескольких тектонических плит. На
граничнку Керрибской и Северо-Американской плит наблюдается сдвиг. Эти смещения сопровождаются землетрясениями. Сейсмичность представлена картой эпицентров и графиками повторяемости землетрясений для интервалов глубин 0—70 км и 70—150 км. Данные о механизмах сейсм, описанные в литературе, и 37 механизмов, определенных автором с помощью программы SOURCE из библиотеки программы ИОЗ АН СССР /9/, не противоречат представлениям о левостороннем сдвиге по границе плит. Для разделения зоны БОЗ использованы карты эпицентров, изостатических знаменателей, изобет и тектоники плит.

В четвертой главе рассматриваются графики повторяемости землетрясений и программы для расчета сейсмической сотрясаемости. Описывается программа оценки параметров \(a \) и \(b \) графика повторяемости землетрясений по методам наименьших квадратов и максимального предвероятления для расчета накопленных частот повторения сотрясений. Построены графики распределенной и накопленной повторяемости землетрясений для всех зон БОЗ и графики повторяемости сотрясений в городе Сентяго-де-Куба. Показано, что интервалы между последовательными сотрясениями с интенсивностью \(\geq 7 \) баллов в Сентяго-де-Кубе подчиняются экспоненциальному закону распределения. Даны примеры опробования программы расчетов сотрясаемости в Крыму и Молдавии. Проводятся сопоставления с картой сейсмической районирований СССР /42/ и картами сотрясаемости /41/.

В пятой главе представлены карты сейсмической сотрясаемости Восточной Кубы и карты вероятности напряжения значения \(I \) при разных периодах сжатия. Описаны численные эксперименты изучения исходных данных на средние периоды сотрясаемости. Расчеты проводятся для семи городов Восточной Кубы. Анализируются вариации четырех параметров: \(M_{\text{max}} \), отношение полусей эллипсоидов изо-сейт и параметр \(b \) графика повторяемости землетрясений. В заключении сформулированы основные результаты всей работы.
Глава I. РАЗВИТИЕ СЕЙСМОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ НА КУБЕ

I.1. Развитие сейсмологических исследований на Кубе

В середине прошлого века кубинский ученый Андрес Поэй опубликовал несколько работ по сейсмологии. Среди них были каталоги землетрясений на Кубе и других островах Карибского региона /125, 127/. В 1880 г. после сильного землетрясения в Восточной Кубе была опубликована книга с описанием этого землетрясения /143/. Такие публикации, связанные с описанием сильных землетрясений, продолжались и в XX веке. Авторами были инженеры и другие специалисты, которые в то время занимались сейсмологией. Работы были опубликованы в газетах, журналах или отдельных книгах.

Развитие инструментальной сейсмологии на Кубе началось с создания сейсмологической станции в Гаване в 1907 г. Были установлены два горизонтальных прибора типа Смит-Уо (C-1, B-3), станция была закрыта в 1928 г. В этот период активно работал в области сейсмологии Марино Гутьеррес Ланса /90/.

Основание Академии Наук Кубы революционным правительством 24 февраля 1962 г. позволило усилить научно-исследовательские работы, в том числе и сейсмологические. Были открыты две станции — Сорок в 1964 г. и Рио-Карпинтейро в 1965 г., которые положили начало изучения сейсмичности Кубы инструментальными методами на современном уровне. Советский Союз и ГДР с самого начала оказали помощь в проведении сейсмологических исследований. Первые усилия были направлены на сглаживание материалов по сейсмичности Кубы /6/ и анализ исторических макроисследований /52/.

В дальнейшем сейсмологические исследования включали разные
вопросов: микрорайонирование /7/, сейсмичность /53/, поверхностный
волна /55/, сейсмическую опасность /3/. Некоторые из этих работ
являлись результатом сотрудничества между АН Кубы и АН СССР.

В 1976—1978 гг. на Кубе проводились комплексные исследования
по оценке сейсмической опасности площадок строительства АЭС. Эти
работы были выполнены под руководством С. Е. Лещинского, участниками со-
ветских и кубинских сейсмологов; результаты работ были опублико-
ваны в 1983 г. /13/.

В 1979—1982 гг. проводилось расширение сети сейсмических станций.
В настоящее время на Кубе работают 6 сейсмических станций,
предназначенных для регистрации местных и удаленных землетрясений
/135/.

В результате развития сейсмологических исследований в Инсти-
tуте геофизики АН Кубы в 1980 г. началось публикация журнала "Сейсмологические исследования на Кубе", в конце 1984 г.
вышло 5 номеров.

Работы по оценке сейсмической опасности в Карийском регионе.
Сейсмичность Карийского региона изучалась различными авторами. Пер-
вой попыткой общего описания является работа Сакиса и Кинто /141/.
Авторы с помощью ЭМ определяли эпицентры землетрясений и матчи-
tулы Mₗ за 16 лет (1950—1965 гг.). Начиная с этого момента, появи-
лась возможность проводить работы по оценке сейсмической опас-
ности, учитывая также последние данные Береговой и геодинамической
службы США и Сейсмологического центра.

Работы по оценке сейсмической опасности в Карийском регионе
можно условно разделить на 3 группы:

а) Сейсмическое районирование по историческим макросейсмиче-
ским данным;

б) Оценка возможности возникновения сильного землетрясения
(изучение зон "сейсмического затишья");
в) Количественные оценки сейсмической опасности разных зон.

Сейсмическое районирование на исторических макросейсмических данных. На основе исторических макросейсмических данных, в 1970г. была составлена первая карта сейсмического районирования Кубы. Она была включена в Национальный атлас Кубы /3/. В этой карте были недостатки. Поэтому проводился пересмотр имеющихся материалов и попытки других исторических данных о землетрясениях. В результате была создана новая карта сейсмического районирования, составленная на исторических данных /77/. На этой карте вся территория Кубы была разделена на зоны разной интенсивности землетрясений с повторяемостью раз в 100 лет. Однако, были зоны, где из-за отсутствия данных землетрясения показаны не были.

Именно в этих нынешних зонах возникала возможность землетрясения после этого, как была опубликована карта. После этого карта была исправлена заново /77/. Эта карта является нормативным документом для строительства на Кубе. Работы такого типа были проведены и в Венесуэле /31/.

Оценка возможности возникновения сильного землетрясения. Методика состоит в том, что для сильных землетрясений, возникших в главных сейсмических поясах, картируется фокальная зона и оценивается средний период повторяемости таких событий. Более опасным является участок, в котором после последнего сильного землетрясения прошло время больше среднего периода повторяемости. Опасность увеличивается в зависимости от длительности периода затишья.

Первой работой, в которой с этой точки зрения рассматривается восточная часть Карибского региона (в востоку от 74° з.д.), является работа /106/. В последующей работе /110/ этот вопрос рассматривается более конкретно. На основании общих представлений о тектоническом процессе на границах плит и сведения об историче-
Сих землетрясениях выделяются зоны с различными потенциальными возможностями возникновения сильных землетрясений. Найболее вероятно возникновение землетрясений в тех районах, где сильные землетрясения не происходили более 100 лет, наименее опасны, где сравнительно недавно (за предшествующие 30 лет и менее) уже произошли сильные землетрясения. В Карибском регионе к первой категории отнесены Ито-Восточная Куба, почти весь остров Гаити, северные районы Малых Антильских островов, залив Париа (Венесуэла) и северо-западный район Венесуэлы. Ко второй категории отнесены район острова Займан, северо-западный и северо-восточный края острова Гаити и отдаленные места на севере Венесуэлы. К третьей категории отнесены районы к северу от Багамских до края в восточном Кайман, восточная часть Малых Антильских островов и район на севере Венесуэлы.

Количественные оценки сейсмической опасности различных зон. В работе Альвереса и Буне /3/ рассматривался ряд вопросов по сейсмичности и сейсмической опасности: затухание интенсивности, размеры охватываемых землетрясений, соотношение магнитуд M_{LN} и m_{PV} землетрясений, пространственно-временные характеристики сейсмического режима. Было отмечено уменьшение наклона графика повторяемости с востока на запад в северной части Карибской островной дуги. Оценки средних значений повторяемости землетрясений для Ито-Восточной части Кубы совпадают с повторяемостью сбросов по исторически данным в городе Сантитго-де-Куба.

В работе Альвереса /55/ сделана совместная обработка данных международных сводок и станции Рино-Карпинеро. Было получено соотношение между m_{PV} по каталогам в международных сводках и энергетическим классом K по станции Рино-Карпинеро. Рассчитана повторяемость в городе Сантитго-де-Куба из зоны ВОЗ, расположенной вдоль южного берега Восточной Кубы. Рассмотрен вопрос о влиянии максимальной магнитуды на оценки повторяемости.
Оценки сейсмической опасности других островов Карибского региона были сделаны различными авторами. Перейра и Гэй /1-1/ сделали эти оценки для островов Ямайки и Тринида и Тобаго, Рейес /130/ — для островов Гаити, Пуэрто-Рико и Ямайки. Методика оценки работ очень близка: изучение общей карты разломной тектоники, определение зон ВОЗ и оценка их параметров, определение значений динамического ускорения для различных периодов повторения сейсмических

Интересными также являются работы Шеферна и Аспицелла. Они провели изучение сейсмичности острова Ямайки /136/, выделив зоны ВОЗ, но не оценивая сейсмической опасности по обычной методике из-за отсутствия данных. Для островов Тринида и Тобаго оценка сейсмической опасности сделана в /137/ по методике Алгермессена и Перкинса /50/.

Для Гондураса проведение комплексной работы по оценке сейсмической опасности /107/. Она включала: составление каталога землетрясений, изучение тектоники, выделение зон ВОЗ и оценку параметров градаций повторяемости землетрясений. Кроме авторы оценивают параметры градаций накопленной повторяемости, аппроксимируя графики двумя прямыми линиями, что говорит о неправильном рассмотрении вопроса о представительности. Расчеты значения динамического ускорения для разных периодов повторения сейсмических событий были проведены с помощью методики оценки сейсмической опасности на основании статистики Рейеса. Общее описание такой методики дано в работе /116/.

Специального рассмотрения требует исследования сейсмической опасности площадки размещения АЭС в Центральной Кубе.

Вопрос о сейсмической опасности малоактивных районов не может быть решен обычным путем, потому что затруднены выделение зон ВОЗ и оценка параметров сейсмического риска. Для решения этого вопроса были проведены комплексные геолого-геофизические работы, рассмотрены все имеющиеся данные об исторических землетрясениях,
научены характеристики затухания сейсмических волн и интенсивностей. Были также проведены полевые исследования для сейсмического микромониторинга площадок и велась постоянная регистрация землетрясений тремя сейсмическими станциями. Таким образом, выделение зон РОЗ проводилось по геологическим признакам. Оценки максимальных магнитуд проводились по комплексному анализу геологических признаков и эмпирическим соотношениям между максимальной магнитудой и размерами зон РОЗ. По оценкам M_{max}, графикам повторяемости, построенным на основании исторических макросейсмических данных, а также данных об особенностях затухания интенсивностей в Центральной Кубе, были оценены возможные макросейсмические эффекты на площади. Результаты этих исследований опубликованы в книге [18].

Дополнительная информация. Оценки сейсмической опасности Восточной Кубы, описанные в [3, 55], нуждаются в дальнейшем уточнении и развитии. Существующие материалы [4, 55] позволяют провести дальнейшую работу в этом направлении. Исходной является историческая и современная макросейсмические данные [68-77, 144], инструментальные каталоги землетрясений и геолого-геофизические сведения о строении и тектонике района. Необходимо рассмотреть различные методы оценки сейсмической опасности, применяемых в настоящее время в разных странах мира, и выбрать метод, учитывающий особенности сейсмичности региона. Например, формы изоэпицентров землетрясений для разных участков Больших Антильских островов меняются от почти круглых до сильно вытянутых эллиптических [4}, эпицентры землетрясений располагаются в основном вдоль границ Карибской и Северо-Американской плит, но очень неравномерно [53].

С учетом этих и других особенностей региона в диссертации решается задача составления программ для расчетов сейсмической устойчивости и построения серии карт.
1.2. Оценка сейсмической опасности

Работы по оценке сейсмической опасности были развиты в основном в СССР и США.

Работы по сейсмической опасности в СССР. Первые карты сейсмического районирования СССР, опубликованные в 1937-1947 гг., были сделаны на основе сейсмологических и геофизических данных. Развитие методов изучения сейсмического режима в шестидесятые годы, основываясь на резком увеличении информации о сейсмах землетрясениях, позволило использовать эти материалы при составлении карт сейсмического районирования СССР в 1968 г. Советские ученые разработали методы изучения характеристик сейсмического режима. Широкое распространение получили методы расчетов сейсмической активности и сейсмической сотрясаемости, предложенные К.В. Ряженченко [31, 37, 132].

Последующее развитие этих работ было использовано при подготовке карты сейсмического районирования СССР в 1978 г. Методическое основание этих работ опубликованы в 1980 г. [43]. Работы по оценке сейсмической опасности в СССР основаны на выделении зон БОЗ, определении параметров сейсмического режима и изучении затухания интенсивности колебаний.

Выделение зон БОЗ и оценка \(M_{\text{max}} \). Это самый сложный вопрос при оценке сейсмической опасности. Существуют разные подходы для его решения, все они основаны на совместной обработке геолого-геофизических и сейсмологических данных. Проводится детальное изучение геологического развития региона, изучаются аномалии гравитационного поля, глубинное строение земной коры и литосферы. Строится карта эпицентров землетрясений по историческим и инструментальным данным, карты сейсмической активности и других характеристик сейсмичности. Все эти данные используются для выделения зон.
ИСЗ и оценок максимальных магнитуд землетрясений в каждой из них /43/.

Применение методов распознавания образов позволяет определить и функциональную зависимость максимальной магнитуды от комплекса геолого-геофизических и сейсмологических признаков. Исходя из множества хорошо изученных точек, для которых эксперты могут оценить максимальную магнитуду, можно получить карту максимальной магнитуды для региона. Применение методики, описанной в /14/ для территории Болгарии, оказалось успешным.

Методы распознавания образов используются для прогноза мест возникновения сильных землетрясений. Методика /16/ основана на гипотезе, что сильные землетрясения относятся к пересечениям линеаментов. Классификация узлов пересечения линеаментов позволяет составить прогностическую карту мест возможного возникновения сильных землетрясений.

Характеристики сейсмического режима определяются по основе графика повторяемости землетрясений. Графики строятся в виде распределенной и накопленной повторяемости и аппроксимируются прямыми линиями /43 /. Графики можно строить для магнитуд

$$ \log N = a - b (M - M_0) $$

или для энергетических классов

$$ \log N = \log - d (K - K_0) $$

К как правило, значения $ M_0 = 5 (M_{1H}) $ и $ K_0 = 10 $ или 15.

Вторая характеристика сейсмического режима - это сейсмическая активность $ A_{10} (A_{15}) $ или $ A_{M_0=5} /132/ $.

Карты параметра $ A_{10} $ строятся по методике, разработанной Г.Б. Ранченко /31/, приведенную либо с помощью ЭВМ /25/. Сейсмическая активность нормируется к единице времени и к площади $ S_0 = $
Затухание интенсивности колебаний грунта описывается формулами /42/:

\[I = bM - s\log r + c \]
\[I = bM - k\log r - p + d \]

Они соответствуют круговым моделям изосейст. Параметры этих соотношений для разных районов СССР определены по экспериментальным данным /38/.

Эллиптические модели изосейст, полученные с учетом зависимости площадей изосейст от магнитуды

\[\log Q_I = f + gM \]

предложены в /62/.

Карта сейсмического районирования. На основании карт зон ВОЗ и их параметров \(a, b \) и \(M_{\text{max}} \) с использованием моделей изосейст выделяются зоны с разными значениями \(I \) с учетом периода их повторяемости (100, 1000 и 10 000 лет). Эта карта служит нормативным документом для строительства, она содержит информацию, необходимую для проектирования /42/.

Следует отметить, что на карте сейсмического районирования основным параметром является сейсмическая интенсивность. Это объясняется тем, что только для этого параметра существует достаточная статистика для оценки региональных особенностей ее затухания. Средние значения кривые затухания интенсивности и других параметров колебаний грунта обладают большими дисперсиями.

Карты сейсмической активности строятся по методике, разработанной

М.Б. Романенко /31, 32/. Они показывают средние периоды повторения сейсмических событий разных интенсивностей. Исходными материалами являются карта сейсмической активности, карта максимальной магнитуды.
параметр θ графика повторяемости и параметры затухания сейсмической интенсивности /40/.

Свет сотрясаемость – частота повторения сотрясений, определяется по формуле

$$B_I = \int_V N_x d\xi d\eta d\zeta$$

где N_x – супернное число землетрясений, отнесенное к единице времени в элементарном объеме расчетной области, которые вызовут в пункте наблюдения сотрясения интенсивностью I и выше /41/.

Расчет проводится на ЭВМ /40/ для случая, когда затухание интенсивности оценивается круговыми изосейсмами. Для случая эллиптических изосейсм расчеты проводятся вручную. Вероятностные оценки можно получить, исходя из предположения, что процесс возникновения сотрясений в данной точке является пуссоновским /41/.

Оценка сейсмического риска. Методика расчета сейсмического риска разработана на основании статистического анализа комплекса сейсмологических, геологических и инженерно-экономических данных и направлена на оценку различных супернных эффектов, вызываемых землетрясениями для горных, трасс и железной дороги, и т.п., за определенный период времени /40, 41/. Под риском понимается вероятность того, что данный эффект превысит заданный порог X

$$R_T (x) = 1 - F_T (x)$$

где $F_T (x)$ – функция распределения супернного эффекта.

Можно рассмотреть площадные (тектонические участки или административные районы), линейные (трассы железных дорог, нефтепроводов) и точечные (города, площадки размещения промышленных центров). Под эффектами понимаются сотрясения с заданной интенсивностью, экономические ущербы.

Расчет сейсмического риска проводится по методике, наложенной
а /23/ с помощью ЭММ. Она основана на трех статистических моделях.
1) Процесс возникновения землетрясений является гуссоновским.
2) Модели изосяйст представлены в виде элипсов и площади со-трассий интенсивности \(I \) \(I \) зависящих от \(M_0 \).
3) Ущерб от сотрясений в каждой точке определяется величиной

\[x(I, t) = x_0(I) e^{-\beta t} \]

где \(x_0 \) - эффект, приведенный к начальному моменту времени, \(e^{-\beta t} \) характеризует изменение эффекта во времени. Эта модель меньше развита, чем остальные две, и необходимы теоретические исследования .

Работы по оценке сейсмической опасности в США. Первая карта сейсмического районирования США, составленная на основе статисти-ки оптимум землетрясений, опубликована в 1942г и включена в норма-тивные правила для строительства. Ч. Риктер /133/ предложил карту сейсмического районирования, составленную на основе анализа геологических и сейсмологических данных. Эта карта не была принята в качестве нормативной. Модернизация первой карты 1942г выполнена в 1969г, она включена в нормативные правила для строительства /32/.

Дальнейшее развитие работ по оценке сейсмической опасности проходило по двум направлениям: разработка вероятностной методики оценки сотрясений и изучение корреляционных связей между магни-тудой, эпицентральным расстоянием и параметрами колебаний грунта. Были разработаны методы выделения зон ВОЗ и расчетов инженерных характеристик колебаний грунта.

Вероятностная оценка сейсмической опасности. Исходя из предположения о гуссоновском характере процесса возникновения земле-трассений, рассчитывается значение интенсивностей или ускорений, которые не должны быть превышены в течение определенного срока для заданного уровня вероятности /64/. Эта методика была использована
Эту же методику применяли в разных районах, например, для Буинского региона /51/.

Зависимость между магнитудой, эпицентрическим расстоянием и интенсивностью. В США накоплено большое количество данных по интенсивности землетрясений. Макросейсмическое поле представляет в виде соотношений типа /37, 94, 145/:

$$\begin{align*}
I &= I_0 + b \log R + C + d \\
I &= I_0 + b \log R + d \\
\log A_I &= a + bM
\end{align*}$$

где R — эпицентрическое расстояние.

Зависимость между пиковым ускорением, магнитудой и эпицентрическим расстоянием /101/ получена в виде:

$$\log x = a + bM + c \log R + dR + eP + fS$$

где $x = A_h, V_h$ (пиковые горизонтальные ускорения и скорости), $R_0 \sqrt{r^2 + \alpha^2}$ (r — эпицентрическое расстояние, α — константа), P — вероятность превышения значения, S — тип грунта.

Соотношения между пиковыми значениями ускорения, скорости и значения грунта и интенсивностью получены в виде /146/:

$$\log x = aI + b$$

где $x = A_h, A_v, V_h, V_v, D_h, D_v$

или в виде

$$\log x = aI + bM + c \log r + d$$

где $x = A_h, A_v$ и r — эпицентрическое расстояние /117/.
Рыслиение зон ВОЗ и оценка максимальных магнитуд. Рыслиение зон ВОЗ в США рассматривается в связи с разломами. Критерии определения активности разлома могут быть геологическими и сейсмологическими /32/. Следует отметить, что в США геологические данные не рассматриваются так глубоко, как в СССР.

Для оценки максимальной магнитуды используются корреляционные связи между магнитудой сильных землетрясений и геометрическими параметрами фокальных зон. Эти соотношения имеют общий вид

\[M = A \log L + B \]
\[M = C \log S + D \]

где \(L \) — длина источника и \(S \) — площадь источника /48/. Имеются и другие зависимости /138/.

Об устойчивости оценок сейсмической опасности. В СССР проводился исследований оценок точности расчетов сотрясаемости. Изучалось влияние разных параметров, входящих в формулу расчета сотрясаемости. Численный эксперимент был проведен в Узбекистане для изучения влияния ошибок в исходных параметрах \(h, x, K_{\text{max}} \) и затухания на оценки сотрясаемости. Подобные расчеты были сделаны в Молдавии /17/.

В США также рассматривался вопрос о точности оценок сейсмической опасности. В /II2/ обсуждалось влияние выбора разных карт зона ВОЗ, вариации параметра \(b \) графика повторяемости при зафиксированном синусом количестве землетрясений, вариации максимальной возможной интенсивности в каждой зоне ВОЗ. В /I23/ приведен численный эксперимент, рассмотрено влияние размеров элементарных площадок, использованных при расчетах периодов повторяемости линейных ускорений, контуров зон ВОЗ, \(M_{\text{max}} \) — параметров \(a \) и \(b \) графика повторяемости. В работах /II2 и II3/ отмечена сверхъяркость оценки оценок сейсмической опасности от максимального значения магнитуды или интенсивности.
Другие подходы к оценке сейсмической опасности. Новый вид закона повторяемости землетрясений предложен в [66]. График накопленной повторяемости аппроксимируется не одной линией, а линией с язвами внутри, обозначающими максимальные магнитуды, что согласуется с экспериментальными данными [68]. В работе [65] анализируется и изменение такого закона повторяемости для оценки сейсмической опасности.

В [80] предложена методика, основанная на статистике Байеса. Оценка сейсмической опасности по этой методике сделана в Карибском регионе и для разных стран Центральной Америки [107, 116].

Частотность сильных землетрясений была рассмотрена в [118].

Особенности выбранного подхода оценки сейсмической опасности. В данной работе в основном рассматриваются сейсмологические вопросы оценки сейсмической опасности. Поэтому выделение зон ВОЗ сделано формально, без детального анализа геологических данных. Особенности выбранной методики состоят в следующем:

- Используется закон накопленной повторяемости землетрясений в пищем, близком к предложенному в [66].
- Теоретические модели взаимодействия в пищем эллипсов.
- Проведен численный эксперимент для вычисления зависимости между параметрами на оценки средних периодов сейсмической опасности. Этот подход позволяет избавиться от затруднений сейсмической опасности, которые связаны с применением закона накопленной повторяемости в виду прямой линии, используя модели взаимодействия, более близкие к наблюдениям в Карибском регионе. Численный эксперимент позволяет снять, насколько устойчивы полученные результаты.

Схема работы по расчетам сейсмической опасности Достоиной Линии. Работа по оценке сейсмической опасности Достоиной Линии состоит из трех главных частей: подготовка исходных данных, обосно-
несущих принципиальных особенностей программы расчетов сейсмиче-
ской опасности, ее написание и отладка, и наконец, сейсмической о-
пасности Восточной Кубы.

Подготовка исходных данных включает: интерпретацию макросей-
мических данных с целью обоснования модели взрыва; составление
каталога землетрясений для региона 15° - 24° с.ш. 7Го - 8Го в.д.;
взвешенную обработку данных по тектонике, изостатическим аномали-
ям гравитационного поля, глубине морского дна и сейсмичности в
районе выделения зон ВОЗ; оценку параметров сейсмического режима
для всех зон ВОЗ и параметров макросейсмического поля.
Глава 2. ИСХОДНЫЕ СЕЙСМОЛОГИЧЕСКИЕ МАТЕРИАЛЫ

2.1. Краткое описание использованных источников

Международные сводки. Основными источниками данных о сильных землетрясениях в мире являются международные сводки. Эти сводки, как правило, представляют собой каталоги землетрясений в хронологическом порядке. В настоящее время многие каталоги записаны на магнитных лентах.

Описание землетрясений в каталогах включает следующие данные: дата; время в очаге; географические координаты и глубины гипоцентров; магнитуды с указанием их типа; географический район эпицентра (по филиалу и др.) /82/; количество станций, использованных для определения координат гипоцентра, или качество определения; макросейсмические данные и другие эффекты землетрясений.

В эти каталоги включены все землетрясения, гипоцентры которых определены международными агентствами, а также региональными или национальными службами. Например, в Карийском регионе часто встречаются определения координат очагов землетрясений сейсмологическими службами Мексики, Тринидада и других. Описание первичных источников дано в работе /4/.

В основном были использованы следующие каталоги:

1) Международная сейсмологическая сводка (ISS). В каталог включены землетрясения, происшедшие до 1963 г.

2) Каталог Международного сейсмологического центра (ISC), в него вошли землетрясения, происшедшие в 1964 г. и позднее. Магнитуды в основном соответствуют типу m_{pw}.

3) Каталог Национальной службы информации по землетрясениям США (EDF). Иногда даны четыре разных магнитуды: m_{pw}, M_{LH}, M_L и M.
Основными источниками, использованными в нашей работе, являются сборники /36, 38, 118/, каталоги Гутенберга и Рихтера /68, 89/ и каталоги из работ /114, 141/.

Каталог слабых землетрясений Кубы включает около полуторы тысяч слабых землетрясений, в основном из восточной части Кубы. Большинство землетрясений зарегистрировано только одной станцией — Ру-Карпинтеро (RCC), находящейся вблизи города Сантгиго-де-Куба. Данные, полученные одной станцией, могут иметь большие ошибки, которые трудно оценить из-за отсутствия методов проверки точности определения координат гипоцентров по одной станции. В /4/ были рассмотрены другие источники инструментальных данных и удалось определить эпицентры землетрясений, зарегистрированных несколькими станциями, но для восточной Кубы их очень мало и общая картина слабой сейсмичности определяется данными станции RCC. Эти данные нужно рассмотреть очень осторожно, отдельные определения могут оказаться неправильными, и выводы, сформулированные на их основе, могут быть ошибочными. Вероятность больших ошибок уменьшается в районах, где наблюдается концентрация эпицентров, но в этих случаях сохраняются систематические ошибки, зависящие от модели земной коры, использованной для определения гипоцентров, и от ошибок самих измерений. По мере удаления эпицентра от станции RCC ошибки определений координат увеличиваются из-за ошибок определения ширины эпицентра. Пример такой ошибки удалось обнаружить в /56/.

Также рассматривались пересчёты гипоцентров землетрясения 19 февраля 1376 г. (Mh = 5,7) по данным двух станций против сравнению с гипоцентрами, определенными только одной станцией RCC.

Макросейсмические данные. Имеются исторические макросейсмические данные, на их основе составлен каталог землетрясений /3, 4/. В последнее время эти материалы были пересмотрены /68-77/.

Каталог землетрясений провинции Сальвадор /68/ содержит данные
об ощутимых землетрясениях в северной части Восточной Кубы с 1760 по 1960 гг.

Каталог землетрясений провинции Сантъяго-де-Куба /76/ содержит огромный материал по ощутимым землетрясениям на территории Восточной Кубы с 1551 по 1975 гг.

Каталог землетрясений территории провинции Камагуэй и Сьюго-де-Анья /74/ содержит список исторических макросейсмических данных. В этом разделе сделана попытка выделения сейсмических зон.

Этот район находится непосредственно на западе от интересующего нас региона.

Каталог землетрясений Ямайки /144/ содержит сведения об ощутимых землетрясениях с 1654 по 1971 гг., в основном по Ямайке, хотя включает также данные по Гаити и Гуаерто-Рико.

Каталог исторических сильных землетрясений Больших Антильских островов /70/ содержит данные об исторических сильных землетрясениях, взятых из разных источников, с пересечением интенсивности.

Другие неопубликованные макросейсмические данные были любезно предоставлены T. Чуй из Института геодезии и астрономии All Кубы.

2.2. Затухание макросейсмической интенсивности и модели затухания

В работе /3/ было отмечено, что макросейсмическое поле в Карибском регионе с хорошим приближением описывается формулой:

\[I = 1.5 M - 2.63 \log r - 0.0087 r + 2.5 \] \hspace{1cm} (2.1)

предложенной в работе /46/.

Вопрос о затухании был более детально изучен в /4, 5/. Исходным данным для этих работ были макросейсмические сведения о землетрясениях на Кубе и других островах Карибского региона. Методика
обработки включала: изучение соотношения I_0 и M_{LH}, построение обобщенных изосейст для разных $\delta I = I_0 - I_L$, сравнение наблюдаемых значений δI с теоретическими расчетами по формуле (2.1) для направлений наиболее и наименее осей обобщенных изосейст. На основании наблюдаемого количества данных были получены следующие зависимости:

$$I_0 = 1.17 M_{LH} + 0.1 \quad (M_{LH} > 5.6) \quad (2.2)$$
$$I_0 = 1.75 M_{LH} - 3.2 \quad (M_{LH} \leq 5.6) \quad (2.3)$$
$$I_0 = 1.85 m_p - 2.5 \quad (2.4)$$

На рис. 2.1 показаны зависимости I_0 от M_{LH} в соответствии с (2.1) для разных значений глубин скваж. Линии (2.2) и (2.3) находятся внутри интервала глубин $h = 30-50$ км для зависимости I_0 от M_{LH} по формуле (2.1).

Обобщенные изосейст построены для Центральной Кубы, Восточной Кубы и района Сантитьаго-де-Куба-Гуантанамо и для островов Гаити и Пуэрто-Рико. Кроме Восточной Кубы, во всех случаях изосейсты сильно вытянуты. Средние отношения между основными следующие:

Центральная Куба - 1.4; Восточная Куба - 1.2; Гаити - 3.3; Пуэрто-Рико - 3.7.

Сопоставление данных по затуханию вдоль и поперек главных полуосей обобщенных изосейст с теоретическими расчетами по формуле (2.1) показало следующее:

Для Центральной Кубы затухания больше, чем по формуле (2.1) вдоль и поперек главных полуосей.

Для Восточной Кубы затухания приблизительно выравниваются этой формулой в виде круговых изосейст.

Для Гаити вдоль главной оси затухание меньше и в поперечном направлении больше, чем по формуле (2.1).

Кроме того, были рассмотрены вопросы о затухании интенсивности между островами Кубы и Ямайки. Для этого были использованы данные из виброземетрических измерений, зарегистрированных в обоих сторонах коло-
Рис. 2.1. Зависимость I_0 от M_{LH} и глубины очага h мм по (2.1). Пунктиром показана эта же зависимость по (2.2) при $M_{LH} > 5,6$ и (2.3) при $M_{LH} ≤ 5,6$.
де Краимена. Эти данные показывают очень низкое затухание, порядка затухания вдоль большей из полуосей обобщенных изоосей для островерва Гаити.

Сложность вышеописанной карты требует создания модели изоосей, отличной от применяемых до настоящего времени. Решение этого вопроса играет важную роль для оценки сейсмической опасности Восточной Кубы.

Круговые модели изоосей выражаются формулами:

\[I = bM - \log r + c \] \hspace{1cm} (2.5)

\[I = bM - k\log r - pr + d \] \hspace{1cm} (2.6)

Зависимость (2.5) изучена И.В. Небалиным. Параметры b, s, c широко используются в СССР. Вторая формула (2.6) не так распространена, она хорошо описывает макросейсмическое поле землетрясений Камчатки /46/ и Карибского региона /3/.

Физический смысл параметров уравнений (2.5) и (2.6) был обусловлен в работе /34/. Исходя из предположений о том, что между логарифмом плотности энергии и макросейсмической интенсивностью существует линейная связь, были получены соотношения между параметрами уравнений (2.5) и (2.6) и параметрами формулы зависимости логарифма плотности энергии от расстояний. Итак, формула (2.5) соответствует случаю, когда зависимость логарифма плотности энергии от расстояния описывается с помощью так называемого коэффициента эффективного рассеивания, который включает в себя эффекты геометрического рассеивания и потерь. Такую роль в (2.5) играет параметр S. С другой стороны, (2.6) соответствует случаю, когда зависимость логарифма плотности энергии от расстояния описывается с помощью коэффициентов геометрического рассеивания и
Изложения. Роль поглощения в (2.6) играет параметр p, роль геометрического расхождения играет параметр k.

Другая модель более общей - эллиптическая. Она определяется отношением главных полуосей эллипса A/B и соотношением между моделью изосейс и интенсивностью I и магнитудой M, I/M

$$\lg Q_I = A_I + B_I M$$

(2.7)

В работе /8/ предлагается зависимость:

$$\lg Q(I, M) = a(I) + b(I)M + \sigma_Q \varepsilon,$$

(2.8)

где $\sigma_Q \varepsilon$ - случайная составляющая, связанная с неоднородностью земной поверхности, ошибкой глубин оценок и механизмом землетрясений.

Модели эллиптических изосейс. Форма эллипса задается отношением полуосей A/B. Макросейсмическое поле описывается по формулам (2.5) и (2.6), где r измеряется вдоль одной из полуосей или вдоль среднего радиуса эллипса. Используются уравнения, которые описывают эллипс как функцию параметров Δ, α, A и B

$$\Delta = A \left| \frac{\cos \theta}{\cos \alpha} \right| = B \left| \frac{\sin \theta}{\sin \alpha} \right|,$$

$$\theta = \arctg \left(\frac{A/B}{\tan \alpha} \right),$$

(2.9)

где Δ - расстояние от центра до точки на эллипсе;

A - большая полуось;

B - малая полуось;

α - угол между большой полуосью и радиусом;

θ - вспомогательная переменная, угол см. на рис. 2.2.

Эта формула получена следующим путем (рис. 2.2). Рассмотрим для концентрических кругов с радиусами A и B. Пусть точка $R(x, y)$ соответствует точке эллипса с координатами (Δ, α).
Рис. 2.2. Схема эллиптической модели.
Из рисунка видно, что

\[
\begin{align*}
X &= A \cos \theta = \Delta \cos \alpha \quad \rightarrow \quad y/x &= \frac{B \sin \theta}{A \cos \theta} = \frac{\sin \alpha}{\cos \alpha} \\
Y &= B \sin \theta = \Delta \sin \alpha \quad \therefore \quad \theta &= \arctg \left(\frac{A/B}{\tan \alpha} \right) , \quad \Delta = A \left| \frac{\cos \theta}{\cos \alpha} \right| = B \left| \frac{\sin \theta}{\sin \alpha} \right|
\end{align*}
\]

Таким образом определяется форма изосейст. Спад интенсивности в направлении определяется формулой типа (2.6). Комбинация обеих формул позволяет учесть различные типы затухания, потому что, если формула (2.6) справедлива вдоль одного направления, макросейсмическое поле будет одним, но, если она справедлива вдоль другого направления, макросейсмическое поле будет другим. Таким образом, макросейсмическое поле описывается отношением \(A/B \), уровнем макросейсмического поля типа (2.6) и направлением, вдоль которого як спредевливо. Название эффективным радиусом

\[
\Gamma = \sqrt{\Delta^2 + h^2} ,
\]

для которого справедлива формула (2.6): \(B \) (2.10) \(h \) - глубина эпицентра, \(\Delta \) - эпицентраальное расстояние. Рассмотрим три случая: \(\Delta = A , B , \bar{A} \), где \(\bar{A} \) - средний радиус эллипса.

Расчет среднего радиуса эллипса проводится следующим образом:

\[
\bar{A} = \frac{2}{\pi} \int_0^{\pi/2} \Delta \, d\alpha
\]

Име уравнения эллипса:

\[
\left(\frac{x}{A} \right)^2 + \left(\frac{y}{B} \right)^2 = 1 \quad \rightarrow \quad \frac{\Delta^2 \cos^2 \alpha}{A^2} + \frac{\Delta^2 \sin^2 \alpha}{B^2} = 1
\]

\[
\Delta = \left[\frac{\cos^2 \alpha}{A^2} + \frac{\sin^2 \alpha}{B^2} \right]^{1/2} \left[\sin^2 \alpha + \frac{B^2}{A^2} \cos^2 \alpha \right]^{1/2} = \left[1 - \left(1 - \frac{B^2}{A^2} \right) \cos^2 \alpha \right]^{1/2}
\]
\[U = \pi/2 - \alpha \quad \Rightarrow \quad \alpha = 0 \quad \Rightarrow \quad U = \pi/2 \]

\[\alpha = \pi/2 \quad \Rightarrow \quad U = 0 \]

\[dU = -d\alpha \]

\[\cos^2 \alpha = \sin^2 U \]

\[1 - \frac{B^2}{A^2} = m > 0 \]

Из (2.11)

\[\bar{\Delta} = \frac{2B}{\pi} \int_0^{\pi/2} \frac{dU}{\left[1 - m \sin^2 U\right]^{1/2}} = \frac{2B}{\pi} K(m) \quad (5.12) \]

где \(K(m) \) — эллиптический интеграл первого рода, для которого можно найти численные значения в таблицах. Из рис. 2.3 нанесены значения \(\bar{\Delta}/A \) и \(\bar{\Delta}/B \) для значений \(A/B \) от 1.0 до 3.0.

С другой стороны, угол, соответствующий среднему радиусу,

определяется из уравнений

\[\frac{\Delta^2}{A^2} \cos^2 \bar{\alpha} + \frac{\Delta^4}{B^4} \sin^2 \bar{\alpha} = 1 \quad \Rightarrow \quad \cos^2 \bar{\alpha} + \frac{A^2}{B^2} \sin^2 \bar{\alpha} = \frac{\Delta^2}{\bar{\Delta}^2} \]

\[1 - \sin^2 \bar{\alpha} + \frac{A^2}{B^2} \sin^2 \bar{\alpha} = \frac{A^2}{\bar{\Delta}^2} \quad \Rightarrow \quad \sin^2 \bar{\alpha} = \frac{1 - \Delta^2/\bar{\Delta}^2}{1 - A^2/B^2} \]

\[\bar{\alpha} = \arcsin \left[\frac{1 - A^2/B^2 (\pi/2 K(m))]^2}{1 - A^2/B^2} \right] \quad (5.13) \]

На рис. 2.4 представлена зависимость \(\bar{\alpha} \) от \(A/B \).

Для полного описания моделей изосей лесточно знать отношение \(A/B \) полуось эллиптических изосей, зависимость интенсивности от гипоцентрического расстояния в виде коэффициентов формулы (2.6) и направления, по которому получена эта зависимость (наиболее обычной из осей или вдоль среднего радиуса).

По определению интенсивности. Возьмем точку на карте и

вектор, рассчитывая эпицентральное расстояние и угол между

направлением и главной осью эллипса. По (5.9) определяются
Рис. 2,3. Зависимость среднего радиуса Δ от отношения A/B.
2.4. Зависимость угла φ, соответствующего среднему радиусу Δ, от отношения A/V.
Параметры A или B. Можно воспользоваться рис. 2.3 для оценки \bar{A}. Затем рассчитывается эффективный радиус $R_e = \sqrt{\frac{A^2}{\Delta}}$.

Для h — глубины очага, Δ_0 может быть A, B, или \bar{A}.

Если значение гипоцентрического расстояния и амплитуда землетрясения определяются высотой интенсивности I по (2.5) или (2.6).

На рис. 2.5 представлены модели изосейст при $M_L = 6$, $I = 5$, $h = 5$ и $A/B = 1.6$, 0, для случаев $\Delta_0 = A$, \bar{A} и B.

Методы изосейст ISOSISTA. Для построения в графическом виде описанных моделей была написана программа ISOSISTA.

Исходные данные: параметры закона (2.6), местоположение, глубина, отношение главных полуосей A/B, масштаб и направление, вдоль которого определена зависимость (2.6). По этим данным программа дает карту изосейст. Четырех в работе следующие: 1. на пути ЗИИ образуются массив результатов расчетов интенсивностей для каждой точки в карте. Площадь печати одной карты изосейст 18 см x 30 см. Расчеты проводятся для 1000 точек. Кроме выше — параметры формы (2.6) и A/B, M, h, масштаб карти и тип детализации.

Вводится подпрограммой CAMMAC и затем проводится все расчеты.

Подпрограммы CAMMAC работают следующим образом:
- фиксируется точка для расчетах интенсивности;
- рассчитывается гипоцентрическое расстояние до центра карты убывшей масштаба;
- с помощью подпрограммы ELICAN это расстояние проверяется в большую ось эллипса A, проходящего через эту точку (формул 2.3);
- в зависимости от направления, вдоль которого справедлива закон (2.6), это расстояние может быть проверено и меньшую полуосью B.

С помощью подпрограммы CORELI в средний радиус \bar{A} (2.12);
- рассчитывается эффективное гипоцентрическое расстояние для
2.6. Теоретические изосейсты 5-го балла для землетрясения с магнитудой $M_{lh} = 6$ и $h = 5$ км. 1 - круговая изосейста, 2-4 - эллиптические изосейсты:

1 - $\Delta_0 = \Delta$;
2 - $\Delta_0 = \bar{\Delta}$;
3 - $\Delta_0 = \Delta$;
4 - $\Delta_0 = \bar{\Delta}$.

$A/B = 1.6$

$A/B = 2$
точки и по формуле (1.6) определяется значение интенсивности:
- для печати на ЭМ рассчитываем значения интенсивности висячих интегралов (I ± 0.5) и для каждого интервала фиксируется определенный знак. Эти знаки печатаются и проводятся вручную.

Сочетание карт изоосейст землетрясений с теоретическими моделями. Чтобы определить региональные характеристики моделей изоосейст, было проведено сопоставление карт изоосейст землетрясений Больших Антильских островов /56, 69, 73, 74, 75, 120/ с теоретическими моделями.

По картам изоосейст определялись средние значения A/B и с помощью программы ISOSISTA были получены теоретические модели для разных магнитуд, глубин и направлений расчета эффективного радиуса.

Всего было рассмотрено 18 карт изоосейст, из них для Центральной Кубы - 5 карт, для Кариб-Восточной Кубы - 5, для северной части острова Гаити - 3 и для южной части острова Гаити - 4, а также одна карта для острова Ямайки. Определение параметров модели проводилось по методу последовательных приближений. При сопоставлении полученной карты изоосейст и набора карт теоретических изоосейст с различными значениями параметров, но всегда с использованием формулы (1.1).

Землетрясение Центральной Кубы 15 августа 1939г расположено в северных акваториях этого региона, рис. 2.6а. Карта изоосейст землетрясения хорошо согласуется с моделью, рассчитанной для M_L = 5.5, A/B = 1.5, A = 15 км и A = A (рис. 2.6а).

Четыре землетрясения Кариб-Восточной Кубы расположены в регионе Сантьяго-де-Кубы: 11 октября 1968г, m_P = 4.2, A/B = 1.15; 12 ноября 1963г, A/B = 1.07; 7 августа 1947г, M(PAS) = 6.75; 17 января 1937г, M(PAS) = 1.07, h = N.
2.6. Сопоставление наблюдаемых и теоретических изосейст:

а) Землетрясение 15 августа 1939г. $M_{ЛН} = 5.3-5.9$.
I-2 - наблюдаемые изосейсты; 3 - теоретические изосейсты.
Параметры модели: $A/B = 1.6, \Delta = 15 \text{ км}, M = 5.5, \Delta_3 = A$.

4 - инструментальный эпицентр.

б) Землетрясение 7 августа 1947г. $M_{ЛН} = 6.75$. Параметры модели: $M = 6.3, \Delta = 30 \text{ км}, A/B = 1.07, \Delta_3 = A$.

c) Землетрясение 19 февраля 1976г. $M_{ЛН} = 5.7$. Параметры модели: $M = 5.7, \Delta = 15 \text{ км}, A/B = 1.57, \Delta_3 = A$.

d) Землетрясение 4.6 февраля 1978г. $M_{ЛН} = 4.5$. Параметры модели: $M = 4, \Delta = 5 \text{ км}, A/B = 2.14, \Delta_3 = A$.

e) Землетрясение 7 мая 1842г. Параметры модели: $M = 8.2, \Delta = 60 \text{ км}, A/B = 2.7, \Delta_3 = A$.

f) Землетрясение 4 августа 1946г. $M_{ЛН} = 8.1$. Параметры модели: $M = 7.75, \Delta = 50 \text{ км}, A/B = 2.7, \Delta_3 = A$.

g) Землетрясение 18 октября 1751г. Параметры модели: $M = 7.25, \Delta = 30 \text{ км}, A/B = 2.14, \Delta_3 = A$.
\[A/B = 1.15. \]

Среднее отношение \(A/B \) для изосеиц землетрясений региона равно 1.1. Карты изосеиц хорошо согласуются с теоретическими моделями:

Землетрясение 21 октября 1968г. модель рассчитана с параметрами: \(M_{LH} = 4.5 \), \(h = 30 \), \(A/B = 1.15 \) и \(\Delta_9 = A \); изосейц в большинстве имеют большую площадь, чем рассчитанная.

Землетрясение 30 ноября 1968г. соответствует модели с параметрами: \(M_{LH} = 3.8 \), \(A/B = 1.1 \), \(h = 15 \) км и \(\Delta_9 = A \).

Землетрясение 7 августа 1947г. соответствует модели с параметрами: \(M_{LH} = 6.3 \), \(A/B = 1.07 \) и \(\Delta_9 = A \). Интересно отметить в этом случае большую разницу между магнитудами, полученными на макросейсмических динах путем подбора модели, и инструментальными определениями. В каталоге (приложение I) помещено значение магнитуды по макросейсмическим данным (рис. 1.66).

Землетрясение 3 февраля 1934г. изосейц соответствуют модели с параметрами: \(M_{LH} = 6.75 \), \(A/B = 1.15 \), \(h = 30 \) км и \(\Delta_9 = A \).

Землетрясение 12 февраля 1976г. было детально изучено в работе 1/3,6. Для него получено очень хорошее согласие с моделью, рассчитанной при \(M_{LH} = 5.7 \), \(h = 15 \) км, \(A/B = 1.07 \) и \(\Delta_9 = A \) (рис. 6.6б).

Для региона Ямайки удалось проанализировать только одно землетрясение 6 февраля 1976г. с \(m_{PV} = 4.5 \) /1/0. Получено хорошее согласие с моделью, рассчитанной при \(M_{LH} = 4 \), \(A/B = 1.44 \), \(h = 5 \) км и \(\Delta_9 = A \) (рис. 1.6г).

Для северного Гаити анализировались следующие землетрясения:

- 1847г (\(A/B = 1.7 \)); 9 декабря 1937г (\(A/B = 1.9 \)); 4 августа 1946г (\(A/B = 1.7 \)); \(M(PAS) = 3.1 \).

В этих случаях были рассчитаны модели при \(\Delta_9 = \bar{A} \).

Для землетрясения 9 мая 1847г. получено хорошее согласие с
написано, рассчитанной при \(M_{\text{LH}} = 8,5 \), \(A/B = 1,7 \) и \(h = 60 \text{ км} \) (рис. 3.6а). Для землетрясений 29 декабря 1997 г. получено хорошее согласие с моделью, рассчитанной при \(M_{\text{LH}} = 7,5 \), \(A/B = 1,9 \) и \(h = 50 \text{ км} \). Для землетрясения 4 августа 1946 г. не было получено согласия ни с одной моделью при \(M_{\text{LH}} = 8,1 \), только жестким \(M_{\text{LH}} = 7,5 \), удалось получить согласие с моделью, рассчитанной при \(A/B = 2,7 \) и \(h = 50 \text{ км} \) (рис. 3.6а). Для многих Генти анализировались следующие землетрясения:

- октябрь 1751 (\(A/B = 3,1 \));
- января 1752 (\(A/B = 3,1 \));
- апреля 1860 (\(A/B = 3,1 \)) и 11 мая 1910 (\(A/B = 3,1 \)).

Во всех случаях были выбраны модели с \(A/B = 3,1 \) и \(\Delta = \Delta \).

Для всех землетрясений были получены при следующих значениях: \(M_{\text{LH}} \) и \(h \).

- октябрь 1751 (\(M_{\text{LH}} = 7,5 \), \(h = 30 \)) (рис. 3.6а);
- 11 ноября 1752 (\(M_{\text{LH}} = 6,5 \), \(h = 30 \));
- 2 апреля 1860 (\(M_{\text{LH}} = 6,4 \), \(h = 50 \));
- 11 мая 1910 (\(M_{\text{LH}} = 6,5 \), \(h = 30 \)).

Задача изосейст при расчетах сейсмической опасности Госточной Кубы. Для оценки сейсмической опасности Госточной Кубы необходимо принять решение о параметрах модели изосейст, которые будут учтены в каждой зоне ДОЗ, исходя из множества выписываемых данных.

Зона ДОЗ в Центральной Кубе. По обобщенным изосейстам \(A/B = 1,4 \), по моделям отдельных землетрясений \(A/B = 1,9 \).

Зона ДОЗ в Ик-о-осточной Кубе. В регионе Сантано-де-Куба

по обобщенным изосейстам \(A/B = 1,7 \), по моделям отдельных землетрясений \(A/B = 1,9 \). Было принято решение \(A/B = 1,9 \), \(\Delta = \Delta \). Район землетрясения 9 февраля 1976 г. (\(A/B = 1,8 \), \(\Delta = \Delta \)) может быть рассмотрен как отдельный зоной по характеру микросейсмического поля.

Анализ. Значения прогнозируемые значения. С одной стороны, ман

изучение между Кубой и Курай /4/ и, с другой стороны, боль

изучение в том же направлении по карте изосейст землетрясений 9 февраля 1976 г. Было принято решение использовать круговую
Северный Гаити. По обобщенным изосейсам для всего острова $A/B = 3.3$ по моделим отдельных землетрясений $A/B = 4.4$. Было принято решение $A/B = 4.4$.

Южный Гаити. Хотя и удалось определить по моделиам отдельных землетрясений параметры A/B и Δ_3, были использованы только макросейсмические данные, и поэтому было принято решение использовать квадровую модель изосейс.

Макросейсмическое поле для всего региона описывается только помощь одного варианта (2.1), и почти все особенности могут быть обусловлены вариацией параметров модели, описанной формулой (2.3). Но упрощает задачу оценка сейсмической опасности.

Другой вопрос, который нас и здесь, касается ориентации центральной полосы амплитудной изосейсм по отношению к направлению зон I03. За исключением слабых землетрясений в разломе Ла-Плата /75/, все рассматриваемые случаи характеризуются совпадением направлением больших полусей и направлением зон I03. Поэтому для сейсмической опасности Гаитского бассейна считается, что ориентация больших полусей амплитуд соответствует направлению зон I03.

2.3. Описание каталога землетрясений региона за 1551-1981 гг.

Каталог сильных землетрясений (приложение 1) был составлен на основании инструментальных данных, взятых из международных сводок, и по макросейсмическим данным для $I \geq 6$. Он отличается от ранее со- стоятельного /4/ добавлением других данных, а именно новых рассмотренных вопросов о землетрясениях сейсмической интенсивности (см. 2.2) и учетом грунтовых условий в районах Кингстона на острове Ямайка /4/.

Для исторических землетрясений параметры определены следую-
в) Координаты эпицентров близки к пункту с максимальной интенсивностью.

6) Глубина. Условно были заданы значения следующие значения:
 центральная Куба - 30 км, Ямайка - 30 км, Гана - 30 км (сильно землетрясения - 50 км), Куба (остальная территория) - 5-10 км.

6) Магнитуда определена из соотношения \(I_0 = f(M_{LM}) \) полученного по формуле (I), при резких значениях \(h \). В качестве \(I_0 \)
 выбран значения \(I_{max} \). При условии удаления от зоны 103 точка с максимальной интенсивностью магнитуда определена из соотношения
 \(I = f(M_{LM}, r) \), полученного по формуле (I). Однако при наличии достаточного количества данных для определения землетрясений
 было рассмотрено их сопоставление с теоретическими моделями в рамках более точного определения параметров. Следует отметить, что
 соотношения \(I_0 = f(M_{LM}) \) и \(I_0 = f(M_{LM}, r) \) не имеют аналогичного решения. Ситу, как правило, определяют интенсивность из
 магнитудного числа, что целое значение интенсивности \(I \) соответствует на
 самом деле интервалу (I - 0,5, I +0,5). Эти интервалы легко определить из формулы (I) или из рис. I. Изображение на
 рис. может быть использовано внутри определенного интервала соответствует при комплексной анализе согласованности изменений микросейсмических явлений.

Исторические данные сильно связанны с расположением населенных пунктов и прожитком. Например, для центральной Кубы из 13 землетрясений \(I > 6 \) для периода 1951-1980 гг. 30 относились к городу
 Симпо-де-Куба (крупнейшей населенности пункт в районе). По другим
 городам региона почти не имеется данных, что к ним относится целое \(I = 6 \), что они располагаются далеко от города (основной зона 103),
 поэтому тем не обладались данные о сильных землетрясениях.

С другой стороны, микросейсмические эффекты в большой мере зависят от грунтовых условий. В [136] изучалось влияние грунтовых
 условий и р. Миссисипи (штаты) на частоту отдельных сейсмических
в период 1860-1990гг. Авторы пришли к выводу, что высокая необъясняемость частоты повторения землетрясений в г. Кингстон не связана с наличием городов и какой-либо сейсмической зоной, но объясняется уникальными особенностями сейсмической активности и геологическими условиями. Поэтому в анализе макросейсмических землетрясений для городов Кингстон и Порт-Рояль следует, что балльность землетрясений не определялась.

Макросейсмические данные были использованы для определения магнитуд землетрясений с координатами, определенными инструментально.

Таким образом, в каталоге имеется множество определений магнитуд по макросейсмическим данным в XVI-XIX веках.

В ИХ веке в 1901-1910гг. из 8 землетрясений только одно имеет инструментальное определение магнитуд, - это землетрясение 14 января 1907г в районе Пунта-Ара - M_LH = 6,6, от которого уже без упоминания сейсмических данных /3/.

В 1911-1930гг. из 8 землетрясений только 4 имеют магнитуду определенными инструментальными данными. Максимальная M_LH по макросейсмическим данным равна 6.

В 1931-1940гг. из 7 землетрясений только 2 имеют магнитуду определенными инструментальными данными. Максимальная M_LH по макросейсмическим данным равна 5,4.

После 1960г все сильные землетрясения имеют хотя бы одно
Природное определение магнитуды. Только для сравнительно небольших землетрясений магнитная сетка не удавалось определить их магнитуду.

Следует отмечь, что после начала работы станции Рио-Карнито (RCC) в 1967 г. наблюдается большое количество землетрясений этого региона. Они не были включены в каталог.

Специальное рассмотрение требует случаев двух землетрясений, которые не были включены в каталог (и рисунок I), но представлены в работе /3/.

Это землетрясения: 14 июня 1899 г. $M = 7,8$, 18^0 с. в., 77^0 в. д.;
11 июня 1900 г. $M = 7,6$, 20^0 с. в., 80^0 в. д.

В /4/ они не были включены в каталог из-за отсутствия микросейсмических данных, подтверждающих, что они происходили в районе Кубы. Напомним, первое подделение магнитуды /104/ дает значение $M_{LH} = 7,3$ для первого, $M_{LH} = 7,6$ — для второго. Сложнее обстоит дело с уточнением координат. Землетрясение 14 июня 1899 г. имеет одинаковые координаты в работах /38/ и /66/. В первом ошибка обнаружена (50°), во втором говорится, что землетрясение ощущалось на острове Ямайка. Имея в виду, что на острове были отмечены землетрясения 4 балла /144/ и что землетрясение не было замечено на острове Кубы и Гаити, можно думать, что эпицентр находился примерно в 400 км от острова Ямайки, вероятно, в западу от него, в регионе между островами Большого и Малого Антиль.

Для землетрясения 11 июня 1900 г. данные противоречивы. В работе /38/ эпицентр расположен в 20^0 в. д. и 80^0 с. в. с возможными ошибками ±20°. С другой стороны, в работе /61/ тот же эпицентр расположен в 15^0 с. в., 85^0 в. д. без указания данных, использованных для определения этих координат. Кроме того, нет микросейсмических данных, которые позволяли бы уточнить координаты эпицентра, можно только гарантировать, что оно не произошло внутри анализируемого региона.
ГЛАВА 3. ТЕХНОГИЧЕСКАЯ СОСТАВЛЯЮЩАЯ И СЕЙСМИЧНОСТЬ КАРИБСКОГО РЕГИОНА. ВЗАИМОДЕЙСТВИЕ ЗОН РОЗ

3.1. Обзор наиболее важных работ по тектонике и сейсмичности Карибского региона

Тектоника Карибского региона изучалась многими авторами. Первая работа, в которой дается интерпретация сейсмичности с точки зрения тектоники плит, опубликована Молнаром и Сейксом /14/. В этой работе переопределены гипоцентры и магнитуды землетрясений в период 1950–1965 гг., получены параметры механизмов сейсмических событий для этих землетрясений и рассмотрен вопрос о распределении гипоцентров в пространстве. В результате были выделены границы Карибской плиты, определен характер смещений на них, дана оценка движений плит.

Северо-западная граница Карибской плиты, которая не была четко установлена в работе Молнара и Сейкса, была детально изучена после землетрясений 4 декабря 1976 г. (Мs = 7,5) в Гвatemале, где существует система молодых активных разломов, смещение по которой соответствует левому сдвигу /14/. Во время Гвatemальского землетрясения произошел левый сдвиг по плоскости с азимутом 60° и углом падения 90° /10/. Плейнфйном /14/ были предложены различные модели, объясняющие характер сочленения плит Кокосовой, Северо-Американской и Карибской. На западном побережье Центральной Америки, кроме поднятия Кокосовой плиты под Карибскую, наблюдался левый сдвиг по щелевым разломам /63/. Примером сейсмогенного смещения такого характера может служить смещение типа левого сдвига в озере землетрясения 31 января 1972 г. (Мs = 6,2) /49/, которое разрушило город Мана...
Бисса границы Карибской плиты очень сложная \cite{79, 119, 122}.

Восточная граница Карибской плиты характерна для остроногих дуг. Она расположена на востоке Малых Антильских островов, где, как считают, начинается подлдив Якоо-Американской и Северо-Американской плит под Карибскую плиту. Авторы \cite{140} пришли к выводу, что сейсмичность этого региона в большей мере соответствует внутреннему типу, если изолированная часть смещений связана с землетрясениями, механизм которых объясняется подводным. Кроме того, авторы \cite{140} отмечают, что не существует явлых признаков существования границ между Северо-Американской и Якоо-Американской плитами.

На западе остроногой дуги положение не менее сложно. Границу плиты автор \cite{84} проводит вдоль велосипед Куарто-Рио (на юге этого острова). Она наклонена, как на обычных поддиверсальных участках, но вдоль дуги, а не вкрест, как характерно для таких районов. Кроме того, на территории глубокой сейсмичности с простиранием С-В - Ю-З, к ней приурочено пучечное землетрясение 1867 г. с магнитудой 7-7.5 \cite{84}. На северном побережье острова Гаити характер сейсмической границы не очень явен \cite{59, 60, 115}.

От Центральной Америки до острова Гаити Моллер и Сайкс предполагали существование левого сложения вдоль островного трансформационного разлома. Положение осложнялось открытием в районе впадины вдоль центра с праздника морского дня \cite{35, 111}. К востоку от этого пункта до 73° з.д. механизм смещений соответствует ному сложению вдоль северного берега велосипед Кайманов \cite{66}.

Были проведены различные работы по вопросу комплексной интерпретации тектоники Карибского региона. Среди них следует отметить работы Хорвина \cite{100}, в которой дается схема границ Карибской плиты. Предлагается характер смещения вдоль них и оценивается скорость
Скорость движения Карибской плиты во отношение к Северо-Американской плите по /100/ равна 2.1 см/год,
абсолютная скорость равна 0.6 см/год.

Своей другой картиной представлен Ульянов и соавторы /44/.
При анализе нарушений изостазии эти авторы не только определяют
гранич Карибской плиты, но и выделяют семь микроплит. На север-
ной части Карибского региона выделяются две микроплиты: Кубинская
и Гаити. Первая из них находится на Северо-Американской плите и
покрывает Кубу и территориальный шельф до границы с Карибской плитой.
Кубинская микроплита выделяется на противоположном, микроплита Гаити
покрывает острова Гаити, Гуао-Рико и Литянские острова. Северная
гранича соответствует междуплитовой границе, южная граница про-
ходит через острова Гаити и Гуао-Рико и изгибаются на с.-з.
встречи с междуплитовой границей на самом востоке Гуао-Рико.
Знание этих авторов, характер смещения на границах этих мик-
роплит очень разнообразен. На западе от 81° з.д. кроме сдвига,
правит подвод Северо-Американской плиты под Карибскую, а на
востоке от 81° з.д. отмечается подвод Карибской литосферы под
острова Кубы и под островную гряду Кейман. Что касается плиты Гаи-
ти, кроме левого сдвига, имеет место двухсторонний подвод под
острова Гуао-Рико и Гаити. Чтобы объяснить различия в напряж-
ения поднятия на Кубе и в районе Гаити-Гуао-Рико, авторы
предлагают существование трансформного разлома между Кубой и
островом Гаити. Однако следует отметить, что сейсмологические данные
и пришены этой картине для Кубо-Гаитской Кубы /3, 53, 56/.
С другой стороны, в южной части Карибского региона эти авторы вы-
деляют микроплиту, их границы вообще совпадают со структурны-
ми характеристиками, представленными в схеме Хордена /100/. Ско-
рость движения на границе между Карибской и Северо-Американской
плиты, определенная в /43/ с учетом данных Хордена /100/, равна
1.4 см/год, абсолютная скорость равна 1 см/год.

Другие оценки скоростей получили Сайкс и сотр. /143/. Скорость между Карибской и Северо-Американской плитами составляет 3.7±0.5 см/год для последних 7 млн. лет на основании конфигурации сейсмических зон около Восточного Гаити, Пуэрто-Рико и Ники Антильских островов. В абсолютной системе, связанной с "торцем, нынешним", Карибская плита находится почти в покое. Исходя из этих значений, междуплитовой скорости, авторы предлагают модель для региона определения морского dna во владении Каймана. Северный борт идущий к западу от рифта асейсмичен, тогда как на южном борту происходят смещения со скоростью 3-4 см/год. По мнению авторов /143/, скорость рифтогенеза 1 см/год на каждой стороне востокото рифта смещение разделяется на оба борта моря Берлек. По северному борту, исходя из его большей активности, представляется, что все смещения идут за счет рифтогенеза - 5 см/год. Таким образом, по южному борту происходит остальная часть смещений - 1-2 см/год. На сейсмическую активность указывают наиболее сильные структуры в Карибском регионе. На северной границе Карибской плиты основными сейсмическими структурами проходят через южный борт владение Каймана до рифта, где они разделяются на две части. Северная часть проходит вдоль северного борта мараба Берлек и вперед сквозь остров Гаити. Южная часть проходит вдоль южного борта мараба Берлек, охватывая остров Ямайку и через юг острова Гаити. В регионе острова Гаити авторы называют две отдельные сейсмические зоны: в центре самого острова и на севере Гонэза.

Общее описание основных структурных особенностей Карибского региона дано Рябушинским /38/. В этой работе не рассматривается карта динамика региона, однако выделены две микроплиты в северной части внутри Северо-Американская плит: Майанская, охватывающая...
наливающийся полуостров такого же названия и часть Мексиканского залива, до Багамского, отвечающего острова такого же названия, полуостров Торре-Пикой и прилегающие акватории. Восточная граница Багамской микроплиты и западная граница Багамской микроплиты соответственно границам Кубинской микроплиты, выделенным Уэллоуном и другими [44].

В заключении эта же авторы подчеркивают, что границы Карибской плиты отмечены четко только на западе и востоке, в то время как на севере и юге проходят неоднозначно, что связано с полевым исследованием микроплит.

Из рассмотренных работ видно, что тектоника Карибского региона очень сложна и до настоящего времени не вполне объяснена, причем объяснения, предложенные различными авторами, иногда противоречивы.

3.2. Сейсмичность Карибского региона

Соотношение между магнитудами m_{pv} и M_{lh}. Для изучения сейсмичности Карибского региона были использованы главным образом данные каталоги EDF и ISC, описанные в разделе 1.2. Данные магнитуды землетрясений в этих каталогах соответствуют значениям m_{pv} и M_{lh} или другой M неопределенного типа, которая в большинстве случаев можно считать как M_{lh}. Корреляционную m_{pv} и M_{lh} принято считать линейной и обладающей заданными характером.

На основе 64 совместных определений (m_{pv}, M_{lh}) для указанного региона была установлена корреляционная связь [3]/
$M_{LH} = (1.51 \pm 0.1, I) \ m_{PV} - (2.79 \pm 0.05)$ (3.1)

Однако справедлива для средних значений m_{PV} и M_{LH}, полученных в основании множества индивидуальных определений, как, например, определение NEIS и ISC для m_{PV}, определение NEIS, ISC и MOS для M_{LH}. Для использования других определений необходимо провести специальные исследования, потому что соотношения могут быть совсем разными, кроме того, исследуются повреждения верхних, как было отмечено при определении m_{uuw} - магнитуд публикуемых в бюллетенях Сейсмологического института Университета Вест-Индии /3/.%

Проставленность данных о землетрясениях в каталоге EDF с широтой $0^\circ-30^\circ$ с.ш. и $50^\circ-100^\circ$ з.д. Первый вопрос, который имеет место в дальнейшем рассмотрении, касается сильных землетрясений под промежуточным вида и расчета статистики. Определение координат эпицентра и магнитуд для них не очень точны. Две землетрясения каталога EDF, логичные непосредственно в регион Кубинской Ку- бы, были исключены из состав поднужного нами каталога. В таблице 3.0. данных данных о количестве землетрясений с $M \geq 7.8$ для временных интервалов за 6 лет в период с 1900-1933 гг. Количество землетрясений в этом периоде значительно больше, чем в остальных. Наряду с вероятно не только для Карибского региона. Кэмпини и Lys/104/ проанализировали метод определения магнитуд землетрясений за этот период и написали, что определения магнитуд немного меньше. С другой стороны, для Карибского региона удалось собрать исторические данные об этих землетрясениях, таблица 3.0. Однако эти землетрясения. С января 1900 г., 16 мая 1900 г. и 14 января 1911 г. на территории Мексики в хорошем документировании землетрясений на акропелагических данных по этой республике. Для последующих
Таблица 3.1
Распределение землетрясений с $M \geq 7.8$ по магнитудам и периодам

<table>
<thead>
<tr>
<th>Период</th>
<th>$M \geq 7.8$</th>
<th>$7.8 \leq M \leq 8.2$</th>
<th>$M > 8.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1898-1903</td>
<td>10</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>1904-1909</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1910-1915</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1916-1921</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1922-1927</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1929-1933</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Таблица 3.2
Сильные землетрясения с $M \geq 7.8$ за 1898-1903гг

<table>
<thead>
<tr>
<th>Год</th>
<th>Месяц</th>
<th>Число</th>
<th>T_0</th>
<th>v_0</th>
<th>λ</th>
<th>A_{km}</th>
<th>M</th>
<th>I_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1898</td>
<td>4</td>
<td>29</td>
<td>16</td>
<td>13</td>
<td>12</td>
<td>26</td>
<td>7.9</td>
<td>8</td>
</tr>
<tr>
<td>1899</td>
<td>1</td>
<td>34</td>
<td>23</td>
<td>43</td>
<td>17</td>
<td>28</td>
<td>8.4</td>
<td>5</td>
</tr>
<tr>
<td>1899</td>
<td>6</td>
<td>14</td>
<td>11</td>
<td>09</td>
<td>18</td>
<td>77</td>
<td>7.8</td>
<td>5</td>
</tr>
<tr>
<td>1900</td>
<td>1</td>
<td>20</td>
<td>06</td>
<td>33</td>
<td>10</td>
<td>105</td>
<td>8.3</td>
<td>-</td>
</tr>
<tr>
<td>1900</td>
<td>5</td>
<td>16</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>105</td>
<td>7.8</td>
<td>-</td>
</tr>
<tr>
<td>1900</td>
<td>6</td>
<td>21</td>
<td>10</td>
<td>52</td>
<td>10</td>
<td>80</td>
<td>7.9</td>
<td>-</td>
</tr>
<tr>
<td>1900</td>
<td>10</td>
<td>29</td>
<td>09</td>
<td>11</td>
<td>11</td>
<td>66</td>
<td>8.4</td>
<td>9-10</td>
</tr>
<tr>
<td>1902</td>
<td>4</td>
<td>19</td>
<td>02</td>
<td>23</td>
<td>14</td>
<td>91</td>
<td>8.3</td>
<td>9-10</td>
</tr>
<tr>
<td>1902</td>
<td>9</td>
<td>23</td>
<td>20</td>
<td>13</td>
<td>16</td>
<td>93</td>
<td>8.4</td>
<td>10</td>
</tr>
<tr>
<td>1903</td>
<td>1</td>
<td>14</td>
<td>01</td>
<td>47</td>
<td>15</td>
<td>92</td>
<td>8.3</td>
<td>-</td>
</tr>
</tbody>
</table>
и, хотя и существуют несовпадения между инструментальными и мелкр
севочных данными, они не очень велики. Отличия переопределен
ных магнитуд от первоначальных лежат в пределах ошибок /55/.

Для построения таблиц распределения числа землетрясений внут
и временно-магнитудных интервалов автором была написана програм
ма. Она выбирает из каталога землетрясений, исходящего в интервал
ная, ограниченная координатами глубины, и классифицируе
ых по годам и магнитуде. Результаты делятся на таблицу чисел землетрясений для разных интервалов времени и глубины. Размеры
интервалов зависят исходя из данных.

С помощью этой программы были получены таблицы числа земле
тренений в магнитудно-временных интервалах для района 0°-30° с. ш
и 50°-100° з. д., для двух интервалов глубин (0-70 км и 70-150 км)
для периода 1904-1975 гг (табл. 3.3). Границы интервалы были
делят градуальность 1,5 0 лет и магнитудные интервалы 0.5
в случаях, когда была определена только M_{PQ}. Она переводи
лась в M_{LH} по формуле (3.1). Анализ этих таблиц показывает,
но землетрясения с магнитудами 3.5 и 4 непредсказуемы; для
магнитуд 4.5; 5 и 5.5 срок предсказуемости - 12 лет, для магнит
уд 6-63 лет, 6.5 - 60 лет, 7 - 66 лет, более 7 - 72 года. На осно
нии данных можно построить график повторяемости для всего регио
на (рис. 3.1). Параметры графиков, полученных по методу измене
ния квадратов, следующие: $h = 0-70$ км $b = 0.70$, $h = 70 -
100$ км $b = 0.77$.

Следует отметить, что эта картина может измениться в районах,
изученных с $350G$ проводились специальные переопределения коор
динации и магнитуд землетрясений /115, 141/. Для региональных коо
ординат предлагается пересмотреть линии каталога EDF. С одной
стороны, существует много землетрясений с магнитудой 5-6, которые
записываются классу d ($5.3 \leq M \leq 5.9$) в каталоге Гутенберга -
Настоящее распределение землетрясений по магнитудно-временным интервалам

\(h < 70 \text{ км} \). Сплошные линии отделяют представительные данные

Непредставительных

<table>
<thead>
<tr>
<th>Период</th>
<th>3,5</th>
<th>4</th>
<th>4,5</th>
<th>5</th>
<th>5,5</th>
<th>6</th>
<th>6,5</th>
<th>7</th>
<th>7,5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1904-1909</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1909-1915</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1916-1921</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>1922-1927</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1928-1933</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1934-1939</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1940-1945</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1946-1951</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>2</td>
<td>13</td>
<td>13</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1952-1957</td>
<td>5</td>
<td>31</td>
<td>16</td>
<td>19</td>
<td>33</td>
<td>38</td>
<td>30</td>
<td>16</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1958-1963</td>
<td>52</td>
<td>49</td>
<td>30</td>
<td>34</td>
<td>17</td>
<td>14</td>
<td>18</td>
<td>13</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1964-1969</td>
<td>42</td>
<td>36</td>
<td>201</td>
<td>108</td>
<td>46</td>
<td>17</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1970-1975</td>
<td>179</td>
<td>364</td>
<td>297</td>
<td>138</td>
<td>60</td>
<td>16</td>
<td>11</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
3.1. Графики повторяемости землетрясений для региона 0°-30°
с.ш. и 50°-100° з.д. (a) - h = 0-70 км, (b) - h =
= 70-150 км.
Изучена на 1904-1953 гг. /89/. Существует также необходимость изучения афтершоков и других связанных событий. Кроме того, огромные размеры региона, по которому проведен анализ представительности, позволяет получать только средние характеристики, и возможное региональные изменения остаются скрытыми.

Кarta эпицентров сильных землетрясений. Для региона 4°-25°
8°-34° з.д. построена карта эпицентров сильных землетрясений (M_LN ≥ 6). В случаях, когда была определена только t_p, ее переводили в M_LN по (3.1). На карте (рис. 3.2) две интервалы глуши (0 ≤ h ≤ 70 км, h > 70 км) показаны различными знаками, магнитуда разделена на семь интервалов, реагирующих разными знаками.

3.3. Механизм сейсмических землетрясений Карбонской дуги

Механизмы сейсмических землетрясений Карбонской дуги были изучены авторами /58, 57, 56, 74, 84, 25, 99, 107, 105, 108, 98, 83, 114, 119, 131, 139, 140, 142, 150/. Некоторые представляют результаты в терминах моделей плоскостей, другие - в терминах главных осей сжатия (P) и растяжения (T). В некоторых работах дается более эти параметры, и, кроме того, в последнее время начались работы в которых исключается решение механизма сейсмических очагов при таких названиях потоков Лай-Ан /147/. Эти работы посвящены определению механизма очагов либо отдельных землетрясений, либо дуги. В настоящей работе была проведена оценка механизма очага нескольких землетрясений Карбонской дуги с помощью программ SOURCE из библиотеки программ ИФЗ ДН СССР, составленной в школе, изложенной в работах /9, 19/.

Определение механизмов очагов по программам SOURCE. Проч.
Рис. 3.2. Карта эпицентров землетрясений с $M \geq 6$ в регионе $4^\circ-25^\circ$ с.ш., $56^\circ-94^\circ$ з.д. с 1904 по 1980 гг.
source позволяет при вводе данных о земле и типах церв-
ного волнения Р - РК и его четкости получить наиболее
предположительно решение механизмов и, кроме того, область, в кото-
рой находится решение ч 85%-ной достоверности. С помощью этой
программы были исследованы 47 землетрясений Карибской дуги. Ис-
следование данных занялись вами и четкость первого волнения
волния из библиотеки ISC /36/, и правиль определения их
событийных степеней Кубы и Пуэрто-Рико. Он в виде, что в си-
хемах не всегда встречаются когда определения землетрясения
волнения Р - РКР, когда механизм был определен двумя
волнения, учитывая все данные (іР, ρ, eP), а второй раз,
учитывая только данные об определениях типа іР . В тех случаях,
когда результаты обоих определений значительно отличались друг
от друга, было рекомендовано не пользоваться ими. Таким образом, из 47
рассмотренных случаев было исключено 10. Приложения к дан-
ным параметрам землетрясений и получение механизмов 47 землетря-
сений в промежутке на шпиндель полусферу. Критерии качества оснований
в согласии между собой определениями (все данные и только іР -
ние) в разных областях 85%-ной достоверности:

A - хорошее согласие, маленькие области.
B - хорошее согласие, большие области.
B' - не очень хорошее согласие, маленькие области.
B'' - хорошее согласие, средние области.
C - не очень хорошее согласие, большие области.

Сопоставление реальных, полученных механизмов оснований. При со-
поставлении окулированных данных и механизмов оценок в Кариб-
ской дуге видно, что для многих землетрясений есть только одно
определяющее механизм с отсечения, в для других - более одного. В таких
случаях, как правило, решения, полученные двумя оценками, отли-
чиваются друг от друга. Иногда эти различия незначительны, но в
некоторых случаях решение совсем противоречиво. Это значит, что
при использовании существующих данных о механизмах очагов Кариб-
ских дуг нужно быть очень осторожным. Для региона, окружающего
восточную Кубу, имеются определения механизмов для 5 землетрясений
в трех группах /33, 113, 114, 230, 130/. Для землетрясения 19 февра-
ля 1976 г. оно удалось определить механизм очага. За исключением
этой группы, все землетрясения располагаются по одну сторону между
квадратами Карибской и Северо-Американской. Их механизмы по
противоположны схеме движения жучка, описанной выше. Однако из-за
некоторого отсутствия определения механизм: нельзя использовать для
определения зоны ПОЗ в этом регионе.

3.4. Выделение зон ПОЗ и регионов 16°-40° с. ш. и 71°-51° з. д.

Для оценки сейсмической опасности региона необходимо оценить
инци землетрясений из разных зон ПОЗ, окружающих район и
выделения внутри района, выделенных контуром с \(I \geq 6 /32, \)
2. В целях территории, окружающей район, должен быть гарантирован,
что в расчетах она будет учитываться в сотрясениях от любых зон ПОЗ. Этот
вопрос тесно связан с затуханием сейсмичности \(I \) в удалении микросейсмического поля.

Восточная часть Кубы (область включения Ориента) ограничена
южными 19,3°-1,7° с. ш. и 74,1°-77° з. д. Поэтому в качестве
области территории был выбран большой район – 16°-40° с. ш. и
71°-51° з. д. Этот район включает часть границы между тектонически-
ными областями Карибской и Северо-Американской (рис. 3). Здесь
выделено большинство зарегистрированных землетрясений. В преде-
лах этого района входят территории Кубы, для которой существует
вейон о слабых и сильных землетрясениях.

Зон затухания микросейсмической интенсивности, справедли-

вие
мыли этой территории, описывается формулой (1.1). Також образец резоль весьма малой территории позволяет рассчитать все значения в соответствии для интенсивности $I \geq 6$ в случае, когда значение (1.1) одинаково затухаемый до 0 меловой осей амплитуд. Когда этот знак определяет затухание до 0 меловой осей амплитуд, результаты все условия для интенсивности $I \geq 7$ баллов.

Вопрос о выделении зон ГСЗ решался двояко. Во-первых, исследовались только зоны ГСЗ, перепадающие в прямом смысле, немецкий Карихские и Средор-Американской, для которых использовалось большое количество сейсмических данных, хотя в этом случае о зонах ГСЗ, выделенных другими авторами в Центральной Кубе /1/ и в пределах сейсмически активных областей в окрестности Канады Северо-Запад /2/. Во-вторых, для выделения зон ГСЗ использовались сейсмические данные, карты сейсматических позиций и изохром морского землетрясений.

Более детальное рассмотрение методов выделения зон ГСЗ требует специальных исследований, что выходит за рамки настоящего раздела.

карта зарегистрированных землетрясений, зарегистрированных мировой
для периода 1901-1949гг, показана на рис. 3.3. На карте
виде о различий зон, где землетрясения действительно
происходят, рост сейсмотектонического разброс амплитуд также связан с землетрясениями и сейсмическими.
Точность определения амплитуд зависит от двух факторов: количества зарегистрированных событий и точности определения значения интенсивности сейсмических колебаний, которая зависит от многих условий, включая сложности, их геологические, морфологические и другие землетрясения. Точность определения амплитуд землетрясений для выбранного района увеличивалась, начиная с 1901г, что отражено и рабочим и ППА /11/ и в каталогах международных агенства /1, 12/. Учитывая этот факт, постулируется для карт амплитуд.

карта периода 1901-1949гг, которая включает более точные опре-
Рис. 3.3. Карта эпицентров землетрясений в регионе 16°-28° с.ш., 71°-81° в.д. за 1901-1981 гг.
1 - $M < 4$, 2-4 $\leq M < 5$, 3-5 $\leq M < 6$, 4-6 $\leq M < 7$, 5-7 $\leq M < 8$.
данные (рис. 3.4) и другая - для периода 1950-1981 гг. (рис. 3.5).

Дополнительные несейсмологические материалы. В качестве дополнительного материала были использованы две карты:

а) Карта изобет морского dna /1/, на которой в масштабе 1: 1 750 000 проведены изобеты с сечением 1000 м, от 1000 до 7000 м с сечением 100 м для глубин менее 1000 м. На рис. 3.6 приведены профильные схемы изобет с сечением 1000 м.

б) Карта остаточных топографо-изостатических аномалий Карбонового века /1/. На этой карте в масштабе 1:1 400 000 000 проведены линии остаточных топографо-изостатических аномалий с сечением 10 м, от -50 до +50 м. На рис. 3.7 приведены профильные схемы остаточных аномалий с сечением 100 м.

Выделение зон ВОЗ. Из вышеизложенного материала видно, что вопрос о выделении зон ВОЗ не может быть решен однозначно. Во-первых, район не очень активен и из-за отсутствия сейсмической сети сейсмических станиц за период 1950-1981 гг. не получены данные по сейсмическим затратам. Можно применить разные критерии выделения зон, которые довольно субъективны.

Самым простым решением этого вопроса является выделение только зон ВОЗ (первый вариант). Одна зона соответствует северному берегу Каймана и его продолжению вдоль северного побережья Гаити. Другая зона расположена к югу от этого берега, она включает остров Ямайку и юго-западную часть острова Гаити (рис. 3.1). Наконец, этот зон попадает почти все эпицентры землетрясений за 1950-1981 гг. Однако отдельные эпицентры землетрясений располагаются вне их пределов. Кроме того, эпицентры землетрясений за 1901-1940 гг. с малой трудностью можно приблизить к какой-либо из этих зон.

Сфера границ зон: I соответствует изобете 1000 м и вту
3.4. Карта эпицентров за 1901-1949гг.

3.5. Карта эпицентров за 1950-1981гг.
3.6. Карта изобат, глубины указаны в метрах.

3.7. Карта остаточных топографо-изостатических аномалий. Значения аномалий указаны в ФГл.
3.6. Зоны ВЗЗ: а) первый вариант, б) второй вариант.
от острва Кубы и изолиция изостатической аномалии 0 мГл (к западу от острва Гаити) и -100 мГл (к северу острва). Линия границы проходит по участкам изоэтаны 2000 м, 4000 м и 6000 м и изолиция изостатической аномалии 0 мГл и -100 мГл. Эта зона характеризуется наличием эпицентров вдоль почти всего ее протяжения.

Зона 2 выделена, исходя из предположения, что от рифа Кайман до юго-восточной части острва Гаити протягивается зона 103, менее глубокая, чем первая, но непрерывная /143/. Здесь однородность распространяется по широкому поясе. Северная граница зоны выделена почти по изоэтанам 2000 м и 4000 м до острва Гаити, где она изгибается, чтобы включить район маленького острва Гаити, где имеется резкий градиент изостатических аномалий. Ниже граница выделена условно так, чтобы включить большинство зарегистрированных землетрясений.

В первом варианте предполагается, что обе зоны 103 в первом приближении однородны. Однако анализ имеющихся данных позволяет предположить, что в действительности они неоднородны. О неоднородности этой зоны свидетельствует концентрация эпицентров на маленьких участках (рис. 3.5-3.7).

Неоднородность второй зоны весьма высока. Существует две зоны с густота: к западу от острва Ямайка и между острвами Ямайка и Гаити. Можно сделать предположение о временной отсутствии эпицентров, за 200 лет, но можно предполагать, что зона 103 неоднородна и однородность сконцентрирована в двух ее сегментах.

Таким образом, приходим к второму варианту выделения зон 103 (п. 3.86). В этом варианте зона I разделена на четыре сегмента (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), а зона 2 сегментена двумя зонами - 2, и 2.

Следует отметить, что могут быть предложены другие варианты.
Они не смогли собрать данных для оценки основных характеристик сейсмологического режима этих зон ВОЗ. В нашем случае выделение зон ВОЗ было произведено так, чтобы в каждой зоне было достаточно данных для расчета параметров сейсмического режима. Работа посвящена следующая глава.
Глава 4. ПАРАМЕТРЫ СИСТЕМТИЧЕСКОГО РЕЖИМА И ПРОГРАММА ДЛЯ РАСЧЕТА СИСТЕМТИЧЕСКОЙ СОТРУДНИЧЕСТВА

4.1. График повторяемости землетрясений. Оценка параметров сейсмического режима для разных зон 103

Основной соотношения. Закон повторяемости землетрясений предложен Гутенбергом и Рихтером /89/ в виде:

\[\log N = a + b (S - M) \]

(4.1)

\(N \) — среднегодовая частота землетрясений данной амплитуды.

\(M \) — магнитуда, заданная с интервалом 0,1.

В настоящее время используются два вида графиков повторяемости землетрясений: распределенный, где \(N_i \) — число землетрясений в интервале; и кумулятивный, где \(N_\Sigma \) — суммарное число землетрясений, начиная от \(M_i \) до максимума значений \(M_{\text{max}} \).

Для графика, как правило, строятся по числам, нормированным в пространстве (обычно по площади) и времени (обычно на 1 год).

Параметры сейсмического режима \(a \) и \(b \) обычно получаются аппроксимацией графиков прямыми линиями типа (4.1).

Из различных представлений закона повторяемости землетрясений, предложенных многими авторами, была выбрана следующая непрерывная функция распределения:

\[\log n(M) = a - b (M - M_0) \quad M_{\text{min}} \leq M \leq M_{\text{max}} \]

(4.2)

\(n(M) \to 0 \quad M > M_{\text{max}} \)

\(n(M) dM \) — число землетрясений с магнитудой в интервале \(M \) и \(M + dM \), нормированное на пространство и по времени.

\(M \) — амплитуда повторяемости землетрясений /148/.

Из математического обобщения очень удобно для последующего
Получение повторяемости землетрясений. Следуя по пути, описанному в [1, 3], можно найти число землетрясений в интервале магнитуд

\[N(M_1, M_2) = \int_{M_1}^{M_2} n(M) \, dM \]

Распределенный график повторяемости землетрясений \(N_i(\Delta M_i) \)

принимается по суммарному числу землетрясений внутри интервалов

\[N_i(M) = \int_{M - \Delta M_i/2}^{M + \Delta M_i/2} n(M) \, dM = \int_{M_i - \Delta M_i/2}^{M_i + \Delta M_i/2} n(M) \, dM \]

где

\[F(b, \Delta M_i) = \frac{1}{b \ln 10} \left[10^{b \Delta M_i/2} - 10^{-b \Delta M_i/2} \right] \]

\[N_i(M_i) / F(b, \Delta M_i) = 10^{a - b (M_i - M_0)} \] (4.5)

\[\log(N_i(M_i) / F(b, \Delta M_i)) = a - b (M_i - M_0) \]

При расчете параметров \(a \) и \(b \) необходимо знать заранее параметр \(b \), который входит в \(F(b, \Delta M_i) \). Однако формула \(F(b, \Delta M_i) \)

может быть разложена в ряд Тейлора (при небольших значениях \(\Delta M_i \))

\[F(b, \Delta M_i) = \Delta M_i + \frac{1}{2} \left(\frac{b \Delta M_i}{2} \right)^2 (\ln 10)^2 \approx \Delta M_i \] (4.6)

следует

\[N_i(M_i) / \Delta M_i = 10^{a - b (M_i - M_0)} \] (4.7)

Из этой, что параметры закона повторяемости землетрясений в виде (4.4) могут быть с хорошим приближением оценены через число землетрясений внутри интервалов магнитуд, нормированных к ширине этих

интервалов.

Закон повторяемости землетрясений в виде (4.4) или (4.7) справедлив для интервала \(M_{min} \leq M \leq M_{max} \). Поэтому вопрос
единиц M_{min} и M_{max} является очень существенным.

Второй предел M_{min} определяется уровнем представительной динамики землетрясений, который зависит от многих факторов: количества сейсмических станций, их чувствительности, уровня микросейм, числа диапазона сейсмических и рыболовов и т.д.

Третий предел существования M_{max} объясняется физической возможностью исполнения и высвобождения бесконечной энергии. За пределами M_{max} - одна из самых сложных в сейсмологии.

Существуют разные методы, использующие сейсмологические, геологические и геофизические данные. Многие сейсмологические методы упомянуты в [4, 65, 134]. Общее описание критериев методов комплексной оценки M_{max} по геологическим данным можно найти в книге Рейснера [16]. Эти методы позволяют оценить M_{max} для отдельных отдельных зон или элементарных квадратов, определенных различными способами. Это сделано, например, в работе [14].

Кумулятивный график повторяемости землетрясений строится, начиная от $M_{i} - \Delta M_{i}/2$ (предельный интервал) до максимально возможной величины

$$N_{\Sigma i}(M_{i}) = \sum_{j=M_{i}}^{M_{j} + \Delta M_{j}} N(M_{j}) = \sum_{j=M_{i} - \Delta M_{i}/2}^{M_{j} + \Delta M_{j}/2} \int n(M) dM$$ \hspace{1cm} (4.8)$$

В интервалах не перекрывающихся и максимальная магнитуда выражается как $M_{\text{max}} + \Delta M_{\text{max}}$. Формула (4.8) может быть заменена формулой

$$N_{\Sigma i}(M_{i}) = \int n(M) dM = 10^{-a} (M_{\text{max}} - M_{i}) b_{D M_{i}/2} 10^{b_{D M_{i}/2}} \left[-b_{D M_{i}/2} (M_{\text{max}} - M_{i}) + b_{D M_{i}/2} + b_{D M_{i}/2} \right]$$ \hspace{1cm} (4.9)$$

где $N_{i}(M_{i})$ - число землетрясений внутри интервала ($M_{i} - \Delta M_{i}/2$, $M_{i} + \Delta M_{\text{max}}$).

В этом представлении графиков повторяемости (графики распределения и кумулятивный) получается существенное различие между ними.
Первый график может быть описан прямой линией, второй — нет.

Из выражения (4.9)

\[I_e (M_i) = \alpha - B (M_i - M_o) + \log \left(10 \frac{10^{\frac{b \Delta M_i}{2}}}{b \ln 10} \right) + \log \left[1 - 10^{-8 (M_{max} - M_i + \Delta M_{max} + \Delta M_i/2)} \right] \] (4.10)

\[M_{max} \gg M_i \quad (M_{max} - M_i = 2-3) \] левая часть графика может быть аппроксимирована прямой линией.

\[\log N_{E_i} (M_i) = \alpha' - B (M_i - M_o) \]

\[\alpha' = \alpha + \log \left(\frac{10^{\frac{b \Delta M_i}{2}}}{b \ln 10} \right) \]

Второй части графика изгибается вниз по закону

\[\log \left[1 - 10^{-8 (M_{max} - M_i + \Delta M_{max} + \Delta M_i/2)} \right] \]

Чтобы посмотреть, несколько этот способ расчета отличается от низко/41/ и конечных результатах, можно рассчитать число землетрясений внутри интервала \(M_i + \Delta M_{max} \)

\[N_{E_i}^1 = n(M) J M_{max} \left(\frac{10^{\frac{a - B (M_i - M_o)}{b \ln 10}}}{b \ln 10} \right) \left[1 - 10^{-8 (M_{max} - M_i + \Delta M_{max})} \right] \] (4.11)

Оценка между \(N_{E_i}^1 (M_i) \) и \(N_{E_i} (M_i) \) следующая:

\[\frac{N_{E_i}^1 (M_i)}{N_{E_i} (M_i)} = \alpha - \frac{1 - 10^{-8 (M_{max} + \Delta M_{max} - M_i)}}{1 - \alpha - 10^{-8 (M_{max} + \Delta M_{max} - M_i)}} \] (4.12)

\[\alpha = 10^{-\frac{b \Delta M}{2}} \]

Обратное значение \(\Delta M_i \) равно 0.5, и допустим, что \(b \) может варьировать от 0.5 до 1. Можно построить график зависимости...
Кризис зависимости (4.1a). Как видно из рис. 4.1, меняются близки (при \(M_i = M_{\text{max}} + \Delta M_{\text{max}} \)). Отношение \(N_{\Sigma_1} / N_{\Sigma_2} \) также увеличивается в интервале \(M_{\text{max}} + \Delta M_{\text{max}} - M_i \) от 0 до 1,5 и асимптотически приближается к значению \(\sim \), которое отличается небольшие отличия. Следует учесть, что оба способа расчета дают частично разные оценки сейсмической опасности, и признается приемлемость, какая из них будет использована.

Функция распределения можно оценить следующим образом:

\[
(M>M) = \frac{\text{число землетрясений с } M>M}{\text{общее число землетрясений}} = \frac{\int_{M-M/2}^{M-M/2} \frac{n(M)}{n(M)} dM}{\int_{M-M/2}^{M-M/2} \frac{n(M)}{n(M)} dM}
\]

Функция распределения будет:

\[
P(M<M) = 1 - P(M>M) = 1 - \frac{\frac{-b(M-M/2)}{10} - \frac{b(M_{\text{max}} + \Delta M_{\text{max}})}{10}}{\frac{b(M_{\text{min}} - \Delta M_{\text{min}})}{10} - \frac{b(M_{\text{max}} + \Delta M_{\text{max}})}{10}}
\]

Функция плотности распределения будет:

\[
\frac{dP(M)}{dM} = \frac{\frac{b\Delta M/2}{10} - \frac{b\ln 10}{10}}{\frac{b\ln 10}{10} - \frac{b(M_{\text{max}} + \Delta M_{\text{max}})}{10}} - \frac{bM}{10}
\]

для оценки параметров сейсмического риска используются следующие методы:

- для каждой зоны ГЭЗ оценивается значение \(M_{\text{max}} \) по соответствующей сейсмической и тектонической информации;

- для каждой зоны ГЭЗ строится график повторяемости по формуле (4.13).
4.1. Зависимость $N'_{x}(M_{i})/N_{x}(M_{i})$ от $M_{\text{max}} + \Delta M_{\text{max}} - M_{i}$ для разных значений параметра b.
При оценке параметров графика повторяемости были использованы два возможных значения M_{max} от 10 до 12.

Для оценки параметров графика повторяемости были написаны программы MAGFRE.

Описание программы MAGFRE. Программа MAGFRE позволяет оценить параметры а и б графика повторяемости по методу максимального правдоподобия (МП) и методу максимального правдоподобия (МНП), а также рассчитать соответствующие значения накопленной повторяемости.

Исходными данными являются:
- число землетрясений внутри магнитудных интервалов $N_i (M_i)$;
- магнитудные интервалы ΔM_i и центральное их значение M_i;
- период наблюдения представительных землетрясений T_c в каждом магнитудном интервале;
- параметры для расчета накопленной повторяемости: M_{max}, ΔM, M_I;
- M_I - магнитуда, начиная с которой желательно получить значения накопленной повторяемости.
Описы схемы работы программы следующие. Сначала рассчитываются значения $\log \left(N_i \frac{M_i}{\Delta M_i} \right)$ и накопленная повторяемость $\sum N_i M_i$.

Методу наименных квадратов оценивается первое приближение параметров a и b по формуле (4.7). Значение b, полученное таким образом, используется для определения длины $F(b, \Delta M_i)$ накопленно рассчитанных параметров a и b по формуле (4.5) по методу наименьших квадратов.

Значение b, полученное таким образом, используется как первое приближение для оценки параметров a и b по методу наименьшего предполагаемого. Эти расчеты проводятся до тех пор, пока алгоритму, предложенному в работе [2], теоретически частоты для накопленной повторяемости рассчитываемой формулы (4.9), используя обе оценки параметров a и b. В этом случае оцениваются статистические отклонения наблюдаемой и накопленной повторяемости по отношению к теоретической.

При этом, имея в виду, что кумулятивный график накопленной повторяемости аппроксимируется танком первой линей в виде

$$\log N_{x_i}(M_i) = c - d(M_i - M_o)$$

(4.15)

$N_{x_i}(M_i)$ определяется формулой (5.8), программа рассчитывает значения c и d и стандартное отклонение наблюдаемой накопленной повторяемости по отношению к теоретической.

Деятельность данных в каталоге сильных землетрясений из 160 - 240 c.a.n. и 300 - 600 годов. Представительность данных каталога EDF для региона 0 - 300 с.a.n. и 500 - 1000 годов рассмотрена в 3.2. Там были проанализированы данные об инструментальных землетрясениях для региона 160 - 240 и 300 - 600 годов, а также каталог землетрясений за 430 лет (случай I), более полный, чем каталог EDF.

Каталог сильных землетрясений охватывает период 1551-1980 гг.
Выводы предсказательности он был разделен на две части: 1961-1990 и 1901-1930 гг. Первую часть была разделена на интервалы по 50 лет, вторая часть — на интервалы по 10 лет. Число землетрясений относительно магнитудным интервалом около $\Delta M_{LH} = 0.5$. Если предсказающая магнитуда m_{pv} оказалась пересчитана в M_{LH} по формуле (3.1). Следует от этого, что для нескольких землетрясений одновременно с определением m_{pv} получено очень высокое значение M_{LH}. В этих случаях было выбрано то значение магнитуды, которое получено в формуле (3.1).

В табл. 4.1 представлено прогнозирование числа землетрясений по магнитудно-временным интервалам. В табл. указаны также сроки предсказательности, полученные на основе анализа микросейсмических данных. Сроки предсказательности могут быть увеличены для некоторых зон, так как полнота исторических микросейсмических данных не одинакова для различных частей региона.

Определение максимальных магнитуд в разных зонах 103. В табл. 4.1 приведены максимальные магнитуды районы, которые могут быть использованы для оценки возможности землетрясений, происходящих в регионе. В табл. 4.1 указаны зоны землетрясений с магнитудами в интервалах 7.5 и 8, по которым определены микросейсмические данные и только одно — микросейсмическими данными. На карте зоны 103 (рис. 4.1) нанесены все выявленные центры.

Для зон 21 и 22 по микросейсмическим данным имеются данные для землетрясений с магнитудой 7.5. Было принято решение, что максимальная возможная магнитуда в этих зонах равна 7.5 ± 0.5.

Для северного района зоны 103 к западу от бухты Гулактамо имеется центр землетрясений с магнитудами 7.3, 7.5 и 7.7, определенные по микросейсмическим данным. В остальном зоне 7.4 — по микросейсмическим данным.

Востоку от этой бухты по микросейсмическим данным имеются
Изображение числа землетрясений всего региона (16° - 24° с.ш., 49° - 81° з.д.) по магнитудно-временным интервалам

<table>
<thead>
<tr>
<th>Год</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>6</th>
<th>6.5</th>
<th>7</th>
<th>7.5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951-1600</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>(2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1660</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1700</td>
<td>-</td>
<td>(1)</td>
<td>(1)</td>
<td>(2)</td>
<td>-</td>
<td>(2)</td>
<td>(1)</td>
<td>-</td>
</tr>
<tr>
<td>1951-1750</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1800</td>
<td>(2)</td>
<td>(5)</td>
<td>(2)</td>
<td>(2)</td>
<td>(1)</td>
<td>(2)</td>
<td>(1)</td>
<td>-</td>
</tr>
<tr>
<td>1951-1850</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
</tr>
<tr>
<td>1951-1910</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1920</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>X</td>
</tr>
<tr>
<td>1951-1930</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1940</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1950</td>
<td>(1)</td>
<td>(4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1960</td>
<td>-</td>
<td>1</td>
<td>(2)</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>1951-1970</td>
<td>I</td>
<td>2</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>1951-1980</td>
<td>II</td>
<td>B</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

В данной таблице представлена информация о численности землетрясений в зависимости от магнитуды и времени. Каждая строка соответствует отдельным периодам, а столбцы отражают магнитуды землетрясений.

Представленные данные позволяют оценить тенденции землетрясений в определенных периодах и их влияние на данную местность.

Примечание:
- Стрелками обозначены магнитуды землетрясений.
- Пунктиром указана область, где данные не представлены.

Таблица 4.1

<table>
<thead>
<tr>
<th>Год</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>6</th>
<th>6.5</th>
<th>7</th>
<th>7.5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951-1600</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>(2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1660</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1700</td>
<td>-</td>
<td>(1)</td>
<td>(1)</td>
<td>(2)</td>
<td>-</td>
<td>(2)</td>
<td>(1)</td>
<td>-</td>
</tr>
<tr>
<td>1951-1750</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1800</td>
<td>(2)</td>
<td>(5)</td>
<td>(2)</td>
<td>(2)</td>
<td>(1)</td>
<td>(2)</td>
<td>(1)</td>
<td>-</td>
</tr>
<tr>
<td>1951-1850</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
</tr>
<tr>
<td>1951-1910</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1920</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>X</td>
</tr>
<tr>
<td>1951-1930</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1940</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1950</td>
<td>(1)</td>
<td>(4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1960</td>
<td>-</td>
<td>1</td>
<td>(2)</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>1951-1970</td>
<td>I</td>
<td>2</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>1951-1980</td>
<td>II</td>
<td>B</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Примечание:
- Стрелками обозначены магнитуды землетрясений.
- Пунктиром указана область, где данные не представлены.

Таблица 4.1

<table>
<thead>
<tr>
<th>Год</th>
<th>4.5</th>
<th>5</th>
<th>5.5</th>
<th>6</th>
<th>6.5</th>
<th>7</th>
<th>7.5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951-1600</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>(2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1660</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1700</td>
<td>-</td>
<td>(1)</td>
<td>(1)</td>
<td>(2)</td>
<td>-</td>
<td>(2)</td>
<td>(1)</td>
<td>-</td>
</tr>
<tr>
<td>1951-1750</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1800</td>
<td>(2)</td>
<td>(5)</td>
<td>(2)</td>
<td>(2)</td>
<td>(1)</td>
<td>(2)</td>
<td>(1)</td>
<td>-</td>
</tr>
<tr>
<td>1951-1850</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
</tr>
<tr>
<td>1951-1910</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1920</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>X</td>
</tr>
<tr>
<td>1951-1930</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1940</td>
<td>-</td>
<td>-</td>
<td>(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1950</td>
<td>(1)</td>
<td>(4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1951-1960</td>
<td>-</td>
<td>1</td>
<td>(2)</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>1951-1970</td>
<td>I</td>
<td>2</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>-</td>
</tr>
<tr>
<td>1951-1980</td>
<td>II</td>
<td>B</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
42. Карта зон ГОЭ наиболее силных землетрясений. Черными кружками указаны землетрясения прошлых веков, пустым — землетрясения XX века. 1 — $7.5 \leq M < 7.75$; 2 — $7.5 \leq M < 7.75$; 3 — $7.75 \leq M < 8$; 4 — $M \geq 8$.
Максимумы землетрясений с магнитудами 7,5; 7,9 и 8,1. Было принято решение, что максимальное возможное значение магнитуды зон 103 не рис. 4.2 меньше И сомнения в I первом варианте — $M_{max} = 8 \pm 0,25$.

Следует подчеркнуть, что результаты, полученные таким образом, являются приближенными и субъективными. Они отличаются от полученных в работе /11/. Более точное решение этой задачи выходит за рамки настоящей работы и требует специальных комплексных исследований.

Оценка параметров a и b графиков повторяемости землетрясений разных зон 103. Графики накопленной повторяемости. Метод построения графиков повторяемости (распределенных и кумулятивных):

1) Составляется табл. 4.1 чисел землетрясений по магнитудам в интервале шириной 0,5 и периодом в 50 лет с 1551–1901 гг. и в 10 лет с 1901–1911 гг.

2) Как правило, длина магнитудных интервалов была одинакова 0,5. Однако при отсутствии данных или малого количества землетрясений в одном из интервалов проводилось перераспределение землетрясений по интервалам большой длины, чтобы не было интервалов с числом землетрясений (менее трех).

3) Параметры графиков повторяемости и соответствующие значения графической и накопленной накопленной повторяемости рассчитывают с помощью программы MAGFRE. Следует отметить, что для этих параметров по методу накопленного приближенного распределения и накопленной повторяемости землетрясений.

4) Построение графиков распределенной и накопленной повторяемости землетрясений.

Использованными данными являются значения $N_i (M_i) / \Delta M_i$.

Величиной повторяемости $\Sigma N_i (M_i) \Delta M_i$ для накопленной...
Во описанной методике удалось оценить параметры \(a \) и \(b \) графической вероятности эмпирических для региона в целом (при \(M_{\text{max}} = 7.0, 7.5 \) и для зон ГОЗ первого варианта зоны \(I \) и \(2 \) в табл. 4.3).
Можно для зон ГОЗ второго варианта из-за отсутствия данных такая оценка (см. табл. 4.3) неприменима.

Оценка параметров \(a \) и \(b \) зон ГОЗ второго варианта проведена следующим образом:

- для зоны ГОЗ \(I \), имеется достаточная статистика и для нее методы оценены по МНК и МКП;
- для зон ГОЗ \(I_1 \) и \(I_3 \) имелось так мало данных, что их пришлось объединить;
- для зон ГОЗ \(I_1 \) и \(I_4 \) были взяты значения параметров \(b \), имеющиеся в зоне \(I \) первого варианта, и проведен расчет параметра \(a \) при фиксированном значении \(b \);
- для зон ГОЗ \(I_1 \) и \(I_4 \) аналогичным образом параметр \(b \) получен для всей зоны \(2 \).

Результаты расчетов представлены в табл. 4.3.

На рис. 4.3 представлены примеры полученных графиков распределений (a) и накопленной (c) вероятности эмпирических значений параметров \(a \) и \(b \), полученных по методикам МКП и МНК, очень близки для всех зон ГОЗ, за исключением зоны \(I_2 \), для которой получено более низкое значение стандартных отклонений \(\sigma_{\text{N}} \) и \(\sigma_{\text{LH}} \). Нетривиально отметить, что в случае для размеровпо МНК проведено перераспределение землетрясений в интервалах магнитуд (интервалы магнитуд \(\Delta M = 0,5 \).

\[M_{\text{LH}} = 5,5 ; 6,5 ; 7,5 \] и 7 были объединены в два интервала для \(\Delta M = 1 \), и \(M_{\text{LH}} = 5,75 \) и 6,75. Исходя из этих данных для соотносимости решено использовать описи \(a \) и \(b \) по МНК,

В табл. 4.4 представлены параметры \(c \) и \(d \), наибольшего интереса.
Таблица 4.2

Исходные данные для построения графиков распределенной и накопленной вероятности землетрясений

<table>
<thead>
<tr>
<th>№ района</th>
<th>В рис. 4.2</th>
<th>Исходные данные</th>
<th>4,5</th>
<th>5</th>
<th>5,5</th>
<th>6</th>
<th>6,5</th>
<th>7</th>
<th>7,5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N_1</td>
<td>13</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>T_1</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>380</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>1, I_3</td>
<td>N_1</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>T_1</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>380</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>N_1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_1</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>60</td>
<td>-</td>
<td>80</td>
<td>380</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>N_1</td>
<td>3</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_1</td>
<td>20</td>
<td>30</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>430</td>
<td>430</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>N_1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_1</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>70</td>
<td>-</td>
<td>430</td>
<td>480</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>N_1</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_1</td>
<td>20</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>380</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>N_1</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_1</td>
<td>20</td>
<td>80</td>
<td>80</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>N_1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_1</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>380</td>
<td>380</td>
<td>430</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Максимальная зона $M_{max} = 7,75 \pm 0,25$, поэтому последний интервал соответствует магнитуде 7,875 и имеет ширину 0,25.
Таблица 4.3

Параметры графиков повторяемости землетрясений для зон УОЗ на рис. 4.3

<table>
<thead>
<tr>
<th>Зоны</th>
<th>Глубь, км</th>
<th>Значения параметров (a) и (b) и ошибки</th>
<th>Бинденичные параметры (a) и (b) и ошибки</th>
<th>(A_5)</th>
<th>(b)</th>
<th>(\tau_2N)</th>
<th>(\tau_N)</th>
<th>(\tau_2N)</th>
<th>(\tau_2N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Весь</td>
<td>150,1</td>
<td>0,023</td>
<td>0,57</td>
<td>0,09</td>
<td>0,07</td>
<td>0,05</td>
<td>0,10</td>
<td>0,01</td>
<td>0,08</td>
</tr>
<tr>
<td>Регион</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>57,5</td>
<td>0,035</td>
<td>0,51</td>
<td>0,08</td>
<td>0,01</td>
<td>0,05</td>
<td>0,02</td>
<td>0,01</td>
<td>0,06</td>
</tr>
<tr>
<td>II</td>
<td>113,7</td>
<td>0,011</td>
<td>0,51</td>
<td>0,07</td>
<td>0,01</td>
<td>0,04</td>
<td>0,01</td>
<td>0,01</td>
<td>0,04</td>
</tr>
<tr>
<td>Ic</td>
<td>8,0</td>
<td>0,17</td>
<td>0,51</td>
<td>0,07</td>
<td>0,01</td>
<td>0,08</td>
<td>0,03</td>
<td>0,04</td>
<td>0,09</td>
</tr>
<tr>
<td>I+Ic</td>
<td>33,1</td>
<td>0,019</td>
<td>0,51</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,07</td>
<td>0,51</td>
<td>-</td>
</tr>
<tr>
<td>I4</td>
<td>16,5</td>
<td>0,029</td>
<td>0,51</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,03</td>
<td>0,51</td>
<td>-</td>
</tr>
<tr>
<td>Ic</td>
<td>52,7</td>
<td>0,018</td>
<td>0,51</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,03</td>
<td>0,51</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>51,9</td>
<td>0,013</td>
<td>0,51</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,03</td>
<td>0,51</td>
<td>-</td>
</tr>
</tbody>
</table>

x) \(A_5 \) - число землетрясений с \(M = 5,0 \) на площади 10 000 км\(^2\) в год.
Сопоставление наблюденных данных по повторяемости землетрясений с приближенными в виде (4.9) и (4.15). Данные по графику неколлинеарной повторяемости в виде (4.9) указаны в табл. 4.3, стандартные отклонения \(\sigma_{2gN_{z}} \), \(\sigma_{N_{z}} \) соответствуют МК, \(\bar{\sigma}_{2gN_{z}} \), \(\bar{\sigma}_{N_{z}} \) соответствуют МНК.

<table>
<thead>
<tr>
<th>Параметры</th>
<th>Линейно приближенная неколлинеарная повторяемость в виде (4.15)</th>
<th>Разности между стандартными отклонениями для неколлинеарной повторяемости в виде (4.15) и (4.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Зона</td>
<td>(c) (d) (\bar{\sigma}{N{z}}) (\bar{\sigma}{2gN{z}})</td>
<td>(\bar{\sigma}{2gN{z}} - \bar{\sigma}{N{z}}) (\bar{\sigma}{2gN{z}} - \bar{\sigma}{N{z}}) (\bar{\sigma}{N{z}} - \bar{\sigma}^{}) (\bar{\sigma}{2gN{z}} - \bar{\sigma}^{})</td>
</tr>
<tr>
<td>Всего регион</td>
<td>3,17 0,65 0,12 0,13</td>
<td>0,10 0,05 0,10 0,05</td>
</tr>
<tr>
<td>I</td>
<td>2,67 0,60 0,05 0,10</td>
<td>0,04 0,05 0,02 0,05</td>
</tr>
<tr>
<td>II</td>
<td>2,78 0,66 0,02 0,06</td>
<td>0,01 0,02 0,01 0,02</td>
</tr>
<tr>
<td>III</td>
<td>4,30 0,60 0,05 0,09</td>
<td>0,04 0,01 0,01 -0,01</td>
</tr>
</tbody>
</table>
Рис. 4.8. Графики распределенной (a) и накопленной (c) повторяемости землетрясений для всего региона.

Параметры оценки по методу наименьших квадратов (1) и по методу максимального правдоподобия (2).
В результате измерений одной из линий графитов накопленных ядер, их остаточного состояния \(\Sigma_{N_2} \) и \(\Sigma_{E_2} N_2 \) и
использования соотношений с формулой приближения, получено значение
которое имеет значение, равное формуле (4.2) с учетом коэффициента,
pолученного в ходе эксперимента (\(\Sigma_{E_2} S_0 \), \(\Sigma_{N_2} S_0 \), \(\Sigma_{E_2} N_2 S_0 \)). Кроме того,
в пределах допустимости:
\[
\Gamma_{N_2} - \Sigma_{N_2} - \Gamma_{E_2} N_2 - \Sigma_{E_2} N_2 - \Sigma_{N_2} - \Sigma_{N_2}^{\prime} \text{ и}
\]
\[
\Gamma_{E_2} - \Sigma_{E_2} N_2.
\]
Исследуется, что для оценок величин ядерных состояний
премного числа (4.2) является предельным (или), а именно.

4. Оценка распределения ядерных состояний. Как и в
поиск-ре-уобр

Последнее условие, при которых оценка состояния ядерных состояний
в зависимости от конкретных эмиссионных ядер оценивается, служит
обоснованием, с которым совпадает результат, полученый в
пределах диапазона ядерных состояний (за исключением пучков).
Предположение о том, что оценка состояния
посредством коэффициентов сопоставимости ядерных состояний
считается, как правило, надежнее, чем при других условиях.
В противоположность этому, оценка состояния при разных условиях
является особенно надежной, если она делается путем сравнения
коэффициентов сопоставимости ядерных состояний.

С другой стороны, анализируя данные, полученные при различных
условиях, можно сделать вывод, что оценка состояния
посредством коэффициентов сопоставимости ядерных состояний
является особенно надежной, если она делается путем сравнения
коэффициентов сопоставимости ядерных состояний.

С другой стороны, анализируя данные, полученные при различных
условиях, можно сделать вывод, что оценка состояния
посредством коэффициентов сопоставимости ядерных состояний
является особенно надежной, если она делается путем сравнения
коэффициентов сопоставимости ядерных состояний.
процесса землетрясения заимствовали из работы \(M \geq 7.8 \) в некоторых районах Тихоокеанского пояса, получившую наименьшую ошибку. Более работного материала у них нету [86, 91].
Итак, начальная часть работы была направлена на решение вопросов о возможности сохранения различных электро- и животных видов города Сантьяго-де-Куба, для которого существуют следующие условия в процессе землетрясений.

В скопление землетрясений города Сантьяго-де-Куба на экстремальных условиях, в работе [7] было получено соотношение для факта снижения интенсивности \(I \) за 100 лет (\(N_{100} \))

\[
I = 7.97 - 3.62 \log N_{100}
\]

(4.16)

\[
\log N_{100} = 2.64 - 0.331 I
\]

(4.17)

При этом теоретические и эмпирические данные для города Сантьяго-де-Куба были использованы [86] и была получена стоимость знака

\[
\log N = (3.59 \pm 0.89) - (0.36 \pm 0.022) I
\]

(4.18)

\(N \) — общее число землетрясений за 6.5 лет.

Среди всех случаев, один из них:

\[
\log N_{100} = 2.96 - 0.36 I
\]

(4.19)

Расхождение между результатами (4.17) и (4.19) объясняется тем, что данные случаи были за последние и ранее без учета их предсказуемости.
Изложенные данные о частотности сотрясений в го. Сантьяго-де-Куба являются результаты [7, 76] и неопубликованные данные, полученные Н. Чуй из Института геофизики и астрономии Кубы.

В табл. 4.5а представлено количество сотрясений разных баллов в интервалах 50 лет для периода с 1661 по 1900 гг. и по интервалу 35 лет для периода с 1901 по 1975 гг., причем в табл. 4.5а были включены значения без учета зависимых событий. На основании представления в табл. 4.5а об интенсивностях 7, 8 и 9 баллов, а также значений баллов 10 и 11 баллов, можно увидеть, что данные об интенсивности 5 и 6 баллов представляют, начиная с 1900 г. Из данных были удалены все ложные и аномальные, и были составлены другие таблицы с подсчетом событий (табл. 4.5а). По этим данным подсчитано соотношение

\[
\lg N_{100} = (4.16 \pm 0.22) - (0.51 \pm 0.03) I
\]

\[
\lg N_{100}^r = (4.52 \pm 0.11) - (0.54 \pm 0.02) I
\]

В табл. 4.5а - количество сотрясений с интенсивностью \(I \geq 1 \) за 100 лет.

Как видно из табл. 4.5а, учет старательности данных и разбора

каждого события в табл. соответствующему свободному члену в (4.6) вошении с результатами (4.17) и (4.18), полученным другим методом, учет старательности в каждом событии гармоничен событий (фактически, упомянутый рок) позволяет сделать вывод, что формулы (4.6) и (4.17)

дают точку на основании географическому и геодезическому определению событий.

Изложенные в этом разделе таблицы данных в табл. 4.5 а, Сантьяго-де-Куба, для интенсивностей 7, 8 и 9 баллов, которые были значительное статистическое и с разъяснением между соседними
Таблица 4.5
Агрегирование числа сотрясений разной силы по времени в городе
миного-де-л-узе. а - без учета землетрясений события, б - после
снятия землетрясений и афтершоков. Сводной линией отделены предста
тельные данные от непредставительных

<table>
<thead>
<tr>
<th>Промежуточный период</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951-1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1962-1963</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964-1965</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966-1967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968-1969</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970-1971</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972-1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974-1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976-1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Промежуточный период</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951-1960</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1962-1963</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964-1965</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966-1967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1968-1969</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970-1971</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972-1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974-1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976-1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Формулировка 1. В качестве исходных использованы данные из табл. 4.6.

Среднее значение интервала таковы: \(\bar{t}_{1>7} = 18,45 \), \(\bar{t}_{1>8} = 170,0 \) лет. С другой стороны, из формулы (4.1) можно получить следующие значения \((T = 100/\sum_{i=1}^N) \): \(T_{1>7} = 18,7 \), \(T_{1>8} = 63,1 \).

Для исследования закона распределения данных изображения были построены гистограммы. Целью эксперимента была выработка критерия билокальных гипотез.

Гистограммы для нескольких чисел \(\Pi \geq 7 \) показаны на рис. 4.4. Из-за малого числа экспериментаторов с \(\Pi \geq 8 \) гистограммы не строились, гораздо гистограмма на рис. 4.4 указывает на независимость пределения территорий длительности интервалов по экспоненциальному закону, а соответствует гипотезе о возбуждении процесса. Рассмотрение гистограммы, появляется полезность проверки гипотезы об экспоненциальном законе распределения.

Для этого используется критерий Коппингера - См. рисунок 4.1.

\[
\begin{align*}
\mathcal{H}_1 & \leq \mathcal{H}_2 \leq \ldots \ldots \leq \mathcal{H}_n
\end{align*}
\]

Формально распределение случайной величины, распределение в порядке возрастания их значений.

Функция апстрического распределения выражается через:

\[
F_n(x; \mathcal{H}_1, \ldots, \mathcal{H}_n) = \begin{cases}
0 & x \leq \mathcal{H}_1 \\
\frac{m}{n} & \mathcal{H}_m \leq x \leq \mathcal{H}_{m+1}, \quad 1 \leq m \leq n-1 \\
1 & x > \mathcal{H}_n
\end{cases}
\]

Функция теоретического распределения выражается через \(F(x) \).

\[
D_n = \sup_{|x|<\infty} \left| F_n(x) - F(x) \right|
\]

\(Q \) - заданный уровень значимости \(D_n(Q) \) задается таблицей, \(n \) - количество точек в выборке.
<table>
<thead>
<tr>
<th>Год</th>
<th>Месяц</th>
<th>Число</th>
<th>Интенсивность</th>
<th>(\Delta t_{I \geq I_0} \geq 7) (год)</th>
<th>(\Delta t_{I \geq I_0} \geq 8) (год)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>I</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1976</td>
<td>II</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1976</td>
<td>III</td>
<td>7</td>
<td>35</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1976</td>
<td>IV</td>
<td>-</td>
<td>8</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>1976</td>
<td>V</td>
<td>-</td>
<td>7</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>1976</td>
<td>VI</td>
<td>-</td>
<td>7</td>
<td>78</td>
<td>87</td>
</tr>
<tr>
<td>1976</td>
<td>VII</td>
<td>-</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1976</td>
<td>VIII</td>
<td>-</td>
<td>9</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>1976</td>
<td>IX</td>
<td>9</td>
<td>7</td>
<td>51</td>
<td>-</td>
</tr>
<tr>
<td>1976</td>
<td>X</td>
<td>0</td>
<td>7</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>1976</td>
<td>XI</td>
<td>0</td>
<td>7</td>
<td>0 (не было)</td>
<td>-</td>
</tr>
<tr>
<td>1976</td>
<td>XII</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>1977</td>
<td>I</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>1977</td>
<td>II</td>
<td>3</td>
<td>7</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>1977</td>
<td>III</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>1977</td>
<td>IV</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>1977</td>
<td>V</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>1977</td>
<td>VI</td>
<td>03</td>
<td>7</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>1977</td>
<td>VII</td>
<td>06</td>
<td>7</td>
<td>15</td>
<td>-</td>
</tr>
</tbody>
</table>
4.4. Гистограмма распределения промежутков между землетрясениями с $I \geq 7$ и эксконенциальной функцией распределения при $\lambda = 1/T$, $T = 10,5$ лет.
Если $D_n \geq D_n(Q)$ — гипотеза о нормальности данной выборки, а распределение $F(\times)$ по уровню значимости α будет иметь нулевое значение $/1/.$

Экспоненциальный закон распределения имеет вид:

$$F(t) = 1 - e^{-\frac{t}{\lambda}},$$

где $t = \frac{1}{\lambda}, \quad E$ — математическое ожидание.

Для проверки гипотезы о нормальности выборки для $t \geq 7$ применяется закону распределения с параметрами $\lambda = \frac{1}{T}$ (в отличие от случая логарифмического распределения, где $\lambda = \frac{1}{\Delta_t}$) было принято решение Филонова — Смирнова. Значения $D_n(Q)$ были взяты из /1/ для соответствующего размера выборки.

Заметим, что проверка гипотезы должна быть проведена для значений $\lambda = \frac{1}{\Delta_t}$ и $\lambda = \frac{1}{T}$, потому что выборка не является гипотезой о нормальности выборки, а выборка соответствует наблюдаемой ситуации в исследуемой точке. Следовательно, были взяты и другие значения λ, которые являются только $\lambda = \frac{1}{T}$ в экстремальных решениях $D_n = \frac{1}{\Delta_t} (F_n(\times) - F(\times)) = 0,144$. Остальные, чем соответствующие значения $D_n(Q)$ для $Q = 0.05, 0.02, 0.01, 0.005$ и почти в два раза больше $Q = 0.02 (D_n(Q) = 0.156 /1/).$

Важно подчеркнуть, что результаты определитель не противоречат гипотезе о нормальности данной выборки экспоненциальным законом распределения с параметром $\lambda = \frac{1}{T}$, даже при 0.01-ном уровне значимости.

В итоге, при оценке статистической значимости можно считать правдоподобной гипотезу о статистической значимости в исследуемой точке путем проверки с параметром $\lambda = \frac{1}{T}.$

На рис. 4.4. показана зависимость с растяжением соответствующая гипотезам о распределении для $\lambda = \frac{1}{T}.$

Следует отметить, что метод определения значимости характера процесса по обычным гипотезам проверяется за-
матрицы в регионе Кубо-Восточной Кубы. Например, в табл. 4.6 приведены данные о матрицах, происходящие в XX веке (1760-1766) с меткой 4 года. В работе [3] приведены результаты анализа при насыщении адаптивного процесса. Это позволяет и для дальнейшего анализа матриц учтены для построения сигнала матрицы уже был сложен. В работе /3/ при анализе пространственно-временных градиентов. С другой стороны, в работе /3/ анализируются условия связи между матрицами, а в работе 4-го типа в Геометрическом 19-го типа 1976 г. и Кубо-Восточной Кубы. Однако статистический анализ недостаточен для проверки более сложных закономерностей (прогресс независимого развития матриц).

Гуссоновская модель точных явлений соотношений. В работе /4/ обсуждаются гуссоновская модель: отечественность соотношений как наиболее простая на возможных.

Гуссоновский волок соотношений характеризуется четырьмя свойствами:

1) Стационарность — вероятность попадания на любой отрезок времени того или иного числа событий зависит только от длины отрезка и не зависит от продолжительности наблюдения.

2) Независимость — для любых неперекрывающихся отрезков времени соотношения на данном отрезке \(T \) не зависят от числа событий на других отрезках.

3) Ординатность — вероятность попадания в элементарную ячейку \(dt \) двух или более событий пренебрежимо мала по сравнению с вероятностью попадания только одного.

Вероятность того, что за время \(T \) произойдут \(m \) событий

\[
P_m(T) = \frac{(\lambda T)^m}{m!} e^{-\lambda T}
\] (4.3)

Отсюда можно получить вероятность, что за время \(T \) не произойдет ни одного события.
\[P_0(\tau) = e^{-\lambda \tau} \] \hfill (4.4)

Тогда вероятность того, что за время \(\tau \) произойдет хотя бы одно из событий, равна:

\[p = 1 - e^{-\lambda \tau} \] \hfill (4.5)

что соответствует экспоненциальному закону распределения (формула (4.4)).

Детальность этого распределения равна:

\[f(t) = \frac{dF(t)}{dt} = \lambda e^{-\lambda t} \] \hfill (4.6)

Имитационное моделирование:

\[E[t] = \frac{1}{\lambda} \] \hfill (4.7)

Дисперсия:

\[D[t] = \frac{1}{\lambda^2} \] \hfill (4.8)

Если случайные события состоят пуссоновского потока,

\[\lambda = B_I \] - события случайность, \(E[t] = \frac{1}{B_I} = \frac{1}{T_I} \) - период события /41/.

Формула (4.4) приобретает вид

\[P_0(t) = e^{-\frac{t}{T_I}} \] \hfill (4.9)

Значит, что вероятность того, что за время \(t \) не произойдет

какого события с интенсивностью \(\geq I \) равна \(e^{-\frac{t}{T_I}} \). 1
в том случае эта вероятность соответствует вероятности того, что в момент времени t возникают только сотрясения напряженностью $< I$.

4.3.

Определение. Под сотрясаемостью понимают среднюю частоту сотрясений в которой характеристика колебаний грунта (∞) в дан-ной точке. Такой характеристикой могут быть: значение напряженно- сти эпицентральной, амплитуда ускорения или скорость колебаний грунта, или величина их сдвига, амплитуда характеристики. В основе расчета сотрясаемости лежит формула, предложенная Е.Л. Рыжевским

$$ B_\infty = \iint N_I (M_\infty) \, dx \, dy \, dz $$

(4.30)

где α - значение параметра в точке, для которой нужно рассчитать среднюю частоту сотрясений; $N_I (M_\infty)$ - напряжённое число эпицентральных в интервале ($M_\infty - \Delta M_{\infty} \leq M_{\text{max}} + \Delta M_{\text{max}}$). N_I зависит от координат x, y, z. M_∞ - значение амплитуды, начиная с которого подсчитывается значение параметра ∞ в данной точке.

$dx \, dy \, dz$ определяет пространство, где расположены зоны I-III, подлежащие расчету грунта.

Период сотрясаемости T_∞ определяется по формуле:

$$ T_\infty = 1/B_\infty $$

(4.31)

Для расчета интегральной зоны используются суперпозиция:

$$ B_\infty = \sum_i \sum_j N_I (M_\infty)_{ij} \Delta S_{ij} $$

(4.32)
Если считать, что емкость емкости и емкость емкости, то период емкости может быть рассчитан как функция емкости и емкости, введенные между емкостями /41/. На этот период основываются формулы для расчета в программе.

Походя на предыдущий случай о том, что емкостная емкость и емкость в каждой точке и из-за определения емкостей А и (или А), Мₘₐₓ (или Кₘₐₓ) и b (или q), последний готов поглажен на его растя, формулы (4.30) и (4.31) записываются формулами:

\[
\sum_{x=1}^{n} A_{m}(x, y) \text{d}x = \int_{\Omega} \sum_{i} A_{m}(x, y) \text{d}x \text{d}y \quad (4.33)
\]

Тогда при наличии вектор Аₘₐₓ и Мₘₐₓ (или Аₜ и Кₘₐₓ) могут быть рассчитаны емкости любой точки, а также могут быть проведены расчеты емкости в СССР и других регионах /41/.

При рассчитосте емкости, находя из формулы (4.30) или (4.31), как следует, что емкостная емкость и емкость не только в каждой точке, но и внутри одной зоны емкостной емкости более других разнов, для которой можно оценить емкости a, b и Мₘₐₓ /41/. Для этого необходимо сформулировать зоны 103 и оценить параметры a, b и Мₘₐₓ в каждой зоне.

Новый подход к расчету емкости исходит из самого определения этого параметра, т.е. из формулы (4.30), и характеризуется ряда особенностями. Введен новый закон емкостной емкости, а также емкостных зон в разделе 4.1. Формула (4.3); новые волчакские модели изосейст, объединенные в разделе . . . ; новые данные представлены в виде зон 103, их параметров a, b и Мₘₐₓ и модели изосейст для каждой зоны; вероятностные рас-
Сопротивляемость учитывает статистически на модели процесса сопротивляемости T_{∞}, определенного на основе данных изображенных для данного района или региона.

Таким образом дается возможность включать: карты норм сопротивляемости разных баллов, карты значений параметра α при заданном уровне вероятности его проявления, нормы сопротивляемости для отдельных городов (либо средние, либо для заданного уровня вероятности).

Программа SACUDIDA. Схематичный подход к расчету сейсмической сопротивляемости был реализован в виде программы на языке ФОРТРАН. Угол зрения составляет 100 К для ЭВМ серии ЭС-1040. Он состоит из трех частей: части и групп настройки. На рис. 4.5 дана упрощенная схема работы. Она состоит из: задания α и соответствующий T_{∞} по формулам (2.31) для нескольких точек элементарных квадратов, на которые разделена зона, она имеет сейсмическую опасность.

Пространство V определяется как район, ограниченный по ширине и длине, в котором зона 103 может быть разделена на различные зоны, но при этом, что любой точке зоны 103 соответствует одно значение глубины. В данном варианте программа рассчитывает вопрос о наличии существования под одной точкой различной зоны 103. Кроме того, в программе не используются значения в пределах значения α, а поступает в выход приходится в видимую часть амплитуды и площади на сопротивляемости этих значений интервалов. Приведенное обобщение программы SACUDIDA

1. \textbf{1. Логотипы входных данных.} Исходными данными для оценки сейсмической опасности являются:

* границы района, для которого поделены зоны 103;
* границы района, для которого будет рассчитана сейсмическая
Чтение и распечатка исходных данных

Определение значения I

ТРС

ПЗ ВОЗ

Зона ВОЗ

нет

для

Определение эффективного радиуса r

Определение M_I

$M_I < M_{max} + \Delta M_{max}$

Определение $N_x (M_I)$

Определение B_I

Матрица T

Вероятностные оценки

конец

4.5. Блок-схема программы SACUDIDA. ТРС — точка для расчета сопротивляемости ПЗ ВОЗ — поиск зон ВОЗ.
относимость;

- размеры элементарных квадратов, на которые будет разделены зоны и их число;

- зоны 103 и их характеристики (характеры \(a\), \(b\) и \(M_{\text{max}}\) гравитационной анизотропности; отношение \(A/B\) модели изосейст, угол \(A_3\)
модуля деформации \(E-B\) главной осью модели изосейст, направление \(E\), верхняя часть зоны \(K\), проходящейся на элементарный квадрат;

- наименьшая принадлежность квадрата к зоне 103 (параметр \(\text{para}\));

- число квадратов, соответствующие зоне 103, минус ординатный номер контурной зоны 103, если она есть;

- наименьшая
, для которого подсчитывается собственная прочность.

Подготовка исходных данных сведется следующим образом: (рис. 4-6). В качестве примера рассмотрим регион, для которого выделены зоны 103 (I, и Z на рис. 4,6). Именно регион находится регион I-III, для которого рассчитываются собственные прочности.

Здесь разделяются элементарные квадраты по ширине и длине того, что для каждого зоны 103 определены параметры собственной прочности \((a, b, M_{\text{max}})\) и модели изосейст. На рис. 4,6 видно, что зона 103 имеет наименьшее значение в относительном отношении, для зоны 103 номер 3 покрыт интервалом характера неравенства элементарных квадратов:

| 0; 0,5; 0,75; 1 | при таких раздельных общей количестве зон 103 -

Зоны должны быть выделены с помощью соотношений (фигурками) на рис. 4,6. С помощью этой процедуры отсекаются от раздельных элементарных квадратов. Определения регионов не более полное

Нагрузки квадратные уменьшены, но уменьшают время...
4.6. Подготовка исходных данных для расчета сейсмичности в районах I–II–III–IV. Черные фигуры – зоны ВОЗ. ПолYGONALIY, окружающие зоны, определяют площади, которые машина относит к зоне ВОЗ. Для зоны ВОЗ номер 3 показана классификация элементарных квадратов по площади, которая приходится на зону ВОЗ.
из расчета и необходимую машинную память.

6) Окончание описания работы программы. При чтении исходных данных программа определяет:
- значения широты и долготы центров элементарных квадратов;
- максимальную длину и сторону зоны 103 как функцию от M_{max} и ξ_k;
- значения параметра ξ_k для которых будут проведены расчеты.

Расчету сопротивляемости подлежат в следующем порядке:

Происходит точка для расчета сопротивляемости (ТС). Находится пересечение зон 103 (ЗЗ 103) до расстояния r_{max} (ξ_k, $M_{\text{max}} + \Delta M_{\text{max}}$). Если это расстояние выходит за пределы региона, для которого описаны зоны 103, и программа отмечается, что для этой ТС получено приближенное значение.

Когда в процессе поиска (ЗЗ 103) зона 103 найдена, определяется "эффективное" гипоцентрализованное расстояние по модели позиционирования модели соответствующего параметра ξ_k. Для этого используются три подпрограммы: ROTCOR, ELICAN и CORELI.

Если гипоцентрализованное расстояние больше r_{max}, продолжается процесс ЗЗ 103; в противном случае рассчитывается значение M_{ξ_k}, в законе затухания ξ_k для эффективного гипоцентрализованного рисунка с помощью подпрограммы MAGNIT.

Если $M_{\xi_k} > M_{\text{max}} + \Delta M_{\text{max}}$, для данной зоны 103 продолжается процесс ЗЗ 103; в противном случае рассчитывается значение $N_7(M_{\xi_k})$ с помощью подпрограммы NUATER.

Сопротивляемость в каждой ТС рассчитывается путем суммирования значений $N_7(M_{\xi_k})$, полученных в процессе ЗЗ 103 и соответствующих расчетах.

Затем формируются в естественных единицах сопротивляемостям, которые представляются в числовом виде. С помощью подпрограм...
APR масса T1 картируется вероятными значениями, определяющими значения нормальных смещений.

В отраслевом смысле массы чешской системы рассчитывается, исходя из массива T1, получаемого при разных значениях параметра \(\alpha_k \) по гипотетической модели движения сейсмических смещений и осуществляется с помощью подпрограмм POIS.

b) Выведение координат. Главная программа в режиме координат
PC для систем с центром в точке зоны 103, для которой будет рассчитана масса смещений и на наихудшие оси, соответствующие географическому координатам. Подпрограмма ROTCOR приводит эти координаты \((x', y') \) в положение с центром в точке зоны 103 и осью \(x' \), направление которой прослеживается в сторону зоны 103 \((x', y') \). Подпрограмма ELICAN, исходя из этих координат, получаем полосой \(A/B \), определяет лицевую плоскость зоны, проходящую через ПК по формуле (**8**).

Подпрограмма CORELI рассчитывает значение \(\Delta/A \) как функцию \(A/B \). Она подсчитывает значения \(\Delta/A \) для дискретных значений \(A/B \) от 1,0 до 3,0 с шагом 0,1. Для промежуточных значений \(A/B \) программа оценивает \(\Delta/A \) только для этих значений.

Подпрограмма для расчета \(M_{\alpha_k} \). Реализован только случай \(k = I \). Величины \(M_{\alpha_k} \) рассчитываются с помощью подпрограмм MAGNIT и рассчитываются в формулах (**4**) или (**5**).

Подпрограмма NUATER рассчитывает \(N_2 (M_{\alpha_k}) \) по формуле (**4**).

Подпрограмма MAPA состоит из двух этапов: расчета вероятного значения массива T1 (для периода смещений). Он имеет элементы массива T1 и детерминирован с использованием функций, расположенных в узлах графа и отмечающих на них значения T1 условными символами.

Подпрограмма POIS рассчитывает, исходя из массива T1, вероятности направлений смещений \(\alpha_k \) за разные значения назад прерывание.
интерваль кривых. Используя экспоненциальный закон распределения вероятности коротких периодов сопряженности (формула (4. - 9)), что соответствует локальной модели разности коротких периодов. При необходимости она может быть заменена другой моделью, отечественной другому распределению.

т) Ниже приведены. На выходе программы получается:

Расчет точек исходных линий: границы областей для основной зоны Л.З. и для расчета сопряженности; число периодов, на которые разделен регион по широте и долготе; параметры зон Л.З.; характеристики параметров α_k (значение α_k и соответствующая величина при $M = 8$); массив описания зон Л.З.

Оценка вероятности события. Для каждого значения параметра α_k рассчитывается решетка, внутри которой рассчитывается точка, табл. массы Т1 средних периодов сопряженности, соответствующих значению α_k и соответствующим вероятностям значений сопряженности (условные символы рассчитаны в табл. 1 соответственно периодам в 10, 20, 30, 40, 50, 100, 200, 500, 1000, 10000 лет).

Неравномерности оценки сопряженности событий. Для каждого значения α_k в зависимости от оценки: после соответствующих значений сопряженности и схем средних периодов сопряженности в виде таблицы. Табулируются вероятности и периоды значений α_k для фиксированных значений значений сопряженности - 10, 20, 30, 40, 50, 100, 200, 500, 1000, 10000 лет.

Процесса расчета результатов. Результаты расчетов сопряженности представлены в виде контурных карт, разделенных на элементарные квадраты, к которым отнесены ресурсы сопряженности значений.

Из расчетов средних периодов сопряженности получается:

карты интенсивностей для разных средних периодов сопряженности-
изменены чтобы горизонт сопротивляемости для отдельных точек (соответствующих городам).

На вероятностных расчетах сопротивляемости получается:

для каждого значения параметра \(k \) вероятности непрерывного значения этого значения за 10, 0, 50, 100, 500, 1000 и 10 000 лет (периоды ожидания);

для любого из периодов ожидания карта значения параметра \(k \) в которой существует оценка вероятности непрерывного значения параметра в течение которого не может быть превышено значение параметра \(k \).

4.6. Расчеты сопротивляемости Крыма и Бесточипых Башеа с целью стабилизации программы

Для отдельных составленной программы был проведен расчеты
приспособленности двух районов Советского Союза — Крыма и Бесточипых Башеа.

Район Крыма. Градостроительные данные: район ограничен горизонтами 47-29°-47,33° с.ш. и 30,66°-30,50° в.д. (рис. 4.7а) и площадью 0,13 км², где 0,12 км² по площади, обеспечивающим коэффициент населения 40х47 = 1880. Зона I3 состоит из 30 из карте сейсмического района страны СССР в масштабе 1:10 000 с параметрами N\(S \) = 0,067, \(b \) = 0,40, M\(max \) = 7, \(h \) = 15/43. Сейсмическая сопротивляемость рассчитывалась для района, ограниченного координатами 43,38°-45,11° по долготе и 32,66°-32,39° по широте, что включает весь полуостров Крым.

Для круговой модели происходит по осям оценено закон затухания в
(\(\omega \)) с параметрами \(b = 1,5, \ 5 = 3,5 \) и \(c = 3,0 / 6,5/.
Результаты расчетов показаны на рис. 4.76, в.г в виде горизонтов ожидаемой сопротивляемости сопротивляемости 0, 7 и 8 баллов.
Рис. 4.7. Расчет обеспеченности сейсмичности Крыма: а - карта ОР-78 /48/, изолинии 6, 7 и 8-го баллов интенсивности; б, в, г - карты средних периодов сейсмичности для интенсивности 1 > 6, 7 и 8 баллов соответственно.
Сопоставим эти карты с картой сейсмического районирования СССР /43/. Регион 6 богов на карте сейсмического района, нахождение зон с периодом сотрясаемости

Т₆ ≤ .00 лет (рис. 4.7к).

Регион 7 богов находится внутри зон с периодом сотрясаемости

Т₇ ≤ 500 лет в Крыму и Т₇ ≤ 10 000 лет на Керченском полуострове. Регион 8 богов на карте сейсмического районирования очень близок к зоне с периодом сотрясаемости

Т₈ меньше 1000 лет (рис. 4.7к).

Восточный регион Крыма характеризуется очень высокими значениями периодов повторения сотрясений, не согласующимися с картой сейсмического районирования.

Сопоставление этих карт с картами периодов сотрясаемости

Т₇ и Т₈ для этого региона в /41/ показывает, что периоды повторения сотрясений на этих картах ниже периодов Т₇ и Т₈ в /41/. Для восточного региона Крыма существует несогласие по значениям периодов повторения сотрясений с картаами изолиний.

Причины таких несогласий являются:

а) Изменения на восточном Крыму других зон 103, но учитывая их в исходных данных, а также используемых для получения

В₇ и В₈ в /41/ и использованных в них /41/, а также используемых в них /41/ в среднем равны 6 (К = 15) с максимальным значением 6,7 (К = 16), сконцентрированным в зоне 103.

Регион Восточных Крым. Сотрясаемость восточного региона

Со сейсмичностью района I крех в Гуллини и в основном с глубинными зонами /103/, характеризуется сильным сейсмическим волном, а также сильным вибрациям землетрясений. Востоку для района I крех были макрорегион на эпизодическую модель несоответствий. Для суждения модели в переделах данных, предложены в работе Рылух А.А.
И в этой работе дается оценка параметров A_1 и B_1 формул (3.7) и отношений $(A/B)_1$ для разных интенсивностей (4, 5, 7 и 8). Для интервала амплитуд от 5 до 7,5, используя параметры A_1, B_1 и $(A/B)_1$, были получены значения гиантской полуси A всех эпицентров и соответствующие значения $r = \sqrt{A^2 + h^2}$ типо- мезенезальных расстояний (при $h = 150$ км). Затем сила $I = \int I(M, d)$ определена на рис. 4.8. Из рисунка видно, что в течении интенсивности вдоль гиантской полуси подходит ближайший интегральный объем $b = 1,8$. С учетом этого значения были приближенно оценены значения: $b = 1,8$, $s = 7,4$, $c = 14,1$ и соответствующие при- ды амплитуд $M = 4,5$ и $M = 5$ на грунте (рис. 4.8) и оказалась, что приближенный закон затухания типа (1.5) лежит удовлетворительно согласуется с законом, полученным на кривой /1.9/, особенно при больших амплитудах. Среднее значение (A/B) равно 1,9.

Таким образом, наибольшая по $C - V$ с уклоном 55° по отношению к горизонтальной оси /41/.

Готово исполненных данных:
Район ограничен координатами 41°30' - 43°00' с.ш. и 29°30' - 30°30' в.д. близен к 50 квадратам размером 50×50 км².
Зона /103/ является ярко выраженной зоной района Брянца с периодом $M_{max} = 7,5$, $b = 0,67$, $N_4 = 0,8$, $h = 150$ /43/. Она является 4 элементарных квадратам в центре квадраты.
Период повторяемости сопряжений 5, 7 и 8 баллов положен в 4, 30, 6, 7. Приведено сопоставление полученных карт вири- на черных интенсивностей 7 баллов с картой сейсмического проявления СССР /43/. Радиус 7 баллов на карте сейсмического проявления СССР соответствует периодам сейсмичности 4, 00 лет в направлении большой полуси модели взаимот. В них радиация и вдоль гиантской полуси резко увеличивается. Та- кие результаты получены для района 5 баллов.

4.3. Зависимость затраты от глубины заложения здания при различной жесткости оснований.

1 - глиняный грунт $r = k = 150$ м2; 3 - жесткий грунт $r = k = 10$ м2 ($b = 1,5$, $S = 7,4$, $c = 100$, 1) для $M = 6,0$; $M = 7,0$ (2); $M = 8,0$ (3). $M = 9,0$ (4). $M = 10,0$ (5); $M = 11,0$ (6). $M = 12,0$ (7) $M = 13,0$ (8). $M = 14,0$ (9); $r = \sqrt{A^2 + k^2}$ - геоцентрическое r звено.
Рис. 4.6а, б, в. Карта средних годовых геометрических отклонений Карпатского региона для нижних гостей T > 6, 7 и 8.
Согласно картам положения ядер, осталось 7 баллов
категории сотрясаемости B7 по /41/, показывает, что наблюдается
повышенная форма излома, что объясняется тем, что в обоих случаях
пользование эпицентрического гоемента несущественно.

Согласно полученным результатам существует сотрясаемость с
наклонен-ными фазами, но сопоставимости со всем рассмотренных в данной
работе. Данные по сотрясаемости с учетом в городских условиях
включают данные /4.6/ и /4.11/. Как было отмечено в разделе 4.I,
входящих данных речь идет о сопоставлении, что дано на рис. 6.10.

Следующая таблица в зависимости от результатов сотрясаемости, полученных по формуле
(II), в среднем в I,0 раза более оценок, предложенных по формуле
(49). Согласно полученным данным, показано, что возможен
входной критерий для расчета N1 (M1), так как наблюдаемая
шкала для городских условий не позволяет получить
определяемую форму для расчета N1 (141). Такие обстоятельства
в многом обусловлены полученной кривой, которая получена
по формуле (4,3). С другой стороны, для городских условий не наблюдается такого сопоставления.

В данном случае отличается кривая, полученная с помощью формулы
(II). Следует отметить, что на этих результаты не от влияния процесса
обусловленного законом заражения, который был получен
непосредственно на данных предложенных в работе /1.9/, в том числе,
и в данном случае о сотрясаемости могут содержать ошибки.

Кацу трудно ответить на вопрос о том, когда функциональная зависимость получше для расчета N1 (M1). Лучше использовать формулу
(5), которая дает меньшие невиновные сотрясаемости, как было сле-
дует из расчета сотрясаемости цифровых данных.

Таким образом, можно сказать, что программа SACUDIDA может
быть успешно использована для расчетов сотрясаемости.
4.10. Вероятность сохранности в городах Бухарест (1–5) и Кийино (4–6). Бухарест: 1 — расчетные данные по (4.9); 2 — наблюденные данные; 3 — расчетные данные по (4.11). Кишинев: 4 — расчетные данные по (4.9); 5 — наблюденные данные; 6 — расчетные данные по (4.11).
§ 5. СИСТЕМА СОТРУДНИКА ОСТУДА 1938.

5.1. ПОДГОТОВКА ПОТРЕБНЫХ ДАННЫХ

Зоны I.OЗ. Было принято два варианта вида зон I.OЗ (рис. 1.10 и 2.11) и в 1.4 были определены модели изосейс для разных значений Больших Антильских островов. Зона I, соответствует району Сент-Тьюво-де-Куба-Гуантанамо, зона I₁ - району Гайанского землетрясения 19 февраля 1976 г., зона I₄ - Сент-Тьюво Гаити, зона I₅ на юге Гаити и зона I₇ - на юге острова Гаити. Для зон I₃ не была проведена модель изосейс и пришлось допустить, что модель для этой зоны также же, как и для зоны I₁. Результаты в моделях изосейс для учтения при расчетах сотрясаемости.

Геометрические a, b и M_max были установлены в 4.1. В табл. 1. представлены данные по зонам I.OЗ для двух вариантов.

Следует отметить, описанный в 4.3. для проведения расчетов сопротивляемости, были подготовлены подходящие данные для программы ACUDIRA. Каждая зона I.OЗ разделена на четыре подзоны в зависимости от их величины. Зона I.OЗ в элементах зоны I.OЗ и элементарных объемах имеют 1/2, 1, 1/4, 3/4, 1/2, 1/4).

Параметры a и b в пределах коэффициенты были определены для каждой зоны I.OЗ без уточнений. В общем случае при расчетах формулы (4.3) учитывались нормирующие факторы по площади.

Для расчета периодов и сотрясений сотрясений в городе Сент-Тьюво-де-Куба использовался четыре комбинирования: первый вариант выделения I.OЗ (формулы (4.9) и (4.11)) и второй вариант выделения зон I.OЗ формулы (4.3) и (4.11)).

Результаты расчетов приведены на рис. 5.1 совместно с данными наблюденным сотрясаемости. Из рис. 5.1 видно, что варианты выделения зон I.OЗ дают периоды сотрясения сотрясений больше, чем...
<table>
<thead>
<tr>
<th>Зона РОЗ</th>
<th>Параметры орбитальных режимов</th>
<th>Характеристики модели изоэллина</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>I</td>
<td>1.00</td>
<td>0.01</td>
</tr>
<tr>
<td>I_1</td>
<td>1.00</td>
<td>0.01</td>
</tr>
<tr>
<td>I_2</td>
<td>1.00</td>
<td>0.01</td>
</tr>
<tr>
<td>I_3</td>
<td>1.00</td>
<td>0.01</td>
</tr>
<tr>
<td>I_4</td>
<td>1.00</td>
<td>0.01</td>
</tr>
<tr>
<td>I_5</td>
<td>1.00</td>
<td>0.01</td>
</tr>
</tbody>
</table>

\(A_3 \) - угол между направлениями \(a \) и большой полуосью аликсна модели изоэллина.
\(A/B \) - отношение большой и малой полуосей аликсна.
\(\Delta_3 \) - эффективный радиус аликсна, \(\Delta_3 \) - средний радиус аликсна.
I.I. Согласно расчетам (1-4) и измерениям (5) нормы подгорения состояние в городе Сантъяго-де-Куба.
1 и 2 - вариант I зон 1103; 1 - расчет по формуле (4.9);
1 - расчет по формуле (4.11); 3 и 4 - вариант I отделения зон 1103; 3 - расчет по формуле (4.11); 4 - расчет по формуле (4.3).
Тема 5 и чем исследование живых. Анализ согласно с наблюдениями получается для теряющих (расчет по формуле (4.9)). Сушишно отличаются результирующие значения интенсивностей 5 и 6 баллов для $I = 10$, которое до настоящего времени не отмечалось в городе Сантьяго-де-Гуа.

Следовательно, по согласию автора, что итог результата интенсивности остается неизменным Кубы было его ввести в термины I и формулу (4.9) для расчета значения $N_I (M_I)$.

5. Сейсмическая сопутствующая опасность на острове Куба

Получены карты средних интенсиваций сейсмической сопутствующей опасности интенсивностей $I = 5, 6, 7, 8, 9$ и 10; на рис. 5.4 представлены примеры $I = 7, 8, 9$. На основании этих карт были построены схемы опасных в течении периодов интенсивности $T = 0, 50, 100, 1,000$ и 10,000 лет. На рис. 5.3 представлены примеры $T = 100, 1,000$ и 10,000 лет. Приведен ряд значений периода сопутствующей опасности каждого элементарного квадрата размером $0.1^0 	imes 0.1^0$. Изолинии, изображенные на рис. 5.3, — N_I, определяются интерполлируемыми значениями, лежащими в центрах этих квадратов.

Вероятностные оценки сейсмической опасности. Получены карты опасностей для различных значений интенсивности (5, 6, 7, 10 баллов) для периодов превышения ожидания (10, 50, 100, 1,000, 10,000 лет). На рис. 5.4 представлены примеры карт для опасностей 7, 8 и 9 баллов и периода ожидания 50 лет.

Изоценд карты периодов ожидания, в течение которых с вероятностью 0.9; 0.7 или 0.5 не будет превышено данное значение интенсивности $I = 5, 6, 7, 8, 9$ и 10. На рис. 5.5 представлен пример для $I = 0.9$, $I = 7, 8, 9$.

Далее, были построены карты интенсивностей с вероятностью
... Карта периодов с низким уровнем синоптической активности нестойкости большие или равно 1: а - I ≥ 7, б - I ≥ 8, в (I = 9)
5.3. Карта интенсивностей I в о-ве, отнесенных с одним периодом отклонений 100 (a), 1000 (b) и 10000 (в) лет.
15.4. Карта вероятностей НИР вида интенсивности I за период с 1980 по 1990 гг. $a - I = 7$, $b - I = 8$, $c - I = 9$.
5.5. Карта времена схода, в течение которого с вероятностью 0,9 не будет превышено значение интенсивности I:
4.7 и 0.5 для средних значений для периодов осаждения 10, 50, 100, 500, 1000 и 10 000 лет. На рис. 4.6 приведен пример для $P = 0.9$ и $t = 0.5, 50$ и 100 лет.

Согласно карт интенсивности I было для разных вероятностей сопоставление и карт интенсивности I с вероятностями 0.9 для разных периодов осаждения. Приведено сопоставление карт интенсивностей оседания, отсеченных разных периодов осаждения (рис. 5.6) и карт на разных областях интенсивностей с вероятностью 0.9 для разных периодов осаждения (рис. 5.6) указывает близость этих карт в случае, когда $t = T/10$ (где t — время осаждения, и T — время ожидания сопоставления). Это верно и при других, когда $t = 1000$ лет (рис. 5.6) и $t = 100$ лет (рис. 5.6). Это объясняется тем, что по формуле (4.14) вероятность того, что не происходит ни одного эпизода за период осаждения $t = 0.1T$, резко приближается к нулю.

Другой факт, который интересно отметить, является разница между картами обоих периодов при $t = T$. Для малых значений параметра t, T резонанс между обоями гратами очень большой, а по мере увеличения этих параметров резонанс убывает, и можно думать, что $t, T 	o \infty$ обе карты совпадут. Это согласуется с экспоненциальным законом распределения между различными периодами осаждения.

Для определения интенсивности осаждения обычно используются оценки, которые применяются для $t = 0.5$ и $t = 50$ лет, что приближительно соответствует средним периодам повторения сопоставления 100 и 500 лет.

5.3. Рассмотрение устойчивости полученных оценок сопоставимости

Вопрос о том, как рассчитать сопоставимость между двуми значениями, является непосредственно важным. Некоторые вопросы были рассмотрены в предыдущем разделе, фокусируясь на методах оценки и эмпирических тестах на основе коли-
ИЛ. Г. 1-й этап интенсивности с вероятностью 0,1, 2-й этап для периодов оттепелей: 1 - 80, 2 - 40, 3 - 100 лет.
Часто данных. Таким образом, понимается вопрос, насколько устойчивыми являются результаты при переписи исходных данных.

Для решения этого вопроса было исследовано влияние изменения исходных параметров в зоне ГОЗ \((I_1, I_2, I_3, I_4)\) на расчеты сотрясаемости в семи городах: столица Кубы, Солнцеблагодаря их удалённости, но должны оказывать меньшее влияние на сотрясаемость.

Города - Сантандер, Гуанчале, Геррахо, Кана, Баньо и Мананьольо (рис. 5,7). Они расположены по всей территории Кубы.

Устойчивость была исследована при различных значениях параметров: глубине очагов землетрясений, отношения \(A/B\) модели изосейс, \(M_{max}\), параметр в гравитационной модели при \(N_M = 0\) = const. Указана была рассмотрена возможность землетрясений в разных участках зоны ГОЗ \((I_1, I_2, I_3, I_4)\).

Лицевые глубины. Расчеты приведены по отборна землетрясений в случаях \(h = 15, 30, 50\) км в зоне ГОЗ \(I_1\). Лицевые глубины значительно чувствительны только на небольших расстояниях (города Сантандер, Гуанчале, Геррахо, Кана, Баньо и Мананьольо). Это ясно из рисунка \((I)\) на этом же случае, где видна интенсивность землетрясений от гипоцентрального расстояния. На рис. 5,66 и 6,66 из рис. 7,66 и 7,66 для городов Сантандер, Гуанчале, Геррахо, Кана, Баньо и Мананьольо. На рисунках видно, что увеличение периода ведёт к увеличению интенсивности и уменьшению в го в возрастании фазности и уменьшается на мере удаления купола от зоны ГОЗ.

Для зон ГОЗ \(I_1\) и \(I_3\), как показали расчеты, влияние глубины на интенсивности оказалось незначительным.

Интенсивность отношения \(A/B\) модели изосейс. Были рассчитаны модели отбора сейсмических центров при различных значениях параметра \(A/B\) для всех зон ГОЗ \((I_1, I_2, I_3, I_4)\).
4. 5.7. Города, для которых проведены оценки устойчивости расчетов сейсмичности: 1 - Сантъяго-де-Куба, 2 - Гуантанамо, 3 - Баракоа, 4 - Ла-Плана, 5 - Сигма, 6 - Баяню, 7 - Кансепеио.
5.8а. Изменения T от изменения глубины очага в зоне $106 I_2$: Сантъяго-де-Куба (1 - $h = 15$ км, 2 - $h = 30$ км, 3 - $h = 50$ км), Барахоа (4 - $h = 15$ км, 5 - $h = 30$ км, 6 - $h = 50$ км) и Халки (7 - $h = 15$ км, 8 - $h = 30$ км, 9 - $h = 50$ км).

для зоны I. были рассмотрены случаи $A/B = \{1, 1.4; 1.6; 1.8\}$. Влияние этого фактора является значительным только для городов Бакинского, Баку и Ишамского. Для зоны I. были рассмотрены случаи $A/B = \{1.1; 1.3; 1.5; 1.7\}$. На рис. 5.6д представлены кривые $T(I)$ для городов Гаванкетского, Бакинского, Баку и Ишамского.

Для зоны I. были рассмотрены случаи $A/B = \{1.4; 1.6; 1.8; 2\}$. При этом выделяется, что незначительные изменения периодов возврата систерм в городе Бакинском означают, что влияние фактора A/B очень незначительно.

Для зоны I. были рассмотрены случаи $A/B = \{0; 0.4; 1\}$. При этом также выделяется незначительное изменение периода возврата систерм только для города Бакинского.

Влияние максимума: Вл. Были проведены расчеты периода возврата систерм при изменении $M_{max} + \Delta M_{max}$ для всех зон I. (I. 1, I. 2, I. 3 и I. 4). Для зоны I. были рассмотрены случаи $M_{max} + \Delta M_{max} = \{7.0; 7.75; 8.0; 9.0\}$. Влияние этого фактора отсутствует только в городах Бакинском и Ишамском.

Для зоны I. также были рассмотрены случаи $M_{max} + \Delta M_{max} = \{7.0; 7.75; 8.0; 9.0\}$. Для территории Бакинского и Ишамского это фактора. На рис. 5.6а представлены кривые $T(I)$ для городов Гаванкетского, Бакинского, Баку и Ишамского.

Для зоны I. были учтены случаи $M_{max} + \Delta M_{max} = \{7.75; 8.0; 9.0\}$, при этом отмечается небольшое изменение результатов только для городов Бакинского. Похожая картина наблюдается при варировании M_{max} в зоне I. 4, для которой изучены случаи $M_{max} + \Delta M_{max} = \{8.0; 8.5\}$. Таким образом, можно сказать, что вариации M_{max} в зонах I. 3 и I. 4 почти не влияют на результат систерм плотности I. осточной Кубы.

Влияние периода на параметр B при $N (M = 5) = const$. Картина в графиках систермности для всех зон I. были рассчитаны.
5.9а. Изменения T в зависимости от изменения максимальной магнитуды $M = M_{max} + \Delta M_{max}$ в зоне ЭОС I-й:

Гуантанамо (1 - $M' = 8,25$; 2 - $M' = 8$; 3 - $M' = 7,75$; 4 - $M' = 7,5$), Баракоа (5 - $M' = 8,25$; 6 - $M' = 8$; 7 - $M' = 7,75$; 8 - $M' = 7,5$), Маяри (9 - $M' = 8,25$; 10 - $M' = 8$; 11 - $M' = 7,75$; 12 - $M' = 7,5$), Силуян (13 - $M' = 8,25$; 14 - $M' = 8$; 15 - $M' = 7,75$; 16 - $M' = 7,5$).

396. Изменения T в зависимости от изменения параметра графика повторяемости в зоне ЭОС I-й: Гуантанамо (1 - $b = 0,47$; 2 - $b = 0,52$; 3 - $b = 0,57$), Баракоа (4 - $b = 0,47$; 5 - $b = 0,52$; 6 - $b = 0,57$), Маяри (7 - $b = 0,4$; 8 - $b = 0,52$; 9 - $b = 0,57$), Силуян (10 - $b = 0,47$; 11 - $b = 0,52$; 12 - $b = 0,57$).
при условии $M_0 = 0$ в формуле (4.6). Поэтому, чтобы учитывать вариации в параметре b при $N(M = 5) = \text{const.}$, придется пересчитать параметр a в соответствующее значение a' по формуле

$$a' = a - 5(b - b')$$

где a, b - старые значения параметров, а a', b' - новые их значения.

Для всех зон 103 были учтены 3 варианта ($b = 0.05$, $b = 0.05$).

Глубина изменения параметра b в зоне 103 I₄ почти не отмечается по всему региону. С другой стороны, изменение параметра b в зоне 103 I₃ влияет на оценки сейсмичности городов Белмю и Мансаниро; для остальных городов влияние незначительно.

Изменение параметра b в зоне 103 I₂ отмечается в периодах повторения сейсмичности во всех городах. На рис. 5.36 предельная соответствующие кривые для городов Гуштантинью, Баренко, Чайры, Ольш, Белмю и Мансаниро.

СОБЫТИЕ РЕЗУЛЬТАТОВ. На всю геодинамического материала, что глубину роль в оценке периодов повторения сейсмичности 103-й Кубан играет зона 103 I₄. Периоды повторения сейсмичности во всех городах сильно зависят от выбора характеристик землетрясений того зоны: глубине, очаге, интенсивности вибросьемов моделей взаимодействия, начальной магнитуды и параметра b графика повторяемости. Это выходит тем, что зона 103 I₄ подавляющее активна в центре региона.

Изменения параметров остальных зон, как правило, влияют только местах, расположенных непосредственно вблизи этих зон 103. Отмечается влияние зоны 103 I₃ и в меньшей мере - зон 103 I₅ и I₄.

Следует отметить, что характер влияния вариаций рассмотренных
факторов. Глубина влияет только на сопротивляемость участков, очень близких к зонам 100. Абнордость зон составляет большие значения в удаленных зонах (влияет направленность основных структур). Выбор \(M_{max} \) и параметра \(b \) в модели сопротивляемости влияет на оценку сопротивляемости во всем регионе.

В общем случае при уменьшении глубины, параметра \(b \) и отношения \(A/B \) отмечается понижение периодов сопротивления сопротивления. С другой стороны, повышение этих периодов также нежелательно при уменьшении \(M_{max} \). Вариация параметров влияет не только на оценку периодов сопротивления, но и на оценку максимальной интенсивности.

Имея в виду качественное использование материалов для проведения детальной работы, можно отметить, что в будущем надо продолжать изучение опасности рассредоточенной территории в новых условиях и новых данных для оценки опасности. Результаты, полученные в этой работе, являются первыми этапами. Они должны быть продолжены последующими исследованиями.
научена сейсмичность Восточной Кубы. Рассмотрено пространственно-временное распределение гипоцентров землетрясений, механизм течения, затухание микросейсмической интенсивности, графики повторяемости землетрясений. Проведены расчеты сейсмической соотносительности, исследованы устойчивость расчетов соотносительности.

Основные результаты состоят в следующем:

1. Составлен каталог землетрясений региона, ограниченного координатами 16°-40° с.ш. и 71°-01° в.д., с 1961 по 1981 г. В таких случаях, когда не было инструментальных данных, координаты и даты были определены по микросейсмическим данным с помощью модели распределения. По данному каталогу составлены карты гипоцентров землетрясений.

2. Собраны карты изоизохон 16 землетрясений, и на их основе разработана теоретическая модель эмпирических изоизохон. Определены параметры моделей для различных участков Восточной Кубы.

3. Выделены зоны 1.03 в районе Восточной Кубы. Для каждой зоны 1.03 определены значения M_{max} и параметры сейсмического режима (a и b).

4. Предложена формула для расчетов имманентной повторяемости землетрясений, соответствующая графику повторяемости землетрясений с наибольшими областями больших магнитуд.

5. Установлены периоды повторения сейсмических событий с интенсивностью 5 и более баллов в городе Санткто-де-Куба. Рассмотрены временные интервалы между последующими сейсмическими событиями с интенсивностью 5 и более. Они подчиняются экспоненциальному закону распределения, что соответствует физическому процессу возникновения землетрясений.
6. Написана программа для расчетов сейсмичности. Для расчетов используется карта зон 103 с параметрами а, б и Мmax, а также модели процессов, дающих о повторяемости землетрясений. Программа позволяет рассчитывать средние параметры сейсмичности и вероятность повторения заданных значений интенсивности для различных интервалов времени с ожиданием (0, 50, 100, 500, 1000 и 10 000 лет).

7. Рассчитана сейсмичность Крыма и Кубы по составленной программе. Рассчитаны удовлетворительное согласие с картой сейсмического районоирования СССР.

8. Приведены расчеты сейсмической сейсмичности и сейсмической кубы. Составлены карты средних породов геофондии сейсмичности для разных интенсивностей, карта повторяемости землетрясений заданного значения интенсивности для разных периодов ожидания.

9. Для Кубы тягучая опасность представляет зону 03, расположенную непосредственно к югу от острова между городами Нагорно-де-Куа и Гунитополи.

10. Исследование устойчивость полученных оценок периодов повторения сейсмичности в 9 городах Кубы при вариациях исходных данных.

Изменение глубины сейсмической сейсмичности только в районах, очень близких к зонам 103; величины моделей в зонах 103, и т.д. изменены такие сейсмические параметры, как параметры повторяемости землетрясений, относящиеся к различным структурам: изменение параметров в зонах 103, и т.д. Изменяются параметры геофондии и они не влияют на сейсмичность всего региона; влияние этих факторов приводит к значительным изменениям сейсмичности, иногда приводит к значительным изменениям сейсмичности, иногда приводит к значительным изменениям сейсмичности, иногда приводит к значительным изменениям сейсмичности.

Диссертация является первой попыткой количественных оценок
Сейсмической активности на Кубе. В ней рассмотрена только сравнительно высокоприятная часть восточной Кубы. Остальная территория Кубы характеризуется наличием малоприятных сейсмических зон, для которых применение методов, использованных в диссертации, решение этого сложного вопроса требует проведения специальных исследований, которые выходят за рамки настоящей работы.
Литература

1. Андреев А.П., Унков С.А. Геофиозистические карты остеклонных геофизических аномалий Крымского моря. 1:4 000 000. АН УССР, Горский геофизический институт, Киевский государственный университет, Севастополь, 1977.

6. Альварес Л., Мендес Л. Сейсмичность Кубы. - ИЗВ. АН СССР, геология Земли, 1969, № 1, с. 75-76.

8. Иванов Ж.Д., Андреев Ю.Г. Модель инозерд Кавказа. - 1 кн.: Использование данных сейсмологии и геотектоники. Вычислительная сейсмология. М.: Наука, 1975, вып. 8, с. 38-54.

9. Иванов Ю.Д., Голубинская Т.С., Кейлус-Борок И.И. и др. Массовое определение механизмов сейсмов землетрясений на Земле. - В

12. Буне В.И. Использование материалов о сильных землетрясениях (K > 1) для оценок средних периодов повторяемости селевых в сейсмоактивных зонах СССР. В кн.: Сейсмические исследования для строительства. Госсейсмик, М.: Наука, 1971, вып. 14, с. 79-84.

14. Буне В.И., Нароссов И.И., Гришко В.В. Сейсмический режим. В кн.: Методы детального изучения сейсмичности. Тр. ИФЗ АН СССР, 1960, № 9 (176), с. 131-146.

15. Гельфанд Н.М., Губерман Ш.А., Лейдис-Ворок Л.И. и др. Условия возникновения сильных землетрясений (Калмиория и некоторые другие регионы). В кн.: Исследование сейсмичности и модели Земли. Вычислительная сейсмология. М.: Наука, 1976, вып. 9, с. 3-91.

16. Думля А.Б., Степаненко Н.Г. Границы ошибок в исходных параметрах на конечный результат расчета сейсмичности. - Изв. АН СССР, Физика Земли, 1972, 5 5, с. 60-64.

7. Канторович Л.Ж., Кейлос-Борок Г.Л., Колчан Г.И. Сейсмический риск и границы сейсмического районирования. - В кн.: Вычислительные и статистические методы интерпретации сейсмических данных. Вычислительная сейсмология. М.: Наука, 1973, вып. 6, с. 3-20.

8. Кейлос-Борок Г.Л., Крохан Т.Л., Колчан Г.И. Алгоритм для оценки сейсмического риска. - В кн.: Вычислительные и статистические методы интерпретации сейсмических данных. Вычислительная сейсмология. М.: Наука, 1973, вып. 6, с. 81-123.

Рыцкиенко В.Б. Расчет сейсмичности точек земной поверхности от землетрясений в окружающей области. — Изв. АН СССР, Физика Земли, 1966, № 5, с. 16—32.

Рыцкиенко В.Б. Макросейсмическая палетка. — Изв. АН СССР, Физика Земли, 1975, № 10, с. 1—30.

Рыцкиенко В.Б., Агашкин А.В., Столяренко Н.И. Сейсмичность и сейсмостойкость Керченско-Балканского региона. Кишинев: Медицина, 1976, 118 с.

55. Alvarez L. Estimación de la peligrosidad sísmica para la ciudad de Santiago de Cuba. - Inv. Sism. en Cuba, 1983, N 4, p. 87-123.

69. Chuy T. Datos macroseismicos de las Antillas Mayores.- Ini I Seminario-Taller sobre Desastres Naturales, UNDRO, 3-6 sept. 1984, Resúmenes. La Habana, 1984, p. 50-51-

78. Dean B.W., Drake Ch.L. Focal mechanism solutions and tectonics of the Middle-America arc. - J. Geology, 1978, vol. 86, N 1, p. 111-128.

84. Frankel A. Precursors to a magnitude 4.3 earthquake in
the Virgin Islands: spatial clustering of small earthquakes,
anomalous focal mechanism and earthquake doublets. - Bull.

85. Gardner J.K., Knopoff L. Is the sequence of earthquakes in
Southern California with aftershocks removed Poissonian?
- Bull. Seism. Soc. Amer., 1974, vol. 64, N 5, p. 1363-
1367.

86. Grandori E., Scirocco F. A discussion of seismic risk including
N 6, p. 2245-2251.

87. Gupta I.N., Nuttli O.W. Spatial attenuation of intensities

89. Gutenberg B., Richter C.H. Seismicity of the Earth and

90. Gutiérrez Lanza M. Conferencias de sismología publicadas
en la Academia de Ciencias de la Habana. Habana: Lloredo,
1914, 160p.

91. Hagiwara Y. A stochastic model of earthquake occurrence
and the accompanying horizontal land deformation. - Tecto-

139. Stauder W., Bollinger G.A. The S-wave project for focal
mechanism studies. - Bull. Seism. Soc. Amer., 1964, vol. 54,
N 6, p. 2199-2206.

140. Stein S., Engelk J.F., Wiens D.A. Subduction seismicity in
the Lesser Antilles arc. - J. Geophys. Res., 1982, vol. 87,
N B10, p. 6642-6654.

141. Sykes L.R., Ewing M. The seismicity of the Caribbean region.

142. Sykes L.R., Sbar M.I. Focal mechanism solution of intra-
plate earthquakes and stresses in the lithosphere. - In:
Geodynamic of Iceland and the North Atlantic area. Hingham,

143. Sykes L.R., McCann W.R., Kafka A.L. Motion of Caribbean
plate during last 7 million years and implications for
earlier Cenozoic movements. - J. Geophys. Res., vol. 87,
N B13, p. 10656-10676.

144. Tomblin J., Robson G.R. Catalogue of felt earthquakes for
Jamaica with references to other islands of the Greater

145. Topozzada T.R. Earthquake magnitude as a function of in-
tensity data in California and Western Nevada. - Bull. Seis.

146. Trifunac M.V., Brady A.G. On the correlation of seismic in-
tensity scales with the peaks of ground motion records. -

149. Vives B., Salterain P. Excursión a Vuelta Abajo de Vines y Pedro Salterain con ocasión de los fuertes temblores de tierra ocurridos en la noche del 22 al 23 de enero de 1880. La Habana. La Voz de Cuba, 1880, 68p.

<table>
<thead>
<tr>
<th>№,мес,чис. ч.м.</th>
<th>Время</th>
<th>Эпицентр</th>
<th>Глубина</th>
<th>Магнитуды</th>
<th>I<sub>max</sub></th>
<th>Источники</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ψ<sub>м</sub></td>
<td>λ<sub>W</sub></td>
<td>M<sub>LH</sub></td>
<td>m<sub>р</sub><sub>μ</sub></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>551</td>
<td></td>
<td>(19,9)</td>
<td>(76,6)</td>
<td>(7,0)</td>
<td>8</td>
<td>72</td>
</tr>
<tr>
<td>578 II</td>
<td></td>
<td>(19,9)</td>
<td>(76,0)</td>
<td>(6,75)</td>
<td>8</td>
<td>76</td>
</tr>
<tr>
<td>580</td>
<td></td>
<td>(19,9)</td>
<td>(76,0)</td>
<td>(5,75)</td>
<td>7</td>
<td>76</td>
</tr>
<tr>
<td>674 X</td>
<td></td>
<td>(19,9)</td>
<td>(76,6)</td>
<td>(6,25)</td>
<td>7</td>
<td>72</td>
</tr>
<tr>
<td>667</td>
<td></td>
<td>(17,8)</td>
<td>(77,0)</td>
<td>(6,75)</td>
<td>8</td>
<td>144</td>
</tr>
<tr>
<td>775 II II</td>
<td></td>
<td>(19,9)</td>
<td>(76,0)</td>
<td>(5,75)</td>
<td>7</td>
<td>76</td>
</tr>
<tr>
<td>778 II II 14 50</td>
<td></td>
<td>(19,9)</td>
<td>(76,0)</td>
<td>(6,75)</td>
<td>8</td>
<td>76</td>
</tr>
<tr>
<td>831</td>
<td></td>
<td>(19,9)</td>
<td>(76,0)</td>
<td>(5,75)</td>
<td>7</td>
<td>72</td>
</tr>
<tr>
<td>877 II 17 13 00</td>
<td></td>
<td>(17,6)</td>
<td>(77,0)</td>
<td>(4,75)</td>
<td>6</td>
<td>144</td>
</tr>
<tr>
<td>893 III 01</td>
<td></td>
<td>(17,6)</td>
<td>(76,8)</td>
<td>(5,5)</td>
<td>7</td>
<td>144</td>
</tr>
<tr>
<td>95 XI 07 16 40</td>
<td></td>
<td>(17,6)</td>
<td>(76,8)</td>
<td>(7,5)</td>
<td>10</td>
<td>144</td>
</tr>
<tr>
<td>10 XI 09</td>
<td></td>
<td>(18,7)</td>
<td>(72,3)</td>
<td>(30)</td>
<td>(6,1)</td>
<td>7</td>
</tr>
<tr>
<td>11 IX 16 03 00</td>
<td></td>
<td>(18,6)</td>
<td>(72,3)</td>
<td>(30)</td>
<td>(6,8)</td>
<td>9</td>
</tr>
<tr>
<td>11 XI 2 I 13 00</td>
<td></td>
<td>(18,6)</td>
<td>(72,3)</td>
<td>(30)</td>
<td>(6,5)</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>(18,5)</td>
<td>(71,3)</td>
<td>(30)</td>
<td>(5,4)</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>(18,5)</td>
<td>(71,3)</td>
<td>(30)</td>
<td>(5,0)</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>(18,5)</td>
<td>(71,3)</td>
<td>(30)</td>
<td>(5,0)</td>
<td>6</td>
</tr>
<tr>
<td>97 XII 14 16 15</td>
<td></td>
<td>(19,9)</td>
<td>(76,0)</td>
<td>(5,15)</td>
<td>6</td>
<td>*</td>
</tr>
<tr>
<td>98 VII II</td>
<td></td>
<td>(19,9)</td>
<td>(76,0)</td>
<td>(6,75)</td>
<td>8</td>
<td>*</td>
</tr>
<tr>
<td>92 XII 08</td>
<td></td>
<td>(17,8)</td>
<td>(76,8)</td>
<td>(4,5)</td>
<td>6</td>
<td>144</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>(19,9)</td>
<td>(76,0)</td>
<td>(5,75)</td>
<td>7</td>
<td>*</td>
</tr>
<tr>
<td>96 VI 30</td>
<td></td>
<td>(18,5)</td>
<td>(71,3)</td>
<td>(30)</td>
<td>(6,1)</td>
<td>8</td>
</tr>
<tr>
<td>96 VI 12 04 45</td>
<td></td>
<td>(19,9)</td>
<td>(76,1)</td>
<td>(7,5)</td>
<td>9</td>
<td>76</td>
</tr>
<tr>
<td>90 VI 04 00 15</td>
<td></td>
<td>(18,6)</td>
<td>(72,6)</td>
<td>(30)</td>
<td>(7,5)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1771</td>
<td>1</td>
<td>X</td>
<td>1</td>
<td>I</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>1776</td>
<td>2</td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1765</td>
<td>3</td>
<td>X</td>
<td>I</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1757</td>
<td>4</td>
<td>X</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1811</td>
<td>5</td>
<td>X</td>
<td>I</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1818</td>
<td>6</td>
<td>X</td>
<td>I</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1844</td>
<td>7</td>
<td>I</td>
<td>I</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1866</td>
<td>8</td>
<td>I</td>
<td>I</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1887</td>
<td>9</td>
<td>I</td>
<td>I</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2136</td>
<td>10</td>
<td>I</td>
<td>I</td>
<td>55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* * *
<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>18</td>
<td>II</td>
<td>22</td>
<td>(18,5)</td>
<td>(78,9)</td>
<td>(4,75)</td>
</tr>
<tr>
<td>III</td>
<td>20</td>
<td>I9</td>
<td>29</td>
<td>19,0</td>
<td>80,0</td>
<td>7,4</td>
</tr>
<tr>
<td>IV</td>
<td>16</td>
<td>I3</td>
<td>27</td>
<td>19,0</td>
<td>80,0</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>08</td>
<td>I0</td>
<td>48</td>
<td>20,0</td>
<td>78,0</td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>25</td>
<td>I8</td>
<td>I7</td>
<td>(18,1)</td>
<td>(77,1)</td>
<td>(4,75)</td>
</tr>
<tr>
<td>XI</td>
<td>03</td>
<td>08</td>
<td>37</td>
<td>19,5</td>
<td>73,5</td>
<td>6,0</td>
</tr>
<tr>
<td>V</td>
<td>30</td>
<td>20</td>
<td>54</td>
<td>20,0</td>
<td>77,5</td>
<td>5,6</td>
</tr>
<tr>
<td>V</td>
<td>27</td>
<td>10</td>
<td>13</td>
<td>17,5</td>
<td>72,5</td>
<td>(5,7)</td>
</tr>
<tr>
<td>VIII</td>
<td>03</td>
<td>II</td>
<td>30</td>
<td>(20,4)</td>
<td>(77,1)</td>
<td>(4,5)</td>
</tr>
<tr>
<td>VII</td>
<td>08</td>
<td>04</td>
<td>00</td>
<td>(19,9)</td>
<td>(76,0)</td>
<td>(4,75)</td>
</tr>
<tr>
<td>I</td>
<td>17</td>
<td>12</td>
<td>00</td>
<td>(19,9)</td>
<td>(75,8)</td>
<td>(5,4)</td>
</tr>
<tr>
<td>III</td>
<td>21</td>
<td>75</td>
<td>35</td>
<td>(17,9)</td>
<td>(77,2)</td>
<td>(5,0)</td>
</tr>
<tr>
<td>VII</td>
<td>27</td>
<td>20</td>
<td>45</td>
<td>(17,8)</td>
<td>(77,4)</td>
<td>(5,0)</td>
</tr>
<tr>
<td>II</td>
<td>03</td>
<td>06</td>
<td>16</td>
<td>19,7</td>
<td>75,5</td>
<td>6,75</td>
</tr>
<tr>
<td>I</td>
<td>03</td>
<td>09</td>
<td>16</td>
<td>19,7</td>
<td>75,5</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>06</td>
<td>09</td>
<td>12</td>
<td>19,6</td>
<td>76,5</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>06</td>
<td>11</td>
<td>50</td>
<td>19,6</td>
<td>76,5</td>
<td>6,0</td>
</tr>
<tr>
<td>VII</td>
<td>06</td>
<td>15</td>
<td>07</td>
<td>19,3</td>
<td>73,4</td>
<td>5,6</td>
</tr>
<tr>
<td>VII</td>
<td>29</td>
<td>13</td>
<td>47</td>
<td>(18,0)</td>
<td>(76,4)</td>
<td>(4,5)</td>
</tr>
<tr>
<td>I</td>
<td>12</td>
<td>04</td>
<td>30</td>
<td>(19,9)</td>
<td>(75,6)</td>
<td>(4,75)</td>
</tr>
<tr>
<td>VII</td>
<td>10</td>
<td>01</td>
<td>02</td>
<td>19,6</td>
<td>70,5</td>
<td>(5,6)</td>
</tr>
<tr>
<td>III</td>
<td>05</td>
<td>22</td>
<td>15</td>
<td>(19,9)</td>
<td>(75,8)</td>
<td>(4,8)</td>
</tr>
<tr>
<td>III</td>
<td>13</td>
<td>20</td>
<td>00</td>
<td>(19,8)</td>
<td>(76,2)</td>
<td>(4,8)</td>
</tr>
<tr>
<td>III</td>
<td>10</td>
<td>15</td>
<td>23</td>
<td>20,75</td>
<td>74,0</td>
<td>5,6</td>
</tr>
<tr>
<td>VII</td>
<td>II</td>
<td>07</td>
<td>00</td>
<td>(21,8)</td>
<td>(80,1)</td>
<td>(4,3)</td>
</tr>
<tr>
<td>VII</td>
<td>15</td>
<td>05</td>
<td>52</td>
<td>22,5</td>
<td>79,25</td>
<td>5,6</td>
</tr>
<tr>
<td>VII</td>
<td>07</td>
<td>15</td>
<td>43</td>
<td>18,0</td>
<td>72,5</td>
<td>5,6</td>
</tr>
<tr>
<td>III</td>
<td>30</td>
<td>16</td>
<td>05</td>
<td>19,4</td>
<td>75,1</td>
<td>(5,6)</td>
</tr>
<tr>
<td>II</td>
<td>22</td>
<td></td>
<td></td>
<td>(19,8)</td>
<td>(76,2)</td>
<td>(4,9)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>I</td>
<td>24</td>
<td>12</td>
<td>45</td>
<td>74</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>09</td>
<td>09</td>
<td>56</td>
<td>72</td>
<td>54</td>
<td>6</td>
</tr>
<tr>
<td>III</td>
<td>01</td>
<td>20</td>
<td>28</td>
<td>71</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>IV</td>
<td>01</td>
<td>18</td>
<td>04</td>
<td>76</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>V</td>
<td>25</td>
<td>10</td>
<td>15</td>
<td>78</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>VI</td>
<td>02</td>
<td>00</td>
<td>27</td>
<td>78</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>VII</td>
<td>16</td>
<td>12</td>
<td>46</td>
<td>75</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>VIII</td>
<td>14</td>
<td>03</td>
<td>24</td>
<td>72</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>IX</td>
<td>07</td>
<td>23</td>
<td>45</td>
<td>77</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>X</td>
<td>13</td>
<td>15</td>
<td>33</td>
<td>77</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XI</td>
<td>31</td>
<td>05</td>
<td>36</td>
<td>80</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XII</td>
<td>08</td>
<td>15</td>
<td>55</td>
<td>78</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XIII</td>
<td>19</td>
<td>13</td>
<td>46</td>
<td>71</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XIV</td>
<td>19</td>
<td>06</td>
<td>07</td>
<td>71</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XV</td>
<td>22</td>
<td>00</td>
<td>10</td>
<td>75</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XVI</td>
<td>20</td>
<td>05</td>
<td>47</td>
<td>72</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XVII</td>
<td>19</td>
<td>05</td>
<td>47</td>
<td>77</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XVIII</td>
<td>22</td>
<td>21</td>
<td>14</td>
<td>71</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XIX</td>
<td>23</td>
<td>12</td>
<td>09</td>
<td>73</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XX</td>
<td>18</td>
<td>13</td>
<td>09</td>
<td>71</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XXI</td>
<td>22</td>
<td>21</td>
<td>28</td>
<td>78</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XXII</td>
<td>25</td>
<td>21</td>
<td>29</td>
<td>71</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XXIII</td>
<td>08</td>
<td>20</td>
<td>06</td>
<td>74</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XXIV</td>
<td>09</td>
<td>23</td>
<td>26</td>
<td>73</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XXV</td>
<td>21</td>
<td>07</td>
<td>23</td>
<td>71</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XXVI</td>
<td>12</td>
<td>10</td>
<td>31</td>
<td>72</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XXVII</td>
<td>16</td>
<td>09</td>
<td>20</td>
<td>77</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XXVIII</td>
<td>07</td>
<td>04</td>
<td>43</td>
<td>71</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>XXIX</td>
<td>19</td>
<td>12</td>
<td>41</td>
<td>73</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>колонка</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6 х 17</td>
<td>17</td>
<td>45</td>
<td>19,33</td>
<td>.75,37</td>
<td>33</td>
<td>4,1</td>
</tr>
<tr>
<td>7 7 24</td>
<td>02</td>
<td>29</td>
<td>17,74</td>
<td>78,74</td>
<td>28</td>
<td>3,4</td>
</tr>
<tr>
<td>7 7 24</td>
<td>11</td>
<td>14</td>
<td>17,61</td>
<td>78,62</td>
<td>33</td>
<td>4,8</td>
</tr>
<tr>
<td>7 7 30</td>
<td>09</td>
<td>52</td>
<td>18,62</td>
<td>79,55</td>
<td>35</td>
<td>3,0</td>
</tr>
<tr>
<td>7 IX 03</td>
<td>15</td>
<td>33</td>
<td>18,35</td>
<td>71,15</td>
<td>30</td>
<td>4,5</td>
</tr>
<tr>
<td>8 I 18</td>
<td>03</td>
<td>04</td>
<td>18,69</td>
<td>75,36</td>
<td>13</td>
<td>4,9</td>
</tr>
<tr>
<td>8 II 26</td>
<td>05</td>
<td>07</td>
<td>18,17</td>
<td>76,45</td>
<td>15</td>
<td>3,9</td>
</tr>
<tr>
<td>8 IV 09</td>
<td>04</td>
<td>58</td>
<td>18,61</td>
<td>73,21</td>
<td>33</td>
<td>3,5</td>
</tr>
<tr>
<td>8 XI 13</td>
<td>07</td>
<td>43</td>
<td>19,84</td>
<td>76,05</td>
<td>33</td>
<td>4,7</td>
</tr>
<tr>
<td>9 U 03</td>
<td>03</td>
<td>44</td>
<td>19,27</td>
<td>79,02</td>
<td>33</td>
<td>4,9</td>
</tr>
<tr>
<td>9 II 08</td>
<td>20</td>
<td>38</td>
<td>19,67</td>
<td>75,51</td>
<td>33</td>
<td>4,2</td>
</tr>
<tr>
<td>9 IV 25</td>
<td>13</td>
<td>47</td>
<td>20,19</td>
<td>73,33</td>
<td>33</td>
<td>4,5</td>
</tr>
<tr>
<td>9 XI 16</td>
<td>09</td>
<td>44</td>
<td>18,14</td>
<td>76,2</td>
<td>10</td>
<td>122</td>
</tr>
<tr>
<td>1 P 15</td>
<td>07</td>
<td>52</td>
<td>18,42</td>
<td>76,78</td>
<td>10</td>
<td>122</td>
</tr>
<tr>
<td>1 XII 15</td>
<td>10</td>
<td>23</td>
<td>18,06</td>
<td>76,79</td>
<td>17</td>
<td>122</td>
</tr>
<tr>
<td>1 II 26</td>
<td>23</td>
<td>37</td>
<td>18,13</td>
<td>76,79</td>
<td>16</td>
<td>96</td>
</tr>
<tr>
<td>1 III 24</td>
<td>04</td>
<td>17</td>
<td>18,04</td>
<td>77,55</td>
<td>10</td>
<td>122</td>
</tr>
<tr>
<td>1 IV 16</td>
<td>17</td>
<td>07</td>
<td>18,11</td>
<td>76,75</td>
<td>25</td>
<td>96</td>
</tr>
<tr>
<td>1 U 18</td>
<td>11</td>
<td>04</td>
<td>18,07</td>
<td>76,78</td>
<td>33</td>
<td>96</td>
</tr>
<tr>
<td>1 U 24</td>
<td>19</td>
<td>25</td>
<td>19,70</td>
<td>75,39</td>
<td>33</td>
<td>4,6</td>
</tr>
</tbody>
</table>

Данные, любезно предоставленные Т. Чуй из Института Геофизики и Астрономии АН Кубы.
<table>
<thead>
<tr>
<th>Дата</th>
<th>Время</th>
<th>Эпицентр</th>
<th>d</th>
<th>Магнитуда</th>
<th>качество</th>
<th>Ось</th>
</tr>
</thead>
<tbody>
<tr>
<td>год, месяц</td>
<td>ч., мин.</td>
<td>ϕ</td>
<td>λ</td>
<td>h</td>
<td>m_{pu}</td>
<td>I_{Hv}</td>
</tr>
<tr>
<td>64 10 23</td>
<td>01 56</td>
<td>19.80 56.11</td>
<td>43</td>
<td>6.2</td>
<td>B</td>
<td>310</td>
</tr>
<tr>
<td>66 3 23</td>
<td>05 11</td>
<td>16.77 85.87</td>
<td>33</td>
<td>5.1</td>
<td>C</td>
<td>214</td>
</tr>
<tr>
<td>66 11 3</td>
<td>16 24</td>
<td>19.17 67.92</td>
<td>22</td>
<td>5.7</td>
<td>6.0</td>
<td>A</td>
</tr>
<tr>
<td>67 7 29</td>
<td>10 24</td>
<td>6.84 73.09</td>
<td>100</td>
<td>5.9</td>
<td>6.0</td>
<td>A</td>
</tr>
<tr>
<td>67 7 30</td>
<td>00 00</td>
<td>10.68 67.40</td>
<td>26</td>
<td>5.7</td>
<td>6.6</td>
<td>A</td>
</tr>
<tr>
<td>67 12 24</td>
<td>20 03</td>
<td>17.42 61.19</td>
<td>42</td>
<td>6.1</td>
<td>6.4</td>
<td>B+</td>
</tr>
<tr>
<td>68 9 3</td>
<td>15 37</td>
<td>20.58 62.30</td>
<td>34</td>
<td>5.6</td>
<td>5.9</td>
<td>B+</td>
</tr>
<tr>
<td>68 9 20</td>
<td>06 00</td>
<td>10.76 62.70</td>
<td>103</td>
<td>6.2</td>
<td>6.4</td>
<td>B+</td>
</tr>
<tr>
<td>69 5 15</td>
<td>20 43</td>
<td>16.75 61.79</td>
<td>57</td>
<td>5.7</td>
<td>B-</td>
<td>51</td>
</tr>
<tr>
<td>69 12 25</td>
<td>21 32</td>
<td>15.79 59.64</td>
<td>1</td>
<td>6.4</td>
<td>7.2</td>
<td>A</td>
</tr>
<tr>
<td>73 8 30</td>
<td>18 25</td>
<td>7.24 72.85</td>
<td>179</td>
<td>5.7</td>
<td>B-</td>
<td>220</td>
</tr>
<tr>
<td>74 10 8</td>
<td>09 50</td>
<td>17.37 61.99</td>
<td>41</td>
<td>6.4</td>
<td>7.3</td>
<td>A</td>
</tr>
<tr>
<td>76 2 19</td>
<td>13 59</td>
<td>19.87 76.87</td>
<td>15</td>
<td>5.3</td>
<td>5.7</td>
<td>B+</td>
</tr>
<tr>
<td>78 12 6</td>
<td>13 28</td>
<td>14.44 54.83</td>
<td>11</td>
<td>5.4</td>
<td>5.7</td>
<td>B+</td>
</tr>
<tr>
<td>70 7 8</td>
<td>04 49</td>
<td>18.00 64.67</td>
<td>148</td>
<td>5.8</td>
<td>B-</td>
<td>341</td>
</tr>
<tr>
<td>71 6 11</td>
<td>12 56</td>
<td>18.02 69.79</td>
<td>35</td>
<td>6.0</td>
<td>6.4</td>
<td>B+</td>
</tr>
<tr>
<td>72 9 19</td>
<td>01 36</td>
<td>19.55 70.22</td>
<td>0</td>
<td>5.8</td>
<td>6.0</td>
<td>C</td>
</tr>
<tr>
<td>76 2 8</td>
<td>08 13</td>
<td>15.69 88.54</td>
<td>5</td>
<td>5.1</td>
<td>5.8</td>
<td>B-</td>
</tr>
<tr>
<td>77 8 31</td>
<td>00 42</td>
<td>7.38 76.21</td>
<td>30</td>
<td>5.7</td>
<td>6.4</td>
<td>B-</td>
</tr>
<tr>
<td>79 1 14</td>
<td>19 20</td>
<td>6.77 73.00</td>
<td>175</td>
<td>5.0</td>
<td>3.3</td>
<td>B-</td>
</tr>
<tr>
<td>79 1 22</td>
<td>04 25</td>
<td>19.10 64.70</td>
<td>51</td>
<td>5.1</td>
<td>5.1</td>
<td>B-</td>
</tr>
<tr>
<td>79 2 10</td>
<td>23 52</td>
<td>6.73 73.00</td>
<td>168</td>
<td>5.0</td>
<td>B-</td>
<td>181</td>
</tr>
<tr>
<td>79 3 11</td>
<td>12 16</td>
<td>6.75 73.01</td>
<td>169</td>
<td>5.1</td>
<td>4.8</td>
<td>B-</td>
</tr>
<tr>
<td>79 5 5</td>
<td>20 04</td>
<td>8.43 70.91</td>
<td>8</td>
<td>5.4</td>
<td>4.9</td>
<td>B+</td>
</tr>
<tr>
<td>79 5 5</td>
<td>20 08</td>
<td>8.48 70.99</td>
<td>34</td>
<td>5.2</td>
<td>4.2</td>
<td>C</td>
</tr>
<tr>
<td>79 5 21</td>
<td>20 21</td>
<td>6.69 73.37</td>
<td>53</td>
<td>5.2</td>
<td>5.2</td>
<td>B+</td>
</tr>
<tr>
<td>10 9 2</td>
<td>10 28</td>
<td>15.95 88.30</td>
<td>27</td>
<td>5.2</td>
<td>4.8</td>
<td>B+</td>
</tr>
</tbody>
</table>

ϕ, λ - Азимут, Y_{ri} - угол падения (с горизонтальным направлением).
определяемые в 3.2.

<table>
<thead>
<tr>
<th>Аз</th>
<th>(Y_p)</th>
<th>Аз</th>
<th>(Y_p)</th>
<th>Аз</th>
<th>(Y_p)</th>
<th>Аз</th>
<th>(Y_p)</th>
<th>Источники</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>60</td>
<td>47</td>
<td>17</td>
<td>144</td>
<td>21</td>
<td>284</td>
<td>60</td>
<td>102, 114, 140</td>
</tr>
<tr>
<td>44</td>
<td>60</td>
<td>305</td>
<td>4</td>
<td>37</td>
<td>17</td>
<td>205</td>
<td>69</td>
<td>114</td>
</tr>
<tr>
<td>101</td>
<td>65</td>
<td>319</td>
<td>15</td>
<td>58</td>
<td>30</td>
<td>209</td>
<td>52</td>
<td>102, 114</td>
</tr>
<tr>
<td>24</td>
<td>63</td>
<td>246</td>
<td>21</td>
<td>347</td>
<td>25</td>
<td>123</td>
<td>56</td>
<td>57, 95, 114</td>
</tr>
<tr>
<td>324</td>
<td>6</td>
<td>75</td>
<td>74</td>
<td>279</td>
<td>14</td>
<td>188</td>
<td>6</td>
<td>57, 114, 131</td>
</tr>
<tr>
<td>149</td>
<td>22</td>
<td>8</td>
<td>62</td>
<td>107</td>
<td>55</td>
<td>199</td>
<td>27</td>
<td>58, 140</td>
</tr>
<tr>
<td>96</td>
<td>17</td>
<td>328</td>
<td>63</td>
<td>144</td>
<td>27</td>
<td>235</td>
<td>2</td>
<td>142</td>
</tr>
<tr>
<td>235</td>
<td>47</td>
<td>65</td>
<td>41</td>
<td>181</td>
<td>27</td>
<td>297</td>
<td>35</td>
<td>99, 122</td>
</tr>
<tr>
<td>285</td>
<td>14</td>
<td>192</td>
<td>16</td>
<td>93</td>
<td>27</td>
<td>304</td>
<td>52</td>
<td>58, 140</td>
</tr>
<tr>
<td>204</td>
<td>83</td>
<td>330</td>
<td>4</td>
<td>66</td>
<td>51</td>
<td>237</td>
<td>39</td>
<td>58, 140</td>
</tr>
<tr>
<td>102</td>
<td>24</td>
<td>355</td>
<td>35</td>
<td>256</td>
<td>13</td>
<td>147</td>
<td>53</td>
<td>119</td>
</tr>
<tr>
<td>338</td>
<td>62</td>
<td>75</td>
<td>4</td>
<td>177</td>
<td>72</td>
<td>344</td>
<td>17</td>
<td>58, 140</td>
</tr>
<tr>
<td>143</td>
<td>62</td>
<td>350</td>
<td>22</td>
<td>93</td>
<td>30</td>
<td>233</td>
<td>49</td>
<td>56</td>
</tr>
<tr>
<td>20</td>
<td>49</td>
<td>237</td>
<td>34</td>
<td>339</td>
<td>17</td>
<td>94</td>
<td>50</td>
<td>140</td>
</tr>
<tr>
<td>149</td>
<td>69</td>
<td>250</td>
<td>3</td>
<td>346</td>
<td>62</td>
<td>158</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>45</td>
<td>242</td>
<td>45</td>
<td>15</td>
<td>34</td>
<td>123</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>59</td>
<td>5</td>
<td>15</td>
<td>99</td>
<td>16</td>
<td>241</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>24</td>
<td>73</td>
<td>15</td>
<td>259</td>
<td>38</td>
<td>167</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>46</td>
<td>181</td>
<td>20</td>
<td>339</td>
<td>68</td>
<td>89</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>8</td>
<td>1</td>
<td>20</td>
<td>258</td>
<td>34</td>
<td>115</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>11</td>
<td>185</td>
<td>41</td>
<td>47</td>
<td>40</td>
<td>296</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>44</td>
<td>286</td>
<td>20</td>
<td>17</td>
<td>3</td>
<td>132</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>14</td>
<td>67</td>
<td>34</td>
<td>322</td>
<td>21</td>
<td>199</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>68</td>
<td>60</td>
<td>17</td>
<td>174</td>
<td>54</td>
<td>320</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>22</td>
<td>139</td>
<td>30</td>
<td>38</td>
<td>17</td>
<td>289</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>2</td>
<td>201</td>
<td>44</td>
<td>75</td>
<td>31</td>
<td>322</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>334</td>
<td>67</td>
<td>88</td>
<td>9</td>
<td>195</td>
<td>62</td>
<td>354</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>