ÉTUDES

QUELQUES VUES NOUVELLES SUR LA GÉOLOGIE CUBAINE
par D. RIGASSI-STUDER (a)

A l'occasion d'une étude pétrolière, D. RIGASSI-STUDER a recueilli des informations générales sur la géologie de Cuba et se propose de les rassembler dans une publication volumineuse dont la rédaction demandera un temps assez long. Ses conclusions apportant des vues nouvelles sur la structure de cette partie importante des Antilles, l'auteur nous a demandé d'en publier le résumé ci-dessous. Son texte comportant des remarques qui lui confèrent un intérêt autre que purement local, nous accédons volontiers à son désir d'utiliser notre Chronique — qui lui semble être « autre chose qu'un simple périodique d'informations visant au même but que les innombrables publications… », mais plutôt « une espèce de forum où se réunissent et se décrivent les faits décrits dans d'autres opuscules, où se lancent et se discutent des idées, souvent révolutionnaires, toujours nouvelles ».

A. — Sierra de los Organos

Cette région occidentale de Cuba est formée, du NW (côte du Golfe du Mexique), au SE (plaine Néogène de Pinar del Río), de trois zones distinctes :
1) Une zone où, jusqu'ici, n'avaient été signalées que les phyllites et les quartzites de la série de Cayetano, dont les couches supérieures sont d'âge jurassique moyen.
2) Une zone axiale où prédominent les larges affleurements de « calcaire de Viñales », bizarrement découverts en « mogotes » par les phénomènes karstiques (Jurassique supérieur-Crétacé inférieur).
3) Une zone où prédomine largement la série de Cayetano.

Les auteurs ont envisagé la Sierra de los Organos comme un anticlinaire complexe, marqué, dans la zone 1), par des plis isoclinaux poussés vers le SE, et dans la zone 3), par des plis semblables, mais dirigés vers le NW; la zone axiale, affaissée, étant accidentée de nombreuses failles et plis-failles.

Nos recherches nous ont amené à une interprétation très différente :
1) La zone du NW est en réalité une gigantesque klippe de Cayetano, reposant sur un substratum crétacé; cela est montré par la présence, dans les zones topographiquement basses, de fenêtres de Crétacé; l'étude détaillée des plissolements du Cayetano confirme cette interprétation.
2) La zone axiale est formée de lames chevauchantes (thrust sheets); ces lames, au nombre de trois au moins, se relaient souvent; le déplacement tangentiel, de toute évidence par gravité, varie de 3 à 15 km.
3) La zone du SE représente les racines des zones 2) et 1).

Le style tectonique semble s'apparenter beaucoup à celui d'autres régions, telles que Timor, où de vastes glissements par gravité ont produit un empilement de lames charriées très étirées.

Économiquement, cette interprétation n'est pas sans intérêt: en effet, les gisements cuprifères de la région de Matahambre, étant situés au contact de péricidotites formant le cœur ancien de la grande klippe du NW, ont fort peu de chance de se poursuivre en profondeur; par contre, des gisements cuprifères de même type pourraient exister dans la zone 3). Les pétroléens ont généralement considéré la zone 1) comme peu intéressante, puisque les couches de Cayetano qui y affluent sont légèrement métamorphiques; selon notre interprétation, cette zone ne doit pas être condamnée, puisque l'on pourrait y prospecter, sous les masses charriées de Cayetano, les séries crétacée et jurassique, où de bonnes roches-mères et magasins sont probablement présentes.

B. — Sierra de Trinidad-Sancti Spiritus

A l'exception de R. Weyl, qui basait son opinion sur des comparaisons avec Hispaniola, les auteurs ont fait des séries métamorphiques du centre de Cuba un équivalent des formations Cayetano et Viñales de Pinar del Río.

Cette opinion ne nous semble pas acceptable; en effet, la formation Cayetano consiste, pour 50% environ, en quartzites, alors que le quartz est très rare dans la Sierra de Trinidad-Sancti Spiritus; le calcaire de Viñales est un calcaire fin pélagique à Calpionellides, alors que les marbes de Trinidad sont des dolomies à incursions de gypse, déposées en milieu néréitique; à part un degré de métamorphisme parfois voisin, les séries de la Sierra Trinidad-Sancti Spiritus et celles de la Sierra de los Organos ne se ressemblent donc pas.

Dans la région sise à l'Est de Cienfuegos, on peut voir des séries de tufts et de sédiments clastiques (contenant des galets de roches métamorphiques de la Sierra de Trinidad) à intercalations diabasiques transgresser sur les roches métamorphiques plissées, rubéfiées et pénéplanées; la série des tufts comprend des intercalations de calcaires pélagiques d'âge albien supérieur ou cénomanien inférieur; avant sa déposition, les phénomènes suivants ont eu lieu :

a) dépôt de la série de Trinidad-Sancti Spiritus;
b) plissement intense et métamorphisme de cette série;

(a) Boîte Postale Stand 319, Genève, Suisse.
c) pénéplanation.
La partie sommitale des calcaires de Viñales est d’âge bârromien, ou même aptyien inférieur. Si les marbres intercalés dans la série de Trinidad-Sancti Spiritus étaient un équivalent chronologique du calcaire de Viñales, il aurait donc fallu que les phénomènes énumérés ci-dessus se déroulent entre le Barrémien (ou même l’Aptyien inférieur) et l’Albien supérieur/Cénomanien inférieur. Un tel serratage dans le temps paraît impensable.

En gros, la série de Trinidad-Sancti Spiritus comprend les termes suivants, de bas en haut :

a) Gélasas (rares),
b) Phyllites,
c) Dolomies marmorisées,
d) Grès tufacés, et coulées volcaniques, surtout abondants dans la région septentrionale de la Sierra de Trinidad-Sancti-Spiritus, et généralement amphibolitisés par des intrusions dioritiques d’âge sénonien.

L’observation sur le terrain de ces différents termes montre clairement que la Sierra de Trinidad-Sancti Spiritus est formée par une série de nappes déversées vers le Nord dans la partie occidentale et vers le NNE dans la partie orientale. Ces nappes se sont certainement formées avant l’Albien-Cénomanien inférieur. En récapitulant les accidents orogéniques de la zone Caraïbe, on serait tenté de considérer les charriages de Trinidad-Sancti-Spiritus comme d’âge varisque. La série métamorphique serait alors paléozoïque, comme l’avait dû dit R. Weyl.

Les séries métamorphiques de l’île des Pins seraient contemporaines de celles de Trinidad-Sancti Spiritus, et elles aussi charriées, mais vers l’ENE.

Les roches métamorphiques affluent dans l’Est de la province d’Oriente (que nous n’avons pas pu étudier) pourraient, elles aussi, appartenir à une vieille ossature varisque de Cuba, de même que certains granites du versant sud de la Sierra Maestra.

En Jamaïque également, les séries anciennes des Blue Mountains seraient affectées de plissements varisques, le sens de poussée étant alors vers le SW.

Cette vieille chaine varisque antillaise se raccorderait, par le Belice, le Guatemala et le Mexique, aux montagnes de Quachita (Texas). Dans les Antilles même, cette chaine serait divisée en deux branches — jamaïcaine et cubaine — qui pourraient se fondre à Hispaniola et se raccorder, par la crête sous-marine de Beata, aux cordillères variques du Vénézuela occidental et de Colombie.

C. — Serpentinisation et style des plissements laramiens

La complexité des plissements affectant la moitié nord de Cuba, entre la Sierra del Rosario (Pinar del Rio) et Holguín-Gibara, est bien connue; dans des structures très complexes, les sédiments d’âge jurassique supérieur à éocène, les coulées diabasiques, d’âge surtout crétacé supérieur, et les serpentines, d’âge indéterminé, sont mêles inextricablement. On a voulu y voir de grands charriages, déversés vers le NNE ou le SSW suivant les auteurs. On a voulu faire des serpentines des masses intrusives d’âge capricieux: pour tel géologue, miocène; pour tel autre, crétacique. Les quelques faits d’observation suivants permettent de tirer des conclusions plus précises:

a) Les roches serpentines sont, pour leur plus grande partie, des péridotites et des gabbros serpentinisés; la serpentisation est plus intense dans les masses de roches vertes de petit volume; les forages ont montré que, à une certaine profondeur, on passait assez brusquement de roches très serpentinisées à des péridotites presque intacts (chap de pétrole de Jaruheca).

b) Dans la région de Sierra Morena-Rancho Veiozo (province de Las Villas), on trouve de petits gisements de péridotite dans des couches nécromiennes; ailleurs, on trouve souvent des éléments de serpentinite dans des roches d’âge maestrictien ou tertiaire.

c) Bien que le contact des serpentines et des sédiments sus-jacents soit très généralement tectonisé, les zonation des masses serpentines sont à peu près parallèles à la direction des couches sédimentaires sus-jacentes.

d) On n’observe nulle part un métamorphisme au contact des serpentines et des sédiments.

De ces faits, nous pensons pouvoir conclure que:

a) La mise en place originelle des péridotites est toujours antérieure au début de la sédimentation.

b) La serpentisation est, au moins dans le nord de la province de Las Villas, post-néocène et pré-maestrichtienne.

c) Les péridotites serpentinisées ont été plissées en même temps que les sédiments.

Les causes de la serpentisation peuvent être recherchées soit dans une action d’eaux marines (M. Kozary), soit dans une invasion d’eaux riches en CO₂, soit dans un apport massif d’eaux riches en silice. Des raisons de température font rejeter la première hypothèse; dans le second cas, les péridotites auraient subi, en se serpentinisant, un immense accroissement de volume, avec naissance de magnésite abondante; la magnésite est rare à Cuba, et l’accroissement de volume aurait dû provoquer de véritables extrusions froides, que l’on n’observe pas (du moins pas à l’échelle qu’il impliquerait le phénomène). Notons enfin pour la troisième hypothèse, un mode de serpentisation supposé en effet un grand apport d’eaux riches en silice: or, les nombreuses dörrites, souvent recouchées de pegmatites (qui abondent à Cuba) se sont précisément mises en place entre le Crétacé inférieur et le Maestrichtien, et cette intrusion s’est certainement terminée par un important stade hydrothermal; ce mode de serpentisation aurait entraîné une augmentation modérée de volume, d’un ordre de grandeur qui rendrait bien compte des petits phénomènes de diapirisme que l’on voit souvent au contact sédiments-serpentinites; enfin, après la serpentisation, des eaux résiduelles riches en silice auraient été libérées: dans la plupart des masses de serpentine, les clivages et les fractures sont enduits d’opal; dans les séries sédimentaires de l’Eocène inférieur, les craies et les calcaires siliceux et les radiolaires sont prédominants.

Afin de déceler les relations entre cette serpentisation et les plissements laramiens, nous prendrons comme exemple la province de Las Villas. Au Crétacé supérieur, les zones suivantes existaient, du NNE au SSW:

a) la plateforme récifale des Bahamas, en lente subsidence compensée par la sédimentation éventuellement et carbonatée;

b) un géosynclinal en voie de comblement; aux
dépôts pelagiques du Jurassique supérieur et du Crétacé inférieur succèdent des roches détritiques, dont les éléments sont surtout arrachés aux zones récifales voisines ;

c) une zone axiale où, sur un substratum formé principalement de péridotite, recouvert par de minces dépôts gréseux-calcaires d‘âge crétacique, se déposent des calcaires récifaux ;

d) une zone déprimée dans laquelle s‘accumulent des coulées volcaniques, des tufs, des grey-wackes, avec de rares intercalations de calcaires pelagiques. Cette série volcanique semble reposer surtout sur des roches métamorphiques du type Trinidad-Sancti Spiritus ;

e) la Sierra de Trinidad-Sancti Spiritus.

Le cycle volcanique de la zone d), débutant par des diabases, va se terminer, au Sénonien environ, par des vues dioritiques, qui, perçant au front de la Sierra de Trinidad-Sancti Spiritus, vont pénétrer dans les schistes métamorphiques et dans les séries volcaniques basiques antérieures. Dans une dernière phase, hydrothermale, des eaux riches en silice vont serpentiner les péridolites de la zone c) et d‘une partie de la zone b). Augmentation de volume et de plasticité vont permettre à l‘épiderme serpentinié des péridolites de glisser, entraînant avec lui sa couverture de sédiments, vers les zones marines profondes bordant au SSW la zone a). Toute la masse en mouvement va buter contre le talus limitant la plateforme des Bahamas, et se plisser en structures très complexes, etirées, écailleées. Dans un tel mouvement par gravité, il est évident que chaque terme de la série, suivant sa plasticité et sa densité, glissera plus ou moins vite : ainsi, chaque couche lithologique importante devient une surface de décollement.

Nous pensons qu‘un tel schéma est celui qui rend le mieux compte, dans l‘état actuel des observations, de la structure du N et du NNE de Cuba. Il a de plus l‘avantage d‘expliquer certains faits curieux, celui-ci par exemple : entre le Crétacé supérieur, intensément plissé, et l‘Éocène moyen supérieur très calme (les pendages n‘excédant généralement pas 10°), il y a souvent passage continu, sans discordance angulaire.

Ces plissements laramiens du Nord et du NNE de Cuba, tels que nous les envisageons, se distinguent nettement, au sens classique et étymologique, d‘une orogénèse. L‘orogénèse alpine a plissé des sédiments déposés à de très grandes profondeurs (certainement plus de mille mètres, souvent peut-être 3 à 5 000 mètres), et les a élevés à plusieurs kilomètres d‘altitude ; il y a vraiment orogénèse, création de montagnes ; ce n‘est que dans quelques petites zones (Préalpes, etc) que la gravité s‘exerce, et même là, les sédiments plissés occupent, après le plissement, une situation nettement plus haute, que celle qu‘ils avaient dans leur fosse d‘origine. L‘accumulation des dépôts postorogénétiques, Pl et Molasse, est énorme. A Cuba, au contraire, nous voyons des roches du Crétacé supérieur, déposées en zone nérétique ou sub-nérétique, être entraînées par gravité vers une fosse ; après le plissement, le sédiment se dépasse ces sédiments plus hautes, et se retrouve entièrement renvoyé à petits tectonisés, qui témoignent de conditions pelagiques, sous 1 000 mètres et plus d‘eau. L‘exondation des zones plissées du Nord de Cuba est un phénomène récent, post-Oligocène, de type épeirogénetique, entièrement distinct du plissement proprement dit. Les phénomènes que l‘on arrive souvent à découvrir, dans les chaine classiques, sous le nom de lithogénèse, orogénèse et glyptogénèse, sont absolument synchrones et intimement liés à Cuba : il n‘y est pratiquement pas de sédiment qui ne témoigne d‘une érosion dans le bassin sédimentaire même et de mouvements tectoniques ; le terme plus typique, ce sont les bancs déposés par des courants de turbidité, chargés de blocs informes, affectés de replisements intraformationnels, et dans lesquels le ciment pelagique est du même âge que les galets nérétiques. Pas d‘exondation après les plissements, au contraire, les plis vont mourir et s‘étaler, dans le temps, au fond d‘une fosse. Pas de molasse.

Cela diffère tellement d‘une orogénèse classique, que nous proposons de déigner un tel ensemble de phénomènes géologiques sous le nom de rhéogénèse. L‘exemple type de la rhéogénèse étant pris à Cuba, dans la partie NNW de la province de Las Villas, dans la partie septentrionale de la province d‘Oriente (entre Holguin et Gibara), et dans la partie septentrionale des provinces de La Havane et Matanzas.

Beaucoup de chaines sont, bien sûr, de type mixte. Ainsi, le Flysch sub-pyrénien est un complexe rhéogénétique, déclenché par la surrection orogénétique de la chaîne axiale des Pyrénées.

D. — Décrochements.

On a mentionné à Cuba, bien que beaucoup plus timidement qu‘au Venezuela ou à Trinidad, la présence de failles à rejets horizontaux. Les mieux connus de ces décrochements sont ceux, de direction NNW-SEE, de la province de Matanzas, et celui, de direction NE-SW, suivant sensiblement la limite des provinces de La Havane et Pinar del Río.

Dans les régions septentrionales des provinces de Las Villas, Camagüey et Oriente, une ligne de cassure très importante, de direction WNW-SEE, met en contact brusque des séries de carbonates et d‘évacorites au NNE, et des séries très différentes (marno-calcaires pelagiques, ou détritiques, avec coulées et tufs). Ce contact si brusque de roches contemporaines, mais si différentes, a conduit plusieurs géologues à envisager de vastes chevauchements ; pour certains, ces chevauchements seraient vers le SSW, pour d‘autres, vers le NNE. En réalité, on n‘observe aucun indice de chevauchement ; et plusiers faits bien précis : strates horizontales très fréquentes au voisinage de la faille, présence d‘innombrables petites failles antithétiques de direction NE-SW, nous ont convaincu qu‘on a affaire à un gigantesque décrochement. Un déplacement du bloc méridional vers l‘ESE a accolé les séries proprement cubaines, rhéogénétiques de ce bloc, et les séries nérétiques de la plateforme des Bahamas. L‘ampleur du déplacement horizontal ne peut être précisée, mais l‘ordre de grandeur est certainement de plus de centaines de kilomètres.

En résumé, nous pensons que les décrochements jouent un très grand rôle dans la structure de Cuba. On peut distinguer les directions suivantes, des plus anciennes aux plus jeunes :

a) Décrochements de direction N-S ou NNW-SEE ; les déplacements relatifs semblent généralement être : blocs E vers le S, blocs W vers le N. L‘âge est peut-être éocène, très certainement antérieur à l‘Oligocène supérieur.

b) Grande zone de décrochement du NNE de
Cuba, de direction WNW-ESE mettant en contact la plateforme des Bahamas et les complexes rhéogenétiques cubains : bloc du SSW poussé vers l’ESE. Age post-Eocène et pré-Miocène, probablement oligocène.

c) Systèmes de failles antithétiques de direction NE-SW ou ENE-WSW, liées à la zone de décrochement b). Par la suite, ces failles ont évolué en décrochements, avec très généralement mouvement vers le NE des blocs SE et mouvement vers le SW des blocs NW. Age : naissance des failles contemporaines de b), évolution en décrochements probablement au Miocène.

d) Décrochement de direction E-W, séparant le Sud de Cuba (Sierra Maestra) de la fosse de Bartlett. Début du mouvement : probablement au Miocène, encore actif actuellement.

E. — Conclusions

L’île de Cuba ne représente pas une unité géologique ; c’est en réalité une mosaique d’éléments dissemblables que des plissements, des chevauchements et de vastes décrochements ont juxtaposées. Les éléments distingués sont les suivants :

a) Vieille cordillère varisque, caractérisée par des chevauchements ; roches métamorphiques de l’île des Pins, de Trinidad-Sancti Spiritus, de l’est d’Oriente (?), et peut-être certains granites (La Rana, province de La Villas; versant sud de la Sierra Maestra).

b) Charriages laramiens de la Sierra de los Organos (Pinar del Rio); cette zone représente la terminaison, vers le NE, du géosynclinal guatemaltèque d’âge oxfordien à crétacé. La zone b) est chassée sur l’élément c).

c) Complexe rhéogenétique laramien de la Sierra del Rosario (Pinar del Rio) à Holguin (Oriente). Dans la province d’Oriente, ce complexe comprend avant tout des séries détritiques et volcaniques ; plus loin, vers l’WNW, des séries pelagiques du Jurassique supérieur et du Crétacé inférieur constituent les témoins les plus orientaux du géosynclinal mexicain.

d) Une série volcanique, relativement peu plissée, d’âge surtout Crétacé supérieur, s’étendant de la région de Rodas (Las Villas) jusqu’en Oriente central et méridional ; cette série est transgressive soit sur des péridotites, soit sur l’élément a). C’est la seule unité cubaine dont le caractère proprement antillais soit incontestable.

e) Une étroite bande formant la côte NNE de Cuba, entre Cardenas et Gibara, appartient à la plateforme de Floride-Bahamas ; à Cuba, soit par suite de la poussée exercée par les masses rhéogenétiques c), soit par suite de grands décrochements tertiaires, cette zone est hachurée par de nombreuses failles de direction WNW-ESE.

Sur l’ensemble de ces séries, soit en continuité, soit en transgression, se trouvent des séries d’âge écène à pliocène ; ce n’est qu’au Pliocène et au Quaternaire que des mouvements épigénétiques, ou des composantes verticales des grands décrochements jalonnant la fosse de Bartlett-Cayman, ont émergé l’ensemble qui constitue actuellement Cuba.

D. R.