Se estudian diferentes problemas relacionados con la Formación El Cobre, unidad litoestratigráfica muy extendida en las provincias orientales. El autor expone sus puntos de vista sobre cuatro temas diferentes, a saber:

1) Edad de la base de la Fm. El Cobre,
2) Condiciones bajo las cuales se acumuló,
3) Extensión geográfica de la formación y correlación con secuencias similares,
4) Alteración regional de las tablas vitroclásticas.

Desde que fue definida por Taber en 1934, las capas de la Fm. El Cobre (originalmente Cobre) han sido estudiadas por numerosos geólogos, gracias a los cuales se ha obtenido una idea bastante precisa de las características de estas secuencias de rocas en distintas regiones de Cuba oriental. Entre estas investigaciones merecen citarse las de Keijzer (1945), Lewis y Straczek (1955) y Adamovich et. al. (1963), en cuyos trabajos de mapeo regional se dedica considerable atención a estas capas.

Sobre las condiciones en las cuales ocurrió la acumulación de las rocas de la formación tienen particu

Existen no obstante lo anterior, varios puntos particularmente conflictivos o de especial interés en el estudio de la Fm. El Cobre.

En nuestra opinión, algunos de ellos son los siguientes:

1) Edad de la base de la Fm. Cobre.
2) Condiciones bajo las cuales se acumuló.
3) Extensión geográfica y correlación con otras secuencias.
4) Alteración regional de las tobas vitroclásticas.

El objetivo del presente artículo es discutir sucientemente estos problemas.

En nuestro trabajo emplearemos el término formación en una acepción lithoestratigráfica y no en el sentido de asociación paragenética de Sokolova et al. (1974), si bien, la secuencia de rocas estudiada por dichos autores es aproximadamente la misma que aquí denominamos Fm. El Cobre.

Como Fm. El Cobre el autor entiende la secuencia del Paleógeno Inferior compuesta por rocas vulcánógéneas (lavas y rocas piroclásticas de composición predominante andesítica y basáltica), sedimentos tobasceos de distinta granulometría, calizas y margas, con las menas de óxidos de manganoso asociadas a ellas. La formación ocupa parte considerable del territorio de las provincias orientales y áreas adyacentes. En la presente definición no están incluidas las capas calcáreas del Eoceno Medio (que pueden llegar al Eoceno Superior localmente) que recubren en gran parte de su extensión a las capas de la Fm. El Cobre, las cuales consideramos que deben agruparse en la Fm. Charco Redondo.

Algunos geólogos han propuesto denominar el corte Fm. El Cobre (con las dimensiones del presente trabajo) + Fm. Charco Redondo como Grupo El Cobre. Indiscutiblemente, debido a sus estrechas relaciones es aconsejable reunir ambas formaciones en una unidad mayor, pero, conservando el nombre de Fm. El Cobre para la secuencia inferior con predominio del material vulcánógéneo. El nuevo grupo así creado podría denominarse, por ejemplo, Sierra Maestra, pues gran parte de esas montañas están labradas sobre las capas de las formaciones El Cobre y Charco Redondo.

Pasaremos a discutir cada uno de los puntos antes citados.

Edad de la base de la Fm. El Cobre.

Dejando a un lado los aspectos históricos de este problema, en la actualidad se mantienen dos puntos de vista sobre la edad de la base de la Fm. El Cobre. Estos son:

a) La base de la Fm. El Cobre pertenece al Cretácico Superior y la formación es el producto de una actividad volcánica ininterrumpida que se extendió desde fines del Cretácico al Eoceno.

b) Las capas de la base de la Fm. El Cobre no son más antiguas que el Paleoceno Inferior.

De acuerdo a los datos de campo, a nuestra disposición y a la bibliografía, tanto en la Sierra Maestra, en el sur (Furrazola et al. 1976; Kozary, 1956; Lewis, 1956), como en Sierra Cristal, en el norte (Cobbiela, 1974, 1978, Iturralde — Vinent, 1976-77), los depósitos del Cretácico Superior más alto (Campañano y Maestríchtiano) y del Paleoceno basal, están representados por secuencias terrigenas, sin intercalaciones apreciables de rocas vulcanógenas. No existen razones, por tanto, para unir las rocas vulcanógenas paleogénicas con las cretácicas en una sola unidad litosíatigráfica en Cuba oriental.

En aquellos puntos, como en el sur de la Sierra Cristal, donde la sedimentación se extendió ininterrumpidamente desde fines del Cretárico hasta mediados del Paleógeno, la Fm. El Cobre descansa sobre los sedimentos terrígenos carbonatados de la Fm. Gran Tierra (Iturralde — Vinent, 1976-77) del Paleoceno Inferior. En Cananova, situada al oeste de Moa, la formación contiene una abundante fauna de foraminíferos del Paleoceno Inferior en sus capas basales, que descansan discordantes sobre la Fm. Micaela. Formas del Paleoceno Superior son reportadas por Iturralde Vinent (1976-77) cerca de la base de la unidad. Furrazola et al. (1976) indican una edad Paleoceno-Eoceno Inferior para las capas basales en la Sierra Maestra.

Por otra parte, a inicios del Eoceno y, fundamentalmente, a comienzos del Eoceno Medio, la cuestión que se acumulaban las capas de la Fm. El Cobre se expandió y, por ello, en el flanco sur de la Sierra de Nipe (Adamovich et al., 1963), en la Sierra de Yateras (Cobbiela et al., en prensa), al sur de Baracoa (Cordovés, 1978) y en otras localidades, la base de la formación no es más antigua que el Eoceno.
Concluyendo, podemos afirmar que en ninguna localidad las capas de la Fm. El Cobre son más antiguas que en el Paleoceno Inferior y que, en muchas áreas, su base pertenece al Eoceno Inferior o Medio.

Condiciones en las cuales se acumularon las rocas de la Fm. El Cobre.

Como en el punto anterior existen dos corrientes de opinión sobre las condiciones en que se originaron las capas de la Fm. El Cobre. Ambas conciernen en que el volcanismo simultáneo con la acumulación de la formación transcurrió casi exclusivamente en condiciones marinas pero, la primera y más antigua de estas corrientes, sostenida, entre otros, por Lewis y Straczek (1955) y Sokolova et. al. (1974) plantea que la unidad se acumuló en condiciones neríticas, en tanto que, más recientemente, diversos geólogos han supuesto la acumulación de las capas de la formación en aguas profundas, batólitas (Breznitsyna — Irrhalde — Vincent, 1978; Cobbiella et. al, 1977, Cobbiella, 1978; Kumpe, 1963).

Los defensores de la acumulación en aguas someras se basan en distintos argumentos, el principal de los cuales es la existencia de sedimentos con fauna fósil de aguas someras en diferentes localidades y posiciones estratigráficas.

El autor ha tenido la oportunidad de estudiar detenidamente numerosos cortes de la Fm. El Cobre. Un porcentaje considerable de ellos está constituido por depósitos con típicas características turbiditicas. (Fig: 1) Esas turbiditas pueden ser depositadas a partir de corrientes turbias, originadas durante las erupciones explosivas submarinas, tal como ha planteado-lturalde—Vincent (1976/77) o por deslizamientos en las laderas de los volcanes submarinos, motivadas por la actividad sísmica, o por la acumulación invisible en grandes volúmenes de materiales volcánicos.

Además, es bastante abundante en la formación, las capas con estratificación contorsionada o depósitos de naturaleza olistostromática que, posiblemente, algunos investigadores de los años 40 y 50 confundieron con aglomerados y brechas volcánicas.

Las turbiditas y olistostromas son acumulaciones típicas de las grandes profundidades. Esto, unido a la presencia de calizas formadas casi exclusivamente portestes de foraminíferos planctónicos, probables equivalentes de los fangos globigerinas de los marés actuales, permite suponer, con un buen margen de confiabilidad, que la Fm. El Cobre se acumuló, fundamentalmente, en condiciones batólitas, en una cuenca marina de salinidad normal.

Figura 1 —

Esquema de turbidita en la Fm. El Cobre en corte en la Autopista Nacional, al este de Bonito. Además de una marca estratificación gradacional hacia la parte superior del rítm se desarrolla laminación y estratificación contorsionada. En muchas localidades se suceden centenarios de estos ritmos, dándole a la secuencia el aspecto de un flysch. En negro se señala una concreción de material clorítico.

La presencia de capas con fauna fósil nerítica puede explicarse fácilmente si se toma en cuenta el hecho de que esta fauna ha sido hallada, en su casi totalidad, en sedimentos detríticos y que, por ello, es redespuestos. Las investigaciones oceanológicas de las últimas décadas han mostrado, en cambio, formas de depósito con formas neríticas a miles de metros de profundidad debido a la acción de corrientes turbias.

Por último, es difícil de imaginar la cuenca volcánica nerítica, es decir con profundidades inferiores a los 200 m, que plantean los defensores de la acumulación de la Fm. El Cobre en aguas someras, admitiendo, además, que estos volcanes raros veces sobresalen por sobre el nivel de las aguas. Habría que suponer una cuenca de relieve poco diferenciado sobre cuyo fondo se elevaban pequeños volcanes de menos de 200 metros de altura. No conocemos de ningún caso moderno similar y dudamos que se haya presentado en el pasado geológico en un área extensa.

Extensión geográfica de la Fm. El Cobre y correlación con otras secuencias.

En la década del 60 se suponía que las capas atribuibles a la Fm. El Cobre se extendían sólo por la parte
central y meridional de la antigua provincia de Oriente, en el Golfo de Guacanayabo y en pequeñas áreas al sur de Camaguey.

Brezsnyanszky e Iturralde — Vinent (1978) indican su existencia en las provincias de Las Tunas y el oeste de Holguín, donde antes no se había reportado. Todos estos hallazgos amplían considerablemente nuestras ideas sobre el área donde se acumuló la formación.

En Haití se presentan capas de rocas volcánicas y vulcanógeno-sedimentarias en la península del noroeste y las Montañas Negras (Butterlin, 1958), las cuales tienen una edad Eoceno Inferior y Medio, han sido incluidas dentro de la Fm. Perodin. Entre Cuba y estas regiones de Haití se extiende hoy la fosa de Bartlett, pero ésta es una estructura originada a partir del Mioceno (Cobiella, en impresa), es decir aquí, posterior a la acumulación de la Fm. El Cobre y, por tanto, es lógico pensar que ambas unidades se depositaron en una misma cuenca. Este argumento se refuerza por la presencia de la Fm. El Cobre, como alóctono, en Cajobabo, emplazada desde el sur. Cajobabo se encuentra a mitad de camino entre la Sierra Maestra y la península del Noroeste de Haití.

Las investigaciones de los geólogos de la Academia de Ciencias en la antigua provincia de las Villas (en Millán, 1978) reportan la presencia de algunas tobas intercaladas entre los sedimentos del Paleoceno al Eoceno Medio en la mitad meridional de dicho territorio, lo cual debe indicar la existencia de focos volcánicos de esa edad en el área inmediatamente al sur de Cuba central.

Recentemente han sido publicados algunos datos sobre el hallazgo de vulcanitas en la cresta de Caimán, la cual es morfológicamente la prolongación de la Sierra Maestra en el Caribe (Jain 1975; Perfit y Heezen 1978). Esto, unido al hallazgo de granodioritas en muestras de dragado, indica que dicha cresta es también geolóxicamente muy similar a la Sierra Maestra. De esta norma, las rocas de la Fm. El Cobre, u otra secuencia vulcanógena correlacionable, se extienden posiblemente hasta la cresta de Caimán.

Por último se conocen rocas vulcanógenas del Paleoceno Inferior en Jamaica (Krijnen y Lee Chin, 1978).

Todos estos datos permiten suponer que las capas de la Fm. El Cobre constituyen una parte, considerable por su volumen, de una gran secuencia vulcanógeno-sedimentaria, acumulada en la primera mitad del Paleógeno, en la parte central de las Grandes Antillas.

Alteración regional de las tobas vitroclásticas.

En los últimos años las investigaciones de Alexiev, Coutin y Brito sobre las rocas zeolitzadas de Cuba han llamado la atención sobre un grupo de rocas que posee en nuestro país una distribución geográfica relativamente amplia (Alexiev et al., 1971; Coutin y Brito, 1975).

En las provincias orientales una porción considerable de las tobas vitroclásticas de la Fm. El Cobre han sido alteradas a rocas morillonizadas (bentonitas) y zeolitzadas, (Fig. 2) Estas son rocas muy ligeras, de colores claros, que rompen fácilmente y que a veces resultan tan blandas que los campesinos de algunas regiones las moldean para hacer recipientes. Cuando en ellas hay cristaloclastos de plagioclasa u otros minerales, estos se conservan frescos, no alterados (Orozco, 1975). En algunas tobas aglomeráticas puede observarse que, en tanto la matriz vitrea ha sido totalmente alterada, los bloques de lava que flotan en ella se mantienen inalterados.

Figura 2—

Mapa de la distribución de los principales afloramientos de tobas zeolitzadas y bentonitas en Cuba oriental (áreas en negro).

En el campo, megasópécicamente, es hasta el momento imposible distinguir las tobas zeolitzadas de las bentonitas, pero las propiedades físicas de ambas, ya enunciadas anteriormente, las distinguen marcadamente de las tobas frescas de la formación. Estas rocas han sido estudiadas por el autor en las cercanías de Mayari Arriba, en la mina Martí de Nicaragua, al sur y este de Sagua de Tánamo y al sureste de Sierra Cristal. También han sido re-
portadas en Parallones, cerca de Moa (Pérez, 1977), en la Sierra de Yateras (Carrañero, 1976; Cobiella et al. en prensa), en el suroeste de Baracoa (Cordovés, 1978), al noroeste de Holguín (Coutiñ y Brito, 1975) y quizás, cerca de Banes (Keijzer, 1945) y en el suroeste de Las Tunas (Breznyszansky y Iturralde —Vinent, 1978). Al menos en todas las localidades estudiada por sus colegas del ISMM, las tobas vitroclásticas han sido sustituidas en gran medida a través de todo el corte por las zeolitas o bentonitas.

Como puede verse de la lista de localidades enumeradas los fenómenos de alteración de secuencias enteras de tobas de la Fm. El Cobre a zeolitas y bentonitas está limitado a la mitad norte de la antigua provincia de Oriente, en tanto que en la Sierra Maestra y áreas aledañas, este fenómeno no ha sido reportado.

Las causas del proceso de alteración regional de las tobas vitroclásticas en la mitad septentrional de la antigua provincia de Oriente permanecen oscu- ras. Evidentemente, este fenómeno no tiene un origen hidrotermal, dada su enorme extensión y probablemente ha sido causado por un proceso de halomilosis y diagenesis, pues se conocen numerosos casos de alteración del vidrio volcánico a zeolitas y montmorillonitas en el fondo de los mares actua- les (Millot, 1968; Müller, 1971). Hasta el momento es inexplicable el porqué no ocurrió lo mismo con las tobas vitreas de la Sierra Maestra. Posiblemente, la clave del problema resida en las diferencias en el desarrollo geológico de ambas regiones durante la acumulación de la Fm. El Cobre, El área de la Sierra Maestra era campo de una actividad volcánica muy intensa, acumulándose en estos lap- sos grandes espesores de tobas, en tanto que, hacia el norte, la sedimentación era mucho más lenta y existía una interacción más prolongada entre el vidrio volcánico, depositado en el fondo del mar, y las aguas marinas.

CONCLUSIONES

La Fm. El Cobre es una unidad litoestratigráfica de enorme importancia para comprender las pecu- liaridades geológicas de Cuba oriental y sus relaciones con áreas cercanas.

Es necesario continuar su estudio por ser, además, poseedora de valiosos yacimientos minerales. En especial, es necesario interpretar a la formación de acuerdo con las nuevas ideas de la tectónica global.

BIBLIOGRAFÍA

ADAMOVICH, A. F., CHEJOVICH, V. D., TRUBINO, Y. D., SHIRIKOV, V. M. Y PAVLOV, A. N. Estructura geológica y minerales útiles de los mrazos montañosos de la sierra del Nipe y sierra Cristal. Manuscrito Fondo Geológico 1963

COBIELLA, J. Sobre el origen del extremo oriental de la Fm. de Bartlett (En imprenta).

COBIELLA, J., QUINTAS, M., CAMPOS, M., HERNANDEZ, M. Geología de la región central y suroriental de la provincia de Guantánamo. (En imprenta).

FURRAZOLA, G., BASSOV, V., KUZOVKOV, G., ALIOSHN, V., VUROV, V. Nuevos datos sobre la estratigrafía del Cre- táceo Superior de la Sierra Maestra occidental Revista "La Minera en Cuba", vol 2, no. 3 1976.

ITURRALDE-VINENT, M. Estratigrafía del área Calabazas- Acharal. Revista "La Minera en Cuba" vol 2 no. 4, vol 3 no. 1 1976/77.

JAIN, V. E. Problemas de la tectónica de la región caribe- mexicana. Geodinamichesko Issledovanija no 1 (En rus).

KEIJZER, F. G. Outline of the geology of the eastern part of the Oriente province, Cuba (E of 76° W L) with notes on the geology of other parts of the island Geoje Geol. Meddel (Utrecht) Phys Geol Reeks, ser 2, no. 5, pp 239.

KRIJNEN, J. P. Y LEE CHIN, A. C. Geology of the northern, central and southeastern Blue Mountains, Jamaica, with a provisional compilation map of the entire island Geologie en Mjnbou, vol 57 no. 2 1978.
EL COSMOS Y LA GEOLOGIA

La información procedente del cosmos influye, en grado creciente, no sólo en el desarrollo de las investigaciones científicas fundamentales, sino también en la actividad económica del hombre.

Para progresar en el conocimiento de la estructura geológica del planeta y lograr éxito en la prospección de minerales, hay que hacer hincapié en los más recientes adelantos de la ciencia y la técnica, y servirse de los métodos de sondeo de la Tierra a distancia, de la Geofísica, la Geofísica Nuclear, la Geoquímica, así como de la maquinaria minera modernas tecnologías de perforación (perforación de pozos profundos o muy profundos). El cosmos y la geología están tan relacionados entre sí que, ahora, a los 20 años de lanzado el primer satélite artificial de la Tierra, cabe afirmar que ha surgido y va desarrollándose viento en popa una ciencia nueva: la Geología Cósmica.