CONTRIBUTIONS TO THE GEOLOGY AND PALEONTOLOGY OF THE CANAL ZONE, PANAMA, AND GEOLOGICALLY RELATED AREAS IN CENTRAL AMERICA AND THE WEST INDIES

PREPARED UNDER THE DIRECTION OF
THOMAS WAYLAND VAUGHAN
Custodian of Madreporaria, United States National Museum,
Geologist in Charge of Coastal Plain Investigation,
United States Geological Survey

WASHINGTON
GOVERNMENT PRINTING OFFICE
1919
The scientific publications of the United States National Museum consist of two series, the Proceedings and the Bulletins.

The Proceedings, the first volume of which was issued in 1878, are intended primarily as a medium for the publication of original, and usually brief, papers based on the collections of the National Museum, presenting newly acquired facts in zoology, geology, and anthropology, including descriptions of new forms of animals and revisions of limited groups. One or two volumes are issued annually and distributed to libraries and scientific organizations. A limited number of copies of each paper, in pamphlet form, is distributed to specialists and others interested in the different subjects as soon as printed. The dates of publication are recorded in the table of contents of the volume.

The Bulletins, the first of which was issued in 1875, consist of a series of separate publications comprising chiefly monographs of large zoological groups and other general systematic treatises (occasionally in several volumes), faunal works, reports of expeditions, and catalogues of type-specimens, special collections, etc. The majority of the volumes are octavos, but a quarto size has been adopted in a few instances in which large plates were regarded as indispensable.

Since 1902 a series of octavo volumes containing papers relating to the botanical collections of the Museum, and known as the Contributions from the National Herbarium, has been published as bulletins.

The present work forms No. 103 of the Bulletin series.

William deC. Ravenel,
Administrative Assistant to the Secretary,
In charge of the United States National Museum.

Washington, D. C., September 15, 1919.
PREFACE.

Geologists generally recognize that knowledge of the geology of Central America is essential to solving the problems of the geologic history of the Americas, and many of them have devoted as much thought and study to the region as their rather occasional opportunities for investigation permitted. Among the previous investigators T. A. Conrad, W. M. Gabb, J. W. Gregory, W. H. Dall, H. Douvillé, P. Lemoine and R. Douvillé, M. Bertrand and Ph. Zürcher, R. T. Hill, and Ernest Howe should be mentioned. Since work on the Panama Canal was initiated by the United States Government, excluding the investigations associated with official duties, contributions have been made by Franz Toula, A. P. Brown and H. A. Pilsbry, and W. B. Scott.

In 1911 the Isthmian Canal Commission attached to its staff Dr. Donald F. MacDonald as commission geologist. In October and November, in 1911, I had the privilege of spending a full month in field work along the canal, largely as a guest of the Canal Commission, and I here wish to express to Maj. Gen. Goethals, then Col. Goethals, my very hearty thanks for the facilities afforded me. Doctor MacDonald and I, of course, worked together, and he left nothing undone in making our efforts successful.

Doctor MacDonald and I both recognized the extraordinary opportunity for making a highly valuable contribution, not only to the geology of Central America, but also to the geologic history of the continents to the north and south. As a result of our conferences, I suggested to the Director of the United States Geological Survey a plan for cooperation between the United States Geological Survey, the Smithsonian Institution, and the Canal Commission. He approved the suggestion and submitted it to the Secretary of the Smithsonian Institution, who also gave his approval. As a result of these preliminaries the following letter was prepared and sent to the chairman of the Canal Commission:

Col. George W. Goethals,
Chairman Isthmian Canal Commission,
Washington Office, Washington, D. C.

Sir: As a thorough knowledge of the geology of the Panamic Isthmian region is essential to a solution of fundamental problems of the geologic history of both North and South America and of the adjacent oceanic basins; as the excavations for the Panama Canal and along the line of the relocated Panama Railroad offer opportunities during the next few years never before realized and probably never again to be realized
for a geologic study of this region; as there is a scientific need for the extension of the
geologic investigations beyond the Canal Zone to adjacent areas, and as these extended
investigations, although they may not always bear directly on the problems of build-
ing the canal, will, by furnishing a basis for a wider knowledge of the geology of the
area than can be obtained on the Canal Zone, be helpful in deciphering the local
stratigraphy and structure of the rock formations cut by the canal, and will afford in-
formation on whether there are fuels, notably fuel oil, or other geologic products of eco-
nomic value within reach of the canal:

The Smithsonian Institution and the United States Geological Survey desire to enter
into cooperation with the Isthmian Canal Commission in making a study of the geology
of the Canal Zone and extending the studies to adjacent regions so far as is feasible.

The following is submitted to the Isthmian Canal Commission for its consideration:

It is hoped and urged that the Canal Commission will continue in its service a com-
mmittee geologist, and will provide facilities for his field work within the Canal Zone
until the excavations for the canal for the Panama Railroad, and for any other projects
that may require excavations have been completed and carefully studied. The Canal
Commission is especially requested to permit the commission geologist to extend his
examinations of the geologic formations and mineral resources beyond the Canal Zone,
the salary of the geologist to be paid by the Canal Commission, and funds for his field
expenses to be provided by the Smithsonian Institution. The commission geologist
will, of course, submit to the Canal Commission a report of such nature and scope as the
commission may direct.

The United States Geological Survey will, without charge, cut rock sections for
microscopic study, make chemical analyses, and furnish special reports on fossils and
other collections made and submitted by the commission. The advice of the different
specialists on the survey will be at the service of the commission whenever their advice
may be desired.

After the completion of the field work and after the commission geologist has sub-
mitted his report to the Canal Commission, the Smithsonian Institution desires to pub-
lish comprehensive and detailed monographic accounts of the physiography, strati-
graphic and structural geology, geologic history, geologic correlation, mineral resources
(including coal, oil, and other fuels), petrography, and paleontology of the Canal Zone
and of as much of the adjacent areas in the isthmian region as is feasible. The services
of the most eminent authorities will be enlisted in the preparation of special memoirs
on the various collections made and submitted. The endeavor will be, by full presen-
tation of all obtainable information, to make the Canal Zone the geologic standard of
comparison for Central America as well as for portions of North and South America.
In these reports due credit will be given to the Isthmian Canal Commission for its par-
ticipation in the investigations.

We hope that this plan will meet with your approval and support.

Very respectfully,

(Signed) CHARLES D. WALCOTT,
Secretary, Smithsonian Institution.

(Signed) GEO. OTIS SMITH,
Director, U. S. Geological Survey.

The proposed cooperation was approved by the chairman of the
Canal Commission. Doctor MacDonald remained with the commis-
sion until the excavations in connection with the canal were completed
and he made explorations outside the Canal Zone, especially along
Banana River in Costa Rica, and in the Province of Los Santos
(Azuero Peninsula) and from David northward to the volcano of
Chiriqui, in Panama. He was also geologist for the Costa Rica-
Panama Boundary Commission.
Doctor MacDonald’s reports to the Canal Commission have been published in the annual reports of the chairman of the Canal Commission; and he is the author of a more lengthy paper entitled “Some engineering problems of the Canal Zone in their relation to geology and topography,” published as Bulletin 86 of the United States Bureau of Mines. 1 Since the termination of his services for the Canal Commission he has completed a large report on the physiography, stratigraphic and structural geology, petrography, and economic geology of the Canal Zone. The transmission of this memoir for publication has been delayed because some of the paleontologic determinations were needed for interpreting the geologic history.

After the agreement to the proposed plan of cooperation, I took charge for the United States Geological Survey of the preparation of the special paleontologic reports, of the problems of geologic correlation, and of the coordination of the investigations with other work on the physiography, stratigraphy, paleontology, and geologic history in the southeastern United States and the West Indies. The paleontologic material was sorted according to groups, and the following specialists undertook monographic reports:

Dr. Marshall A. Howe, calcareous algae.
Prof. Edward W. Berry, higher plants.
Dr. Joseph A. Cushman, foraminifera.
Dr. T. Wayland Vaughan, madreporarian corals.
Dr. Robert T. Jackson, echinoids.
Dr. C. Wythe Cooke, mollusca.
Mr. F. Canu and Dr. R. S. Bassler, bryozoa.
Dr. Mary J. Rathbun, decapod crustacea.
Prof. H. A. Pilsbry, cirripedia.

The few vertebrates obtained were identified by Mr. J. W. Gidley. All of the paleontologic reports are now complete except that on the mollusks. It was at first hoped that Dr. W. H. Dall would prepare the one on this group, but pressure of other work prevented him. Later Dr. C. Wythe Cooke, paleontologist of the United States Geological Survey, began a study of the collection of mollusks, but other duties have interfered with his prosecution of it. The recent papers by Toula 2 and by Brown and Pilsbry 3 have been used, and they are valuable, but they do not meet the needs of the present investigation, for the material described in them mostly represents one geologic formation, the Gatun formation, and the stratigraphic

data are not sufficient. It is probable that three and perhaps four horizons will be discriminated within the Gatun formation. Other groups of organisms are adequate for correlation purposes in most or all of the other geologic formations, but for the Gatun formation the principal reliance must be placed on the mollusks. The collections of mollusks made by Doctor MacDonald and myself is very extensive, and the greatest possible care was taken in obtaining full information on the stratigraphic relations of the material. It is hoped that a report commensurate with the size and importance of the collection may not be much longer delayed.

The series of papers here presented comprises all of the paleontologic memoirs that have been completed. These are immediately followed by descriptions of the geologic exposures where collections of fossils were made, with summaries of the fossils according to their stratigraphic occurrence, and a chapter on the geologic correlation of the fossiliferous formations, both with other American and with European formations. It is intended that Doctor MacDonald's comprehensive general report will be published soon after this series of memoirs has been issued.

The names of the geologic formations used in the paleontologic reports are the same as those employed by Doctor MacDonald in Bulletin 86 of the United States Bureau of Mines, to which reference is made on page v of this preface.

I wish to thank the officials of the Canal Commission, particularly Maj. Gen. Goethals, Director George Otis Smith, and Chief Geologist David White of the United States Geological Survey, and Dr. Charles D. Walcott, Secretary of the Smithsonian Institution, for the support they have given these investigations. To my colleagues outside the Geological Survey and United States National Museum, Dr. Marshall A. Howe, Prof. E. W. Berry, Dr. Robert T. Jackson, Mr. F. Canu, and Prof. H. A. Pilsbry, who has collaborated in this work, I am under deep obligations; and it is a pleasure to record my appreciation of the efforts of my official colleagues, Dr. D. F. MacDonald, Dr. Joseph A. Cushman, Dr. C. Wythe Cooke, Dr. R. S. Bassler, Dr. Mary J. Rathbun, and Mr. J. W. Gidley, all of whom have labored harmoniously to bring a large undertaking to a successful conclusion.

Thomas Wayland Vaughan.

September 15, 1919.
## CONTENTS

**On some fossil and recent Lithothamniane of the Panama Canal Zone.**

- Introduction ........................................................................................................ 1
- Descriptions of species: 
  - Archaeolithothamnium episporum ................................................................. 2
  - Lithothamnium vaughanii isthmi ...................................................................... 6
  - Lithoporella melobesoides ................................................................................ 11
- Explanation of plates .......................................................................................... 11
- Index .................................................................................................................... 1

**The fossil higher plants from the Canal Zone.**
By Edward W. Berry.

- Introduction ......................................................................................................... 15
- Correlation ........................................................................................................... 16
- Botanical character .............................................................................................. 18
- Tertiary ecology .................................................................................................... 21
- Flora of the Canal Zone ....................................................................................... 22
- Systematic paleobotany ....................................................................................... 23
- Descriptions of species: 
  - Fern fragments of Acrostichum ....................................................................... 23
  - Palm rays ........................................................................................................... 24
  - Palmoxylon palmacites ..................................................................................... 24
  - Ficus culebrensis ............................................................................................... 26
  - Guatteria culebrensis ......................................................................................... 27
  - Myristicophyllum panamense ........................................................................... 29
  - Taenioxyllon multiradiatum .............................................................................. 30
  - Inga oligocaenica ............................................................................................... 32
  - Cassi culebrensis ............................................................................................... 34
  - Hiraea oligocaenica ............................................................................................ 35
  - Banisteria praenuntia ......................................................................................... 35
  - Hieronymia lehmanni ......................................................................................... 36
  - Schmidelia bejucensis ...................................................................................... 37
  - Mespilodaphne culebrensis .............................................................................. 38
  - Calyptranthes gatunensis .................................................................................. 39
  - Melastomites miconioides ................................................................................ 40
  - Diospyros macdonaldi ....................................................................................... 41
  - Rondeletia goldmani ........................................................................................ 42
  - Rubiacites ixoreoides ........................................................................................ 43
- Explanation of plates ............................................................................................ 44
- Index ...................................................................................................................... 1

**The smaller fossil Foraminifera of the Panama Canal Zone.**
By Joseph Augustine Cushman.

- Introduction ......................................................................................................... 45
- List of material ..................................................................................................... 45

---

1For the most part the papers in this volume have individual indexes following the plates at the end of the paper, and the Explanation of plates at the end of each paper gives a full description of the plates.
The smaller fossil Foraminifera of the Panama Canal Zone—Cor.

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptions of species</td>
<td>51</td>
</tr>
<tr>
<td>Textularia abbreviata</td>
<td>51</td>
</tr>
<tr>
<td>sagittula</td>
<td>51</td>
</tr>
<tr>
<td>agglutinans</td>
<td>52</td>
</tr>
<tr>
<td>laminata</td>
<td>52</td>
</tr>
<tr>
<td>subagglutinans</td>
<td>52</td>
</tr>
<tr>
<td>carinata</td>
<td>53</td>
</tr>
<tr>
<td>panamensis</td>
<td>53</td>
</tr>
<tr>
<td>Chrysalidina pulchella</td>
<td>54</td>
</tr>
<tr>
<td>Bolivina cf. B. punctata</td>
<td>54</td>
</tr>
<tr>
<td>aenariensis</td>
<td>55</td>
</tr>
<tr>
<td>robusta</td>
<td>55</td>
</tr>
<tr>
<td>species</td>
<td>55</td>
</tr>
<tr>
<td>Bigenerina nodosaria</td>
<td>56</td>
</tr>
<tr>
<td>Gaudryina flintii</td>
<td>56</td>
</tr>
<tr>
<td>triangularis</td>
<td>56</td>
</tr>
<tr>
<td>Clavulina parisiensis</td>
<td>57</td>
</tr>
<tr>
<td>communis</td>
<td>57</td>
</tr>
<tr>
<td>Virgulina squamosa</td>
<td>58</td>
</tr>
<tr>
<td>Lagena striata, var. strumosa</td>
<td>58</td>
</tr>
<tr>
<td>Nodosaria communis</td>
<td>59</td>
</tr>
<tr>
<td>insecta</td>
<td>59</td>
</tr>
<tr>
<td>raphanistrum</td>
<td>60</td>
</tr>
<tr>
<td>species</td>
<td>60</td>
</tr>
<tr>
<td>Cristallaria rotulata</td>
<td>60</td>
</tr>
<tr>
<td>italica</td>
<td>61</td>
</tr>
<tr>
<td>protuberans</td>
<td>61</td>
</tr>
<tr>
<td>vaughani</td>
<td>61</td>
</tr>
<tr>
<td>Uvigerina canariensis</td>
<td>62</td>
</tr>
<tr>
<td>canariensis, variety</td>
<td>63</td>
</tr>
<tr>
<td>pygmaea</td>
<td>63</td>
</tr>
<tr>
<td>tenuistrata</td>
<td>63</td>
</tr>
<tr>
<td>Siphogenerina raphanus, var. transversus</td>
<td>64</td>
</tr>
<tr>
<td>Globigerina bulloides</td>
<td>64</td>
</tr>
<tr>
<td>inflata</td>
<td>65</td>
</tr>
<tr>
<td>dubia</td>
<td>65</td>
</tr>
<tr>
<td>conglobata</td>
<td>66</td>
</tr>
<tr>
<td>sacculifera</td>
<td>66</td>
</tr>
<tr>
<td>aequilateralis</td>
<td>67</td>
</tr>
<tr>
<td>Orbulina universa</td>
<td>67</td>
</tr>
<tr>
<td>Discorbis obtusa</td>
<td>68</td>
</tr>
<tr>
<td>Truncatulina americana</td>
<td>68</td>
</tr>
<tr>
<td>pygmea</td>
<td>68</td>
</tr>
<tr>
<td>ungeriana</td>
<td>69</td>
</tr>
<tr>
<td>wuellerstorfi</td>
<td>69</td>
</tr>
<tr>
<td>culebrensis</td>
<td>70</td>
</tr>
<tr>
<td>Pulvinulina saga</td>
<td>70</td>
</tr>
<tr>
<td>concentrica</td>
<td>71</td>
</tr>
<tr>
<td>menardii</td>
<td>71</td>
</tr>
<tr>
<td>Siphonia reticulata</td>
<td>72</td>
</tr>
<tr>
<td>Nonionina depressula</td>
<td>72</td>
</tr>
<tr>
<td>scapla</td>
<td>73</td>
</tr>
<tr>
<td>panamensis</td>
<td>74</td>
</tr>
<tr>
<td>anomalina</td>
<td>74</td>
</tr>
</tbody>
</table>
### CONTENTS

**The smaller fossil Foraminifera of the Panama Canal Zone—Con.**

<table>
<thead>
<tr>
<th>Description of species—continued.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polystomella striato-punctata.</td>
<td>74</td>
</tr>
<tr>
<td>sagra</td>
<td>75</td>
</tr>
<tr>
<td>macella</td>
<td>76</td>
</tr>
<tr>
<td>crispa</td>
<td>76</td>
</tr>
<tr>
<td>craticulata</td>
<td>77</td>
</tr>
<tr>
<td>species</td>
<td>77</td>
</tr>
<tr>
<td>Amphistegina lessonii.</td>
<td>77</td>
</tr>
<tr>
<td>Quinqueluculina seminulum.</td>
<td>78</td>
</tr>
<tr>
<td>contorta</td>
<td>79</td>
</tr>
<tr>
<td>anuberiana</td>
<td>79</td>
</tr>
<tr>
<td>undosa</td>
<td>79</td>
</tr>
<tr>
<td>bicornis</td>
<td>80</td>
</tr>
<tr>
<td>panamensis</td>
<td>80</td>
</tr>
<tr>
<td>Sigmolinia tenuis.</td>
<td>81</td>
</tr>
<tr>
<td>asperula</td>
<td>81</td>
</tr>
<tr>
<td>Triloculina trigonula.</td>
<td>82</td>
</tr>
<tr>
<td>tricarinata</td>
<td>82</td>
</tr>
<tr>
<td>bulbosa</td>
<td>83</td>
</tr>
<tr>
<td>projecta</td>
<td>83</td>
</tr>
<tr>
<td>Biloculina bulloides.</td>
<td>84</td>
</tr>
<tr>
<td>Spiroloculina excavata.</td>
<td>84</td>
</tr>
<tr>
<td>Orbiculina adunca.</td>
<td>84</td>
</tr>
<tr>
<td>Explanation of plates.</td>
<td>85</td>
</tr>
<tr>
<td>Index</td>
<td>i</td>
</tr>
</tbody>
</table>

**The larger fossil Foraminifera of the Panama Canal Zone.** By Joseph Augustine Cushman.

| Introduction                                     | 89   |
| List of species and their geologic occurrence   | 90   |
| Description of species                          | 91   |
| Lepidocyclina canellei                          | 91   |
| chaperi                                          | 92   |
| vaughani                                         | 93   |
| macdonaldi                                       | 94   |
| panamensis                                       | 94   |
| duplicata                                        | 96   |
| Heterosteginoides panamensis                    | 97   |
| Orthophragmina minima                           | 97   |
| Nummulites panamensis                           | 98   |
| davidensis                                       | 98   |
| Orbitolites americana                           | 99   |
| Explanation of plates                            | 99   |
| Index                                            | i    |

**Fossil Echini of the Panama Canal Zone and Costa Rica.** By Robert Tracy Jackson.

| Introduction                                     | 103  |
| List of species and their geologic occurrence   | 103  |
| Description of species                          | 104  |
| Clypeaster lanceolatus                          | 104  |
| gatuni                                           | 105  |
| Encope annectans                                | 106  |
| platytata                                       | 105  |
| megatremata                                     | 110  |
| Echinolampas semiorbis                          | 112  |
CONTENTS.

FOSSIL ECHINI OF THE PANAMA CANAL ZONE AND COSTA RICA—Continued.

Description of species—continued.

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schizaster armiger</td>
<td>113</td>
</tr>
<tr>
<td>cristatus</td>
<td>113</td>
</tr>
<tr>
<td>panamensis</td>
<td>114</td>
</tr>
</tbody>
</table>

Description of plates................................................. 115

Index........................................................................... i

BRYOZOA OF THE CANAL ZONE AND RELATED AREAS. By Ferdinand Canu

and Ray S. Bassler............................................. 117

Descriptions of species........................................... 117

Ogivalina mutabilis............................................. 117

Cupularia umbellata............................................. 118

canariensis......................................................... 119

Holoporella albirostris........................................... 120

Stichoporina tuberosa............................................ 121

Explanation of plate.................................................. 121

Index........................................................................... i

DECAPOD CRUSTACEANS FROM THE PANAMA REGION. By Mary J. Rathbun.

Introduction................................................................... 123

Literature on Tertiary Decapods of Panama..................... 124

List of stations from which material has been examined, arranged from the earliest to the latest, with the species found at each..... 124

Descriptions of species.................................................. 131

Family, genus, and species indeterminable....................... 131

Macrobrachium, species............................................. 131

Macrobrachium (?), species......................................... 132

Nephrops costatus.................................................... 132

Nephrops, species...................................................... 133

Pachycheles latus...................................................... 134

Petrolisthes avitus.................................................... 134

Axius reticulatus..................................................... 135

Axius (?), species...................................................... 136

Callianassa ovalis.................................................... 137

lacunosa................................................................. 138

elongata................................................................. 139

scotti..................................................................... 140

crassimana............................................................. 141

moineensis.............................................................. 142

spinulosa................................................................. 143

tenuis..................................................................... 144

quadrata................................................................. 145

toulaı...................................................................... 146

abbreviata............................................................... 147

hilli...................................................................... 148

vaughani................................................................. 148

stridens................................................................. 151

magna..................................................................... 151

crassa.................................................................... 152

Callianassa, species.................................................... 152

Callianassa (?), species............................................. 153

Petrochirus bouvieri................................................ 153

Goniochele (?) armata............................................... 154

Hepatus chilensis...................................................... 155

Hepatus, species...................................................... 155
Decapod Crustaceans from the Panama Region—Continued.

Descriptions of Species—Continued.

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calappa costaricana</td>
<td>156</td>
</tr>
<tr>
<td>flammea</td>
<td>157</td>
</tr>
<tr>
<td>zurcheri</td>
<td>157</td>
</tr>
<tr>
<td>Calappella quadrispina</td>
<td>157</td>
</tr>
<tr>
<td>Murua macdonaldi</td>
<td>158</td>
</tr>
<tr>
<td>obscura</td>
<td>159</td>
</tr>
<tr>
<td>Muralia ecrustata</td>
<td>160</td>
</tr>
<tr>
<td>Leucosilia jurinei</td>
<td>161</td>
</tr>
<tr>
<td>bananensis</td>
<td>161</td>
</tr>
<tr>
<td>Leucosiidae, genus and species indeterminable</td>
<td>162</td>
</tr>
<tr>
<td>Callinectes declivis</td>
<td>162</td>
</tr>
<tr>
<td>reticulatus</td>
<td>163</td>
</tr>
<tr>
<td>species</td>
<td>164</td>
</tr>
<tr>
<td>Arenaeus, species</td>
<td>165</td>
</tr>
<tr>
<td>Euphylax callinectis</td>
<td>165</td>
</tr>
<tr>
<td>fortis</td>
<td>167</td>
</tr>
<tr>
<td>Gatunia proavita</td>
<td>168</td>
</tr>
<tr>
<td>Carplus, species</td>
<td>171</td>
</tr>
<tr>
<td>Heteractaea lunata</td>
<td>171</td>
</tr>
<tr>
<td>Panopeus antepurpureus</td>
<td>172</td>
</tr>
<tr>
<td>tridentatus</td>
<td>172</td>
</tr>
<tr>
<td>species</td>
<td>173</td>
</tr>
<tr>
<td>Eurytium crenulatum</td>
<td>174</td>
</tr>
<tr>
<td>Euryplax culebrensis</td>
<td>174</td>
</tr>
<tr>
<td>Thaumastoplax prima</td>
<td>176</td>
</tr>
<tr>
<td>Cardisoma guanumi</td>
<td>177</td>
</tr>
<tr>
<td>Uca macrodactylus</td>
<td>177</td>
</tr>
<tr>
<td>Brachyrhynchia, family, genus, and species indeterminable</td>
<td>177</td>
</tr>
<tr>
<td>Brachyrhynchia, family, genus, and species indeterminable</td>
<td>178</td>
</tr>
<tr>
<td>Parthenope panamensis</td>
<td>178</td>
</tr>
<tr>
<td>pleistocenica</td>
<td>179</td>
</tr>
<tr>
<td>Explanation of plates</td>
<td>179</td>
</tr>
<tr>
<td>Index</td>
<td>i</td>
</tr>
</tbody>
</table>

Cirripedia from the Panama Canal Zone. By Henry A. Pilsbry.

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanus eburneus</td>
<td>185</td>
</tr>
<tr>
<td>glyptopoma</td>
<td>185</td>
</tr>
<tr>
<td>concavus rarisheptatus</td>
<td>186</td>
</tr>
<tr>
<td>(Hesperibalanus?), species</td>
<td>187</td>
</tr>
<tr>
<td>Lepas injudicata</td>
<td>188</td>
</tr>
<tr>
<td>Explanation of plate</td>
<td>188</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>189</td>
</tr>
<tr>
<td>Geologic correlation by means of fossil corals</td>
<td>190</td>
</tr>
<tr>
<td>Geologic history of the upper Eocene and later coral faunas of Central America, the West Indies, and the eastern United States</td>
<td>193</td>
</tr>
<tr>
<td>Eocene</td>
<td>193</td>
</tr>
<tr>
<td>Brito formation, Nicaragua</td>
<td>193</td>
</tr>
<tr>
<td>St. Bartholomew limestone</td>
<td>193</td>
</tr>
<tr>
<td>Jackson formation and Ocala limestone</td>
<td>195</td>
</tr>
<tr>
<td>Concluding remarks on the Eocene</td>
<td>198</td>
</tr>
</tbody>
</table>
## CONTENTS.

**Fossil Corals from Central America, Cuba, and Porto Rico, etc.—Con.**

Geologic history of the upper Eocene and later coral faunas of Central America, the West Indies, and the eastern United States—Continued.

<table>
<thead>
<tr>
<th>Period</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligocene</td>
<td></td>
</tr>
<tr>
<td>Lower Oligocene</td>
<td>198</td>
</tr>
<tr>
<td>Middle Oligocene</td>
<td>199</td>
</tr>
<tr>
<td>Antigua formation</td>
<td>199</td>
</tr>
<tr>
<td>Pepino formation of Porto Rico</td>
<td>203</td>
</tr>
<tr>
<td>Limestone above conglomerate near Guantanamo, Cuba</td>
<td>204</td>
</tr>
<tr>
<td>Basal part of Chattahoochee formation in Georgia</td>
<td>205</td>
</tr>
<tr>
<td>&quot;Coral limestone&quot; of Salt Mountain, Alabama</td>
<td>206</td>
</tr>
<tr>
<td>San Rafael formation of eastern Mexico</td>
<td>206</td>
</tr>
<tr>
<td>Tonosi, Panama</td>
<td>207</td>
</tr>
<tr>
<td>Serró Colorado, Aruba</td>
<td>207</td>
</tr>
<tr>
<td>Concluding remarks on the middle Oligocene</td>
<td>207</td>
</tr>
<tr>
<td>Upper Oligocene</td>
<td>208</td>
</tr>
<tr>
<td>Culebra formation</td>
<td>208</td>
</tr>
<tr>
<td>Emperador limestone</td>
<td>208</td>
</tr>
<tr>
<td>Anguilla formation</td>
<td>209</td>
</tr>
<tr>
<td>Cuban localities</td>
<td>210</td>
</tr>
<tr>
<td>Tampa formation of Florida</td>
<td>211</td>
</tr>
<tr>
<td>Concluding remarks on the upper Oligocene</td>
<td>211</td>
</tr>
<tr>
<td>Miocene</td>
<td>212</td>
</tr>
<tr>
<td>Bowden marl</td>
<td>212</td>
</tr>
<tr>
<td>Santo Domingo</td>
<td>213</td>
</tr>
<tr>
<td>Cuba</td>
<td>218</td>
</tr>
<tr>
<td>Baracoa and Matanzas</td>
<td>218</td>
</tr>
<tr>
<td>La Cruz marl</td>
<td>218</td>
</tr>
<tr>
<td>Florida</td>
<td>219</td>
</tr>
<tr>
<td>Alum Bluff formation</td>
<td>219</td>
</tr>
<tr>
<td>Middle and South Atlantic States</td>
<td>220</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>221</td>
</tr>
<tr>
<td>Panama</td>
<td>221</td>
</tr>
<tr>
<td>Colombia</td>
<td>221</td>
</tr>
<tr>
<td>Concluding remarks on the Miocene</td>
<td>221</td>
</tr>
<tr>
<td>Pliocene</td>
<td>222</td>
</tr>
<tr>
<td>Caloosahatchee marl, Florida</td>
<td>222</td>
</tr>
<tr>
<td>Limon, Costa Rica</td>
<td>223</td>
</tr>
<tr>
<td>Carrizo Creek, California</td>
<td>223</td>
</tr>
<tr>
<td>Pleistocene</td>
<td>225</td>
</tr>
</tbody>
</table>

Summary of the stratigraphic and geographic distribution of the Tertiary and Pleistocene coral-faunas of Central America and the West Indies | 226 |

Table of stratigraphic and geographic distribution of species | 228 |

Conditions under which the West Indian, Central American, and Floridian coral reefs have formed, and their bearing on theories of coral-reef formation | 238 |

Definition of the term "coral reef" | 238 |

Ecology of reef-forming corals | 240 |

Hypotheses of the formation of coral reefs | 241 |

Tests of coral-reef hypotheses | 246 |

Criteria for recognizing shift in position of strand line | 246 |
CONTENTS.

Fossil Corals from Central America, Cuba, and Porto Rico, etc.—Continued.

Conditions under which the West Indian, Central American, and Floridian coral reefs have formed, and their bearing on theories of coral-reef formation.—Continued.

<table>
<thead>
<tr>
<th>Page</th>
<th>Criteria for measuring the amount of vertical shift in strand line, and for determining the relative ages of terraces and the physiographic stage attained by a shore line.</th>
</tr>
</thead>
<tbody>
<tr>
<td>247</td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>Criteria for ascertaining the rôle of corals as constructional agents.</td>
</tr>
<tr>
<td>250</td>
<td>Solubility of calcium carbonate in sea water.</td>
</tr>
<tr>
<td>251</td>
<td>Effects of wind-induced and other currents in shaping coral reefs.</td>
</tr>
<tr>
<td>252</td>
<td>Criteria for determining the effect of glaciation and deglaciation on the development of living reefs.</td>
</tr>
<tr>
<td>254</td>
<td>Amount of vertical displacement of strand line by glaciation and deglaciation.</td>
</tr>
<tr>
<td>255</td>
<td>Rate of growth of corals and length of post-Glacial time.</td>
</tr>
<tr>
<td>256</td>
<td>Effect of lowering of marine temperature on reef corals during glaciation.</td>
</tr>
<tr>
<td>256</td>
<td>Valley-in-valley arrangement and cliifed spurs.</td>
</tr>
</tbody>
</table>

American Tertiary and Pleistocene reef corals and coral reefs.  258

<table>
<thead>
<tr>
<th>Page</th>
<th>Eocene reef corals of St. Bartholomew.</th>
</tr>
</thead>
<tbody>
<tr>
<td>259</td>
<td>West Indian middle Oligocene reefs.</td>
</tr>
<tr>
<td>259</td>
<td>Antigua.</td>
</tr>
<tr>
<td>259</td>
<td>Porto Rico.</td>
</tr>
<tr>
<td>259</td>
<td>Cuba.</td>
</tr>
<tr>
<td>261</td>
<td>West Indian and Panamanian upper Oligocene reefs.</td>
</tr>
<tr>
<td>262</td>
<td>Anguilla.</td>
</tr>
<tr>
<td>262</td>
<td>Canal Zone.</td>
</tr>
<tr>
<td>262</td>
<td>West Indian Miocene reef corals.</td>
</tr>
<tr>
<td>262</td>
<td>West Indian Pleistocene reefs.</td>
</tr>
<tr>
<td>263</td>
<td>Tertiary and Pleistocene reef corals and coral reefs of the United States.</td>
</tr>
<tr>
<td>265</td>
<td>Southeastern United States.</td>
</tr>
<tr>
<td>265</td>
<td>Pliocene reef corals from Carrizo Creek, California.</td>
</tr>
</tbody>
</table>

Living coral reefs of the West Indies, Florida, and Central America.  271

<table>
<thead>
<tr>
<th>Page</th>
<th>Antigua-Barbuda Bank.</th>
</tr>
</thead>
<tbody>
<tr>
<td>271</td>
<td>St. Martin Plateau.</td>
</tr>
<tr>
<td>271</td>
<td>St. Croix Island.</td>
</tr>
<tr>
<td>271</td>
<td>Virgin Bank.</td>
</tr>
<tr>
<td>271</td>
<td>Cuba.</td>
</tr>
<tr>
<td>271</td>
<td>Bahamas.</td>
</tr>
<tr>
<td>271</td>
<td>Bermudas.</td>
</tr>
<tr>
<td>271</td>
<td>Florida.</td>
</tr>
<tr>
<td>271</td>
<td>Campeche Bank.</td>
</tr>
<tr>
<td>271</td>
<td>Honduran reefs.</td>
</tr>
<tr>
<td>271</td>
<td>Mosquito Bank.</td>
</tr>
<tr>
<td>271</td>
<td>Some other West Indian Islands.</td>
</tr>
<tr>
<td>271</td>
<td>Brazil and Argentina.</td>
</tr>
<tr>
<td>271</td>
<td>Atlantic coast of the United States north of Florida.</td>
</tr>
<tr>
<td>271</td>
<td>Types of West Indian and Central American littoral and sublittoral profiles and their relations to coral reefs.</td>
</tr>
<tr>
<td>271</td>
<td>Submerged banks north of the coral reef zone in the western Atlantic Ocean.</td>
</tr>
<tr>
<td>271</td>
<td>Summary of the conditions under which the American fossils and living reefs formed.</td>
</tr>
</tbody>
</table>
CONTENTS.

FOSSIL CORALS FROM CENTRAL AMERICA, CUBA, AND PORTO RICO, ETC.—Continued

Conditions under which the West Indian, Central American, and Floridian coral reefs have formed, and their bearing on theories of coral-reef formation.—Continued.

Coral reefs of the Pacific Ocean ........................................ 306
Great Barrier Reef of Australia ........................................ 306
New Caledonia ................................................................... 308
Fiji Islands ......................................................................... 309
Society Islands ...................................................................... 311
Tahiti .................................................................................. 311
Smaller islands of the Society group ..................................... 312
Atolls .................................................................................. 313
Conclusions .......................................................................... 319

Bearing of these conclusions on hypotheses of the formation of coral reefs ................................................. 325
Suggestions as to future investigations ..................................... 329

Systematic account of the faunas ............................................ 333

Class Anthozoa ..................................................................... 333

Madreporaria Imperforata ...................................................... 333
Family Seriatoporidae ............................................................. 333
Genus Stylophora .................................................................. 333
Pocillopora ........................................................................... 342
Madracis ............................................................................... 345
Family Astrocoenidae ............................................................ 345
Genus Astrocoenia ................................................................. 345
Stylocenia ............................................................................ 351
Family Oculinidae ................................................................. 352
Genus Oculina ....................................................................... 352
Archohelia ............................................................................. 352
Family Eusmiliidae ............................................................... 354
Genus Asteroeimilia ............................................................... 354
Stephanocenia ...................................................................... 356
Dichocoenia ......................................................................... 360
Eusmilia ............................................................................... 361
Family Astrangiidae .............................................................. 361
Genus Cladocora ................................................................... 361
Family Orbicellidae ............................................................... 362
Genus Orbicella .................................................................... 362
Solenastrea ........................................................................... 395
Antiquastrea ........................................................................ 401
Stylangia .............................................................................. 410
Sepastrea ............................................................................. 411
Family Faviidae ................................................................. 412
Genus Favia .......................................................................... 412
Favites ............................................................................... 414
Goniastrea ........................................................................... 416
Maeandra ............................................................................. 417
Leptoria .............................................................................. 421
Manicina .............................................................................. 421
Thysanus ............................................................................. 423
Family Mussidae ................................................................. 424
Genus Syzygophyllia .............................................................. 424
## CONTENTS.

*Fossil Corals from Central America, Cuba, and Porto Rico, etc.—Continued.*

Systematic account of the faunas—Continued.

<table>
<thead>
<tr>
<th>Class Anthozoa—Continued.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madreporaria Fungida</td>
<td>425</td>
</tr>
<tr>
<td>Family Agaricidae</td>
<td>425</td>
</tr>
<tr>
<td>Genus Trochosarida</td>
<td>425</td>
</tr>
<tr>
<td>Agaricia</td>
<td>426</td>
</tr>
<tr>
<td>Pavona</td>
<td>430</td>
</tr>
<tr>
<td>Leptoseris</td>
<td>431</td>
</tr>
<tr>
<td>Fimiastraee</td>
<td>432</td>
</tr>
<tr>
<td>Siderastrea</td>
<td>435</td>
</tr>
<tr>
<td>Family Oulastreidae</td>
<td>453</td>
</tr>
<tr>
<td>Genus Cyathomorpha</td>
<td>454</td>
</tr>
<tr>
<td>Diplasteria</td>
<td>469</td>
</tr>
<tr>
<td>Madreporaria Perforata</td>
<td>479</td>
</tr>
<tr>
<td>Family Eupsammiidae</td>
<td>479</td>
</tr>
<tr>
<td>Genus Balanophyllia</td>
<td>479</td>
</tr>
<tr>
<td>Family Acroporidae</td>
<td>479</td>
</tr>
<tr>
<td>Genus Acropora</td>
<td>479</td>
</tr>
<tr>
<td>Astreopora</td>
<td>483</td>
</tr>
<tr>
<td>Actinacis</td>
<td>486</td>
</tr>
<tr>
<td>Family Poritidae</td>
<td>488</td>
</tr>
<tr>
<td>Genus Goniopora</td>
<td>488</td>
</tr>
<tr>
<td>Porites</td>
<td>498</td>
</tr>
</tbody>
</table>

**Class Hydrozoa**

| Order Hydrocorallinae      | 507  |
| Family Milleporidae        | 507  |
| Genus Millepora            | 507  |

Explanation of plates

Index

---

### The sedimentary formations of the Panama Canal Zone, with special reference to the stratigraphic relations of the fossiliferous beds.

*By Donald Francis MacDonald.*

<table>
<thead>
<tr>
<th>Sedimentary formations</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>525</td>
</tr>
<tr>
<td>Sedimentary formations</td>
<td>526</td>
</tr>
<tr>
<td>Eocene (?)</td>
<td>526</td>
</tr>
<tr>
<td>Bas Obispo formation</td>
<td>526</td>
</tr>
<tr>
<td>Las Cascadas agglomerate</td>
<td>526</td>
</tr>
<tr>
<td>Oligocene</td>
<td>526</td>
</tr>
<tr>
<td>Bohio conglomerate</td>
<td>526</td>
</tr>
<tr>
<td>Culebra formation</td>
<td>527</td>
</tr>
<tr>
<td>Cucuracha formation</td>
<td>527</td>
</tr>
<tr>
<td>Emperador limestone</td>
<td>531</td>
</tr>
<tr>
<td>Caimito formation</td>
<td>531</td>
</tr>
<tr>
<td>Miocene</td>
<td>531</td>
</tr>
<tr>
<td>Gatun formation</td>
<td>531</td>
</tr>
<tr>
<td>Panama formation</td>
<td>532</td>
</tr>
<tr>
<td>Pliocene</td>
<td>532</td>
</tr>
<tr>
<td>Toro limestone</td>
<td>532</td>
</tr>
<tr>
<td>Chagres sandstone</td>
<td>532</td>
</tr>
</tbody>
</table>

Pleistocene

Descriptions of local sections across the Isthmus of Panama

<table>
<thead>
<tr>
<th>Section in canal cut 600 feet south of Miraflores Locks.</th>
<th>533</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section at Canal Commission station 2089 south of Miraflores Locks</td>
<td>533</td>
</tr>
</tbody>
</table>
The sedimentary formations of the Panama Canal Zone—Continued.

Descriptions of local sections across the Isthmus of Panama—Continued.

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section, north end of Miraflores Locks</td>
<td>534</td>
</tr>
<tr>
<td>Section, Pedro Miguel Locks to Paraiso Bridge</td>
<td>534</td>
</tr>
<tr>
<td>Section at Bald Hill near Miraflores Locks</td>
<td>534</td>
</tr>
<tr>
<td>Section along east side of Gaillard Cut from Canal Commission stations 1843 to 1850</td>
<td>535</td>
</tr>
<tr>
<td>Section on west side of Gaillard Cut from Canal Commission stations 1775 to 1756</td>
<td>535</td>
</tr>
<tr>
<td>Section on west side of Canal Commission station 1720, near Empire, to 1740, near Culchra</td>
<td>536</td>
</tr>
<tr>
<td>Section on west side of Gaillard Cut near Las Cascadas, Canal Commission stations 1617 to 1597</td>
<td>537</td>
</tr>
<tr>
<td>Sections in cuttings of Panama Railroad near Caimito Junction</td>
<td>539</td>
</tr>
<tr>
<td>Railroad cut near stream about midway between Rio Frijol and Rio Frijolito</td>
<td>539</td>
</tr>
<tr>
<td>Section in railway cuts near New Frijoles</td>
<td>540</td>
</tr>
<tr>
<td>Section showing chief railway cuttings and outcrops along the Panama Railroad between Bohio and Monte Lirio</td>
<td>540</td>
</tr>
<tr>
<td>Exposure a quarter of a mile northwest of old Bohio railroad station</td>
<td>541</td>
</tr>
<tr>
<td>Exposure opposite old Bohio railroad station, north side of the railroad track</td>
<td>541</td>
</tr>
<tr>
<td>Section at Peña Blanca, about one mile below Bohio, on the west side of Chagres River</td>
<td>541</td>
</tr>
<tr>
<td>Section at Vamos à Vamos, 2½ miles below Bohio, west side of Chagres River</td>
<td>542</td>
</tr>
<tr>
<td>Section on Panama Railroad from Monte Lirio to outcrop of Gatun formation on south side of Big Swamp</td>
<td>542</td>
</tr>
<tr>
<td>Section showing Gatun formation, one-quarter to one-half mile from Camp Cotton, toward Monte Lirio, at big curve on railroad</td>
<td>542</td>
</tr>
<tr>
<td>Large railway cutting a quarter of a mile from Camp Cotton, toward Monte Lirio</td>
<td>543</td>
</tr>
<tr>
<td>In the next two exposures going toward Camp Cotton</td>
<td>543</td>
</tr>
<tr>
<td>Section in cut one-half mile west of Camp Cotton toward Gatun</td>
<td>543</td>
</tr>
<tr>
<td>Generalized sections of the bluff exposed along the Panama Railroad, relocated line, about 3,500 feet south of Gatun railroad station</td>
<td>543</td>
</tr>
<tr>
<td>Section from top of hill at western end of Gatun dam to bottom of the spillway</td>
<td>543</td>
</tr>
<tr>
<td>Section at west end of the spillway</td>
<td>543</td>
</tr>
<tr>
<td>Exposures in the vicinity of Mindi Hill</td>
<td>544</td>
</tr>
<tr>
<td>Monkey Hill, Mount Hope station</td>
<td>544</td>
</tr>
<tr>
<td>Section of bluff at end of Toro Point</td>
<td>544</td>
</tr>
<tr>
<td>Section one-third mile south of southern end of Toro Point Breakwater, in quarry</td>
<td>545</td>
</tr>
</tbody>
</table>

The biologic character and geologic correlation of the sedimentary formations of Panama in their relation to the geologic history of Central America and the West Indies. By Thomas Wayland Vaughan.

Introduction                                                                 | 547  |
| Biologic character of the sedimentary formations in Panama                  | 547  |
| Eocene                                                                       | 547  |
| Oligocene                                                                    | 549  |
| Bohio conglomerate                                                           | 549  |
| Limestone on Haut Chagres                                                    | 549  |
| Limestone at David                                                           | 549  |
| Large Foraminifera from David                                                | 549  |
**CONTENTS.**

**The biologic character and geologic correlation of the sedimentary formations of Panama, etc.—Continued.**

Biologic character of the sedimentary formations in Panama—Con.

<table>
<thead>
<tr>
<th>Oligocene—Continued.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culebra formation</td>
<td>550</td>
</tr>
<tr>
<td>Fossils from the Culebra formation</td>
<td>551</td>
</tr>
<tr>
<td>Deposits of the age of the Culebra formation near Tonosi</td>
<td>554</td>
</tr>
<tr>
<td>Larger Foraminifera from near Tonosi</td>
<td>555</td>
</tr>
<tr>
<td>Fossil corals from station 6587, Tonosi</td>
<td>555</td>
</tr>
<tr>
<td>Cucuracha formation</td>
<td>555</td>
</tr>
<tr>
<td>Emperador limestone</td>
<td>556</td>
</tr>
<tr>
<td>Fossils from the Emperador limestone</td>
<td>557</td>
</tr>
<tr>
<td>Caimito formation</td>
<td>558</td>
</tr>
<tr>
<td>Miocene</td>
<td>558</td>
</tr>
<tr>
<td>Gatun formation</td>
<td>558</td>
</tr>
<tr>
<td>Fossils, except Mollusca, from the Gatun formation</td>
<td>559</td>
</tr>
<tr>
<td>Mollusca from the Gatun formation, according to Brown and Pilsbry</td>
<td>560</td>
</tr>
<tr>
<td>Pliocene</td>
<td>562</td>
</tr>
<tr>
<td>Toro limestone</td>
<td>562</td>
</tr>
<tr>
<td>Pleistocene</td>
<td>563</td>
</tr>
<tr>
<td>Fossils from the Pleistocene of the Canal Zone</td>
<td>563</td>
</tr>
<tr>
<td>Correlation of the sedimentary formations of Panama</td>
<td>565</td>
</tr>
<tr>
<td>Tertiary formations of the southeastern United States</td>
<td>565</td>
</tr>
<tr>
<td>A provisional correlation table of the Tertiary formations of the South Atlantic and eastern Gulf Coastal Plain of the United States</td>
<td>569</td>
</tr>
<tr>
<td>Correlation of the Tertiary formations of the southeastern United States with European subdivisions of the Tertiary</td>
<td>569</td>
</tr>
<tr>
<td>Eocene</td>
<td>569</td>
</tr>
<tr>
<td>Oligocene</td>
<td>570</td>
</tr>
<tr>
<td>Miocene</td>
<td>572</td>
</tr>
<tr>
<td>Alum Bluff formation</td>
<td>572</td>
</tr>
<tr>
<td>Marks Head marl and the Calvert formation</td>
<td>574</td>
</tr>
<tr>
<td>Choptank and St. Marys formations</td>
<td>575</td>
</tr>
<tr>
<td>Yorktown formation and Duplin marl</td>
<td>575</td>
</tr>
<tr>
<td>Choctawhatchee marl</td>
<td>576</td>
</tr>
<tr>
<td>Pliocene</td>
<td>576</td>
</tr>
<tr>
<td>Age of the sedimentary formations of Panama, and the distribution of their age-equivalents in Central America and the West Indies</td>
<td>577</td>
</tr>
<tr>
<td>Eocene</td>
<td>577</td>
</tr>
<tr>
<td>Oligocene</td>
<td>578</td>
</tr>
<tr>
<td>Lower Oligocene</td>
<td>578</td>
</tr>
<tr>
<td>Middle Oligocene</td>
<td>582</td>
</tr>
<tr>
<td>Upper Oligocene</td>
<td>585</td>
</tr>
<tr>
<td>Miocene</td>
<td>586</td>
</tr>
<tr>
<td>Pliocene</td>
<td>593</td>
</tr>
<tr>
<td>Tentative correlation table of the Tertiary marine sedimentary formations of Panama</td>
<td>595</td>
</tr>
<tr>
<td>Pre-Tertiary formations in Central America and the West Indies</td>
<td>595</td>
</tr>
</tbody>
</table>
CONTENTS.

The biologic character and geologic correlation of the sedimentary formations of Panama, etc.—Continued.

Outline of the geologic history of the perimeters of the Gulf of Mexico and the Caribbean Sea ........................................ 596
Geographic relations of the three Americas ........................................ 597
General relations ........................................................................ 598
Tectonic Provinces ..................................................................... 599
Bahamas .................................................................................. 599
Atlantic and Gulf Coastal Plain ............................................... 600
Mexican Plateau ....................................................................... 600
Oaxaca-Guerrero ...................................................................... 600
Yucatan ................................................................................... 601
Guatemala-Chiapas .................................................................. 601
Cuba ....................................................................................... 601
Haiti, northern part .................................................................. 601
Honduras and the Jamaican Ridge ........................................... 602
Haiti, southern part, Porto Rico, and the Virgin Islands .......... 602
Saint Croix ............................................................................. 603
Costa Rica-Panama .................................................................. 603
Andes ..................................................................................... 603
Maritime Andes ...................................................................... 604
Caribbean Islands .................................................................... 604
Barbadian Ridge ...................................................................... 604
Caribbean Arc .......................................................................... 604
Aves Ridge .............................................................................. 604
Paleogeographic summary ..................................................... 604
Late Paleozoic ......................................................................... 605
Triassic, Jurassic, and Cretaceous ........................................... 606
Eocene and Oligocene ............................................................ 607
Miocene .................................................................................. 607
Pliocene and later .................................................................... 609
Tabular summary of some of the important events in the geologic history of the West Indies and Central America .......... 611
ON SOME FOSSIL AND RECENT LITHOTHAMNIEAE OF THE PANAMA CANAL ZONE.

By Marshall A. Howe,
Of The New York Botanical Garden.

INTRODUCTION.

The following report is based chiefly upon a number of specimens of fossil calcareous algae, of the group known to geologists as "Nullipores," from Oligocene and Pleistocene strata in the Panama Canal Zone, collected in 1911 by D. F. MacDonald and T. W. Vaughan, of the United States Geological Survey.

In this material the Pleistocene period is represented by a single collection (MacDonald, 6039), consisting of numerous excellent free specimens, "from flats near Mount Hope, five feet above tide level." These Pleistocene specimens appear to the writer to belong to a species found by him a year or two earlier to be living in the Colon region, only a few kilometers distant. This species, so far as the writer can determine, has been hitherto undescribed; in framing its diagnosis, as published below, the fossil as well as the recent material has been considered, but a recent specimen, being more complete and satisfactory for detailed study, has been named as the technical type of the species.

So far as the present writer has been able to discover, the fossil coralline algae of America, in their taxonomic aspects at least, offer a practically untouched field for research. It is, of course, possible that geological and paleontological papers in which calcareous algae have been described have escaped the attention of phycologists, but inquiry among American geologists and paleontologists and a search of accessible literature have thus far revealed to the writer but a single \(^1\) hitherto described species of fossil Lithothamnium from the Western Hemisphere, namely, Lithothamnium curasavicum K. Martin, from the Island of Curacao, a species to which further allusion is made below in the discussion of Archaeolithothamnium episporum.

\(^1\) Stromatopora compacta Billings (Palaeozoic Fossils, vol. 1, p. 55, 1862) from the Island of Montreal, etc., has sometimes been considered by geologists to be of coralline affinities (the species has been referred to Solenopora by Nicholson and Etheridge, Geol. Mag., vol. 3, p. 529, 1885), but, if we may judge from published figures, the organism seems to the writer hardly a coralline alga, if indeed it is an alga at all.
The fossil Lithothamniiaceae of Europe have been described and figured in considerable number and with various degrees of care and detail. Most of these European descriptions and figures the writer has been able to see; some of them offer a reasonable basis for the future recognition of the forms concerned, without a reexamination of the original materials, but many of them do not. The present writer has had access to a good representation of the living Lithothamniiaceae of North America, the West Indies, Europe, and the East Indies, but so far as the fossil forms are concerned, he has had to depend upon descriptions and figures alone, which, as stated above, are often very unsatisfactory. In venturing to propose as new, two species of Lithothamniiaceae from Oligocene strata of the Panama Canal Zone, he doubtless risks the possibility that some future investigator, working with better materials or even with the same, may be able to convince himself or even to prove conclusively, that one or both of said species should be considered identical with species previously described from Europe. The diagnostic characters, the limits of variation, and the geographic range of even the living species are still very imperfectly understood. Some of the species are evidently widely distributed within certain temperature limits; others are at present known from single localities. So far as may be inferred from our present knowledge, very few, if any, of the forms of Lithothamniiaceae now living in tropical America occur also in European waters.

**LIST OF SPECIES AND THEIR GEOLOGIC OCCURRENCE.**

*Archaeolithothamnium episorum,* new species. Recent, Toro Point; and Pleistocene, Mount Hope; both in the Canal Zone.

*Lithothamnium vaughnii,* new species, Oligocene, Culebra formation at station 6026, about half way between Monte Lirio and Bohio Ridge.

*Lithothamnium isthmi,* new species, Oligocene, Emperador limestone at stations 6021, about 4 miles north of Gamboa Bridge, and 6024—a, Rio Agua Salud, Panama Railroad (relocated line).

*Lithoporella melobesioides* (Foslie) Foslie, Oligocene, Emperador limestone at station 6024—c, Rio Agua Salud, Panama Railroad (relocated line).

**ARCHAEOLITHOTHAMNIIUM: EPISORUM,** new species.

Plates 1 to 6.

Brownish red when living, the thallus forming at first widely expanded crusts 0.25–1.0 mm. thick, these in many cases repeatedly overgrown, the resulting crusts becoming 5 mm. or more thick, sometimes remaining nearly smooth or exhibiting the irregularities of the

---

1 We follow Rothpletz's original spelling of the final syllable of this unfortunately long name, a spelling that, happily, agrees with Philippi's spelling of the final syllable of *Lithothamnium.*
stratum alone, but more often developing coarse, irregular rounded excrescences 5–12 mm. in diameter, or short rounded verrucae or nodules 2–5 mm. in diameter, the surface in sterile parts mostly smooth, indurated, and occasionally subnitent; hypothallia varying from weakly to strongly developed, 30–170 μ thick, their cells 17–28 μ by 8–11 μ; cells of the perithallium in distinct and regular layers except in oldest and youngest parts, the layers in more or less distinct zones, layers of short and of long cells occasionally alternating, cells mostly 8–15 μ by 5–8 μ, in decalcified condition submoniliate, sphaeroidal to ellipsoidal, 1–2½ times as high as broad, in calcified condition mostly subquadrate or oblong in vertical section: sporangia superficial, their apicula even with the surface, or slightly protruding, their cavities becoming only imperfectly and irregularly embedded, the sori slightly elevated, very irregular in outline, mostly 0.1–1.0 mm. broad. often widely confluent and anastomosing and becoming 5 mm. or more broad, the surface at length whitish and scarios, the ostioles mostly 16–22 μ in diameter, sporangia 65–96 μ high (including apiculum), 27–50 μ broad, 4-partite (occasionally 2-partite?). the spores irregularly paired or rarely subzonate.

Localities and geologic occurrence.—Covering dead corals, etc., and often forming concretionary pebbles with coral cores, from low-water mark to a depth of several meters, Point Toro, near Colon, Panama Canal Zone. Howe 6832 (type, in Herb. N. Y. Bot. Gard.), January 7, 1910; Colon, Howe 6840 (this covers continuously a mass of old coral 32 cm. long and 14 cm. in greatest width); also, as a Pleistocene fossil, "from flats near Mount Hope, five feet above tide level," D. F. MacDonald, station 6039.¹ 1911.

Paratypes.—Cat. No. 35298, U.S.N.M.

In outward form and in its habit of overgrowing old corals, Archaeolithothamnium episporum resembles A. erythraeum (Rothpletz) Foslie, f. durum (Heydrich) Foslie, from the Red Sea and the East Indies, especially as illustrated by Weber-van Bosse and Foslie (Corallinaceae of the Siboga Expedition, pl. 5). Of this species we have seen only one specimen (from near Makassar), communicated by Mme. Weber-van Bosse, but from this and from the descriptions and figures of A. erythraeum published by Foslie, Heydrich, and Lemoine, we infer that the Panamanian specimens represent a different species. Perhaps the most important distinctive character of A. episporum is to be found in its more superficial sporangia, as may be seen by comparing our photographs (pl. 2, fig. 1; pl. 3) with Heydrich's figure² of a vertical section through a sporangial sorus of his

¹ This is associated with minor amounts of other crustaceous corallines, including Lithophyllum, species, and Goniolithon, species.

Sporolithon ptychoides, which Foslie¹ and Lemoine² consider to be synonymous with A. erythraeum. The sori or the emptied sporangial cavities appear also to be much less regularly embedded or overgrown by new tissue than is the case in A. erythraeum, if one may judge from Rothpletz’s original description,³ Heydrich’s figure 3,⁴ Lemoine’s figure 29,² and the descriptions given by the last-named writers; however, Foslie⁵ remarks of A. erythraeum that “the sori are partly to be found overgrown in great numbers by new formed tissue, partly, however, they are not to be seen in section.” In A. episporum, the sporangia themselves have never been seen except close to the surface; the emptied sporangial cavities do not show in a rough fracture or in an ordinary ground section, but irregular traces of them are often to be found in thin microtome sections of decalcified material. The sori of A. episporum are so superficial that their covering, after the discharge of the spores, appears to die and is flaked off together with more or less of the intersporangial parts, and the new tissue growing up from the base of the sori shows only occasionally and imperfectly the outline of the former sporangial cavities.

Rothpletz’s original description of his Lithothamnium erythraeum leaves one in some doubt as to whether he found the contents of the sporangium divided or undivided; he uses the term “Tetrasporen,” but the measurements that he gives for these “Tetrasporen” are such as commonly belong to the whole sporangium in this group. In Heydrich’s first description ⁶ of his Sporolithon ptychoides, the “Tetrasporangien” are said to be “meist ungetheilt, selten zweitheilig,” but a little later ⁷ he figures four tetra-spores in a sporangium, arranged in the “cruciate” manner. But this mode of division being at variance with the prevailing ideas as to the arrangement of the spores in the Corallinaceae, Foslie,⁸ a little later in writing a diagnosis of the genus Archaeolithothamnium inserted a question mark after “sporangia * * * unparted or cruciate?” and this sign of doubt as to the cruciate division has been repeated by later writers.⁹ In A. episporum the mature sporangia are commonly and normally 4-parted in an irregularly “cruciate” fashion, but often the division axes of the two pairs of spores are at right angles to each other, so that only three spores are visible in a lateral view, and occasionally

¹ Siboga Exped. Monog., No. 61, p. 38. 1904.
⁵ Siboga Exped. Monog., No. 61, p. 41. 1904.
⁷ Idem, pl. 18, fig. 3.
the second divisions seem to be omitted and the sporangium is apparently mature with only two spores. Very irregular types of division also occur, and rarely one finds an approach to the zonate arrangement characteristic of most of the Corallinaceae.

The perithallial cells of A. episorum appear to be, in the decalcified state, more rounded and in more moniliform filaments than is the case in A. erythraeum, as may be seen by comparing our photomicrograph with the photomicrograph of a presumably decalcified section of A. erythraeum—published by Lemoine. The distinct stratification of the perithallium of A. episorum is due, in part, to the alternation of layers of long and short cells, but we have never seen in the Panamanian species any such striking alternation of long and short cells as is shown in this photograph published by Mme. Lemoine and as is shown still more emphatically in Heydrieh's figure 3 of a vertical section of his Sporolithon ptychoides.

From Archaeolithothamnium dimotum Foslie and Howe, the only living species of this genus previously described from the West Indian region, A. episorum differs widely in its thicker crusts, in its more superficial sporangial sori, which are for the most part exfoliated after maturity of the sporangia and are only obscurely and imperfectly overgrown, in the usually larger, more rounded, and more monilately arranged cells of the perithallium, the larger and rather less widely separated sporangial ostioles, etc.

Archaeolithothamnium curasavicenum (K. Martin) Foslie, a Cretaceous fossil from the island of Curacao, is described and figured as showing distinctly rows of embedded sporangial cavities, such as would not be seen even in a thin decalcified section of A. episorum. A Pleistocene fossil, collected by MacDonald at station 6039, from flats near Mount Hope, came from a few kilometers from the localities where we found the plant living, and we can entertain no serious doubt as to the specific identity of the recent and the fossil forms. The living and fossil are similar in external habit, as may be seen by comparing plates 1 and 4. They are similar also in their relations to old corals, and in structure (compare fig. 1, pl. 2, and fig. 4, pl. 5) they appear to exhibit only such differences as may be ascribed to individual variation or as may be expected in comparing the recent or living with the long dead. But little remains of the fossil speci-

1 Zonately 4-parted sporangia have been described by Foslie for the Californian Archaeolithothamnium zonatosporum (Foslie, Algologiske Notiser, II, Kgl. Norske Vidensk. Selsk. Skr., 1906, pt. 2, p. 14), so that it would appear that this genus exhibits a wide variety in the matter of division of its sporangia.

2 Plate 3, fig. 2.


5 Bull. N. Y. Bot. Gard., vol. 4, p. 128, pl. 80, fig. 1; pt. 87, 1906.

6 Lithothamnium cerasavicenum K. Martin, Bericht über eine Reise nach Niederländisch West-Indien und darauf gegründete Studien. II, Geologie, p. 28, pl. 2, figs. 22-25, 1888.
mens after decalcification, though the outlines of the cells may be recognized here and there. As microtome sections of the decalcified fossil material are out of the question, comparisons of structure of the recent and fossil must naturally be based upon calcareous ground sections. And in comparing the cell structure in sections of the recent decalcified specimens (pl. 3) with that shown in ground sections of the calcareous fossils, it is necessary, of course, to bear in mind that cells in calcareous ground sections of the Corallinaceae commonly appear much more rectangular than in decalcified sections of the same material. In the sections of the fossil material thus far made there are no certainly recognizable traces of sporangial cavities, but this is true in almost an equal degree of calcareous ground sections of the recent specimens except as to the surface of the plant (fig. 1, pl. 2), where the sori are, in fact, so decidedly superficial or even exerted that they could, perhaps, hardly be expected to persist in the fossil state.

In the same locality with the type-specimens (Howe 6832) there occurs an outwardly somewhat similar plant (Howe 6837) that we at first suspected to be the antheridial form of A. episporum, but certain recognizable, though possibly unimportant, differences in the form, size, and zonation of the perithallic cells have restrained us from so considering it. The antheridial conceptacle (cavities) in this 6837 are 64–95 μ broad and 60–72 μ high; they become copiously embedded by the continued upward or outward growth of the thallus.

**Lithothamnium** vaughanii, new species.

Plate 7, figs. 1 and 2, and plate 8.

Thallus forming at first expanded crusts 1–2 mm. thick, these becoming overgrown, irregularly stratified, and 10 mm. or more thick, developing finally numerous, rather coarse, crowded anastomosing branches, and forming masses 2–4 cm. or more high; branches mostly 3–12 mm. in diameter, usually much flattened, occasionally subterete, often reduced to anastomosing ridges, or sometimes appearing as dome-shaped elevations 2 cm. or more broad; primary hypothallia somewhat reduced, their cells 14–33 μ by 8–14 μ, rather irregularly arranged (i.e., not distinctly “coaxial”), cells of medullary hypothallia mostly 15–30 μ by 5–13 μ, secondary hypothallia numerous and thin; branches showing in section numerous narrow irregularly flexuous, often subelliptic-lenticular or subcrescentic zones caused by

---


2 The writer believes, with Mme. Paul Lemoine, that the current rules of nomenclature require that Philippi’s original spelling of this generic name should be respected, even though prevailing usage has modified the final syllable. Whether the rules of nomenclature justify the use of this generic name for any of the species now bearing it is a more complicated question.
the alternation of layers of short and long perithallic cells, or by the interpolation of reduced secondary hypothallia; the larger perithallic cells mostly 13–22 μ by 11–14 μ, usually higher than broad, the smaller subquadrate, about 8 μ square, or sometimes much compressed (7 μ high, 14 μ broad); conceptacles becoming embedded; tetrasporic conceptacles much flattened, oblong or elliptic-oblong in radio-vertical section, the cavity 500–740 μ in maximum width, 130–230 μ in height: roof of the tetrasporic conceptacle rather sharply defined, its cells in regular vertical rows of 1–4 cells, often elongate vertically, becoming sometimes 25–30 μ high.

Locality and geologic occurrence.—Oligocene, Culebra formation, "about half way between Monte Lirio and Bohio Ridge, on the relocated line of the Panama Railroad," collected by D. F. MacDonald and T. W. Vaughan, 1911 (station No. 6026).

Holotype and paratypes.—Cat. Nos. 35299, 35300, U.S.N.M.

The specimens obtained are more or less embedded in a hard rock matrix, so that our photograph (fig. 1, pl. 7) can give only an imperfect idea of the outward form of the plant. With a little mental clearing away of the matrix, it seems probable that in size and external appearance, the species may be compared with rather coarse eroded conditions of the living Lithothamnium glaciale Kjellman, but there is little similarity in structure; the perithallic cells of L. vaughanii average considerably larger than those of L. glaciale and they are arranged in more distinct layers; the embedded tetrasporic conceptacles of L. vaughanii are more flattened than those of L. glaciale, their cavities have about twice the maximum width of those of L. glaciale and the specialized character of the conceptacle roof is not noticeable in L. glaciale.

In external habit Lithothamnium vaughanii may perhaps be compared also with the living Lithophyllum racemus (Lamarck) Foslie forma crassum (Philippi) Foslie1 of the Mediterranean and Adriatic seas, especially as shown in Hauck's figure 2 under the name Lithothamnium crassum Philippi, though the Panamanian fossil sometimes develops longer and perhaps more flattened branches than this form.

Of the living Lithothamniaceae now known to the present writer as occurring in the West Indian region, Lithothamnium vaughanii per-

---

1 Kgl. Norske Vidensk. Selsk. Skr., 1898, pt. 3, p. 9, 1898. Foslie’s identification of Lithothamnium crassum Philippi as a form of Lithophyllum racemus (Lamarck) Foslie was accepted by Heydrich (Bot. Jahrb., vol. 28, p. 536, 1901), but Mme. Lemoine quotes Lithothamnium crassum Philippi as a synonym of Lithothamnium calcareum (Pallas) Areschoug. It is not, however, apparent that any of these writers examined authentic material of Philippi’s Lithothamnium crassum, if such exists. It is of some interest, also, to note that less than six months before Heydrich accepted Lithothamnium crassum Philippi as a form of Lithophyllum racemus he named it as the type of a proposed new genus Stichospora (Ber. Deuts. Bot. Ges., vol. 18, p. 316, 1900).

haps most resembles *Lithophyllum daedaleum* Foslie and Howe as to general habit, but differs from it much in structure.

In the best section, No. 35299 U.S.N.M., the one from which the photographs (fig. 2, pl. 7 and pl. 8) were made, the coarse intersporangial sterile tissue of the tetrasporic conceptacles is scarcely shown, yet the roofs of the conceptacles show unmistakable canals and none of the conceptacles in section exhibits a single orifice, so that we consider ourselves justified in inferring that the specimen in question is tetrasporic and that it belongs in the genus *Lithothamnium* in the sense in which that name is currently applied to living plants. In a section from another specimen under the same collection number, traces of the sporangia and of the intersporangial sterile tissue are evident. It is to be observed also that the zonate arrangement of tissues, as observed in a section, is essentially of the character assumed by Mme. Lemoine as being peculiar to the genus *Lithothamnium*. The rather distinctly specialized nature of the cells of the conceptacle roof is evidently a character of importance, in which respect it differs markedly from the plant we are describing as *Lithothamnium isthmi*, as also in the distinctly zonate structure of the thallus, the reduced hypothallium, the larger tetrasporic conceptacles, larger perithallic cells, etc.

Among the more fully described fossil Lithothamnianeae, *L. caughanii* may perhaps be compared with *Lithothamnium suganum* Rothpletz from the Tertiary ("Scio-Schichten") of Val Sugana, near Borgo in the Austrian Tyrol, but the conceptacles of the Panamanian fossil are much larger (500-740 μ wide and 130-230 μ high vs. 250 μ wide and 100 μ high) and the perithallic cells appear to average considerably larger, being sometimes 13-22 μ high, while those of *L. suganum* are described as 9-12 μ long.

**LITHOTHAMNIUM ISTHMI**, new species.

Plate 7, fig. 3: plates 9, 10, and 11.

Thallus forming at first stratified crusts 3-12 mm. thick, but at length developing tortuous anastomosing branches and forming large rather solid, concrescent, fruticose masses: branches mostly 2-12 mm. in diameter, much flattened or subterete, often subconic-cylindric, flexed-digitiform, or molariform; hypothallia showing regular concentric layers of cells ("coaxial"): hypothallium of the crustaceous parts 160-450 μ thick, its cells 17-28 μ by 8-13 μ, transition to the

---

perithallium abrupt; medullary hypothallium of the branches mostly 0.6–2.0 mm. in diameter, often turning yellow and more or less disintegrated, its cells 17–44 μ by 8–13 μ, transition to the perithallium abrupt or gradual; cells of the perithallium in distinct layers, the layers in rather indistinct zones; perithallic cells of the crustaceous parts subquadrate. 8–11 μ in diameter, sometimes only 6 μ broad; perithallic cells of the branches usually a little higher than broad. 8–19 μ by 8–12 μ; conceptacles becoming embedded; tetrasporic conceptacles appearing much flattened in a vertical section, the cavity 240–550 μ in maximum width, 130–165 μ in height.

Localities and geologic occurrence.—In Emperador limestone of Oligocene age (and often constituting the dominant element in its composition) on relocated line of the Panama Railroad, opposite San Pablo, Panama Canal Zone ("first limestone outcrop just north of Caimito Station, about four miles north of Gamboa Bridge"), collected by D. F. MacDonald and T. W. Vaughan, 1911, Station No. 6021 (No. 35301, type); and "above foraminiferous marl at Agua Salud Bridge about ½ mile north of New Friioles on relocated line, Panama Railroad," by the same collectors, Station No. 6024b.

Holotype and paratypes.—Cat. Nos. 35301 to 35303, U.S.N.M.

The material upon which the above description is based shows much variation in form and structure and it was our first impression that two or more species were represented in it. However, if this is true, the two or more species are so intergrown and entangled and are so similar in structure that it is difficult to determine where one begins and the other ends. As regards the vegetative structure, we believe that we have been able to trace the continuous organic connection of the two types shown in our photomicrographs (pl. 9 and fig. 2, pl. 11), yet it is notoriously easy in the case of overgrowing and overgrown fossil Lithothamnii to mistake the close contact of independent plants for structural continuity.

In the tetrasporangial specimen (No. 35301—fig. 3, pl. 7 and pl. 9) that we have named as the type, the thallus presents itself in the form of irregularly superposed crusts, more or less overlaid by crusts showing a somewhat different structure and conceptacles of a different sort, these outer layers probably representing a crustaceous species of Lithophyllum. The hypothallium of this No. 35301 is suggestive of that figured by Foslie ¹ for his living Lithothamnium fragilissimum from Borneo (which, however, has a much thinner thallus). It suggests also the hypothallium of Lithothamnium lich-

enoides, as figured by Rosanoff and by Lemoine, but the crusts are evidently more massive than in that species.

Although the outward form of Lithothamnium isthmi is more or less obscured by being embedded in rock, it seems probable that in its typical condition (No. 35301) the external appearance of the plant may be compared with the recent plant from the Adriatic Sea figured by Hauck as "Lithophyllum decussatum Solms," which Foslie afterwards referred to his Lithothamnium philippii—a species that he maintained even after conceding its specific identity with the earlier-published Lithophyllum crispatum Hauck. The typical form of Foslie's Lithothamnium philippii is said by him "to have its hypothallium distinctly marked and vigorously developed, forming a coaxilat layer," but the "coaxial" character is essentially denied by Mme. Lemoine to what she considers the same species under the name Lithothamnium crispatum Hauck. The perithallic cells of the crustaceous parts of Lithothamnium isthmi appear to average considerably smaller than those of L. crispatum (L. philippii) according to the measurements given by Lemoine and by Foslie. The tetrasporangial conceptacles of the Lithophyllum decussatum of Hauck (Lithothamnium philippii Foslie) are stated by Hauck to be "800μ bis 1 mm." in diameter, while in Lithothamnium isthmi they are only 240–550 μ in maximum width. Moreover, unless we are mistaken in connecting the fruticulose parts of the Panamanian fossil with the crusts, Lithothamnium isthmi develops numerous solid anastomosing branches, while in L. crispatum the short branchlike excrescences are mostly hollow, infundibuliform, or scyphiform. These fruticulose conditions, which comprise a large part of the material collected by MacDonald and Vaughan, suggest in external form certain states of the living West Indian Lithophyllum daedaleum Foslie and Howe, which also presents itself in both crustaceous and fruticulose conditions. Occasionally an unusually long subterete branch may resemble in form a frag-

2 Ann. Inst. Océanogr., vol. 2, pt. 2, fig. 60, 1911. It is of interest to note that Mme. Lemoine, basing her system of classification primarily upon the vegetative structure of the thallus, leaves Lithothamnium lichenoides in the genus Lithophyllum, notwithstanding the fact that its tetrasporangia are borne as in the genus Lithothamnium of modern writers. In the same way she would doubtless place Lithothamnium isthmi in the genus Lithophyllum, even though this species (or its type at least) clearly has the tetrasporangial conceptacles of the conventional Lithothamnium.
3 Hauck, F. Die Meeresalgen Deutschlands und Oesterreichs, pl. 1, fig. 7. See also pl. 1, fig. 1, of Foslie's Die Lithothamnien des Adriatischen Meeres und Marokkos (Wiss. Meeresuntersuch, Helgoland, vol. 7, pt. 1, 1904).
ment of the living East Indian *Lithothamnium pulchrum* A. Weber and Foslie.¹

*Lithothamnium foslei* (Trabucco) De Toni (Syll. Alg., vol. 4, p. 1761, 1905), a Miocene fossil from Italy, is figured ² as having a "coaxial" hypothallium, but from the illustrations given of the conceptacles, there is no sufficient ground for considering this plant to be a *Lithothamnium* rather than a *Lithophyllum*. In the original place of publication nothing but a figure (section) is given, from which, according to the scale of magnification given, it would appear that the conceptacles are only 140–160 μ by 80–90 μ and the perithallic cells about 16 μ high, making the cells rather larger and the conceptacles much smaller than in *L. isthmi*.

If we are correct in including *Lithothamnium isthmi* the more ramified forms collected by MacDonald and Vaughan, the species, though commonly coarser, appears to be sometimes suggestive of plants figured as *Nullipora ramosissima* Reuss or *Lithothamnium ramosissimum* (Reuss) Schimper, from the Tertiary "Leithakalk" of the vicinity of Vienna, but Reuss's original figures and description³ relate to external form only, and give no adequate basis for referring the plant to a modern genus. Unger⁴ adds good figures of the vegetative structure, but shows no conceptacles. Rothpletz⁵ describes the conceptacles of *L. ramosissimum* as 280 μ high, while the height of the conceptacles of *L. isthmi* is 130–165 μ and the width 240–550 μ. Rothpletz has no doubt that there are two species of Lithothamniae in the "Leithakalk," which may have been confused.

**LATHOPRELLA MELOBESIOIDES (Foslie) Foslie.**


**Locality and geologic occurrence.**—This species occurs in small quantity with *Lithothamnium isthmi* in Emperador limestone of the Oligocene age, "above foraminiferous marl at Agua Salud Bridge about ½ mile north of New Frijoles on relocated line, Panama Railroad," D. F. MacDonald and T. W. Vaughan, 1911, Station No. 6024b.

**EXPLANATION OF PLATES.**

**PLATE 1.**

*Archacolithothamnium episorum* M. A. Howe.

Photograph, natural size, of the type-specimens, collected at Point Toro, near Colon, Panama Canal Zone, January 10, 1910 (Howe 6832). The technical

¹ Compare pl. 4, Siboga Exped. Monog. 61.

837°—18h—Bull. 103——2
type in a narrower sense is the specimen shown at the lower right-hand corner of the plate—the specimen from which figure 1 of plate 5 was obtained.

**Plate 2.**

*Archacolithothamnium episporum* M. A. Howe.

Photographs of radio-vertical ground (calciferous) sections of type material (Point Toro, Howe 6882).

Fig. 1. *Lithothamnium vaughnii* M. A. Howe. Photograph of the type-portion of a sporangial sorus, enlarged 42 diameters.

2. Section, enlarged 200 diameters.

**Plate 3.**

*Archacolithothamnium episporum* M. A. Howe.

Photographs of radio-vertical sections of decalcified material (Point Toro, Howe 6832), enlarged 200 diameters.

Fig. 1. Section showing sporangia and tetraspores.

2. Section showing emptied sporangia, form and arrangement of perithallic cells, a weakly developed hypothallium, etc.

**Plate 4.**

*Archacolithothamnium episporum* M. A. Howe.

A Pleistocene fossil, "from flats near Mount Hope, five feet above tide level," D. F. MacDonald 6039, 1911, natural size.

**Plate 5.**

*Archacolithothamnium episporum* M. A. Howe.

Figs. 1 and 2. Photographs of the type material (Point Toro, Howe 6832).

Fig. 1. Portion of the surface, showing the more or less confluent sporangial sori, enlarged 4 diameters.

2. A smaller part of the same surface, showing the sporangial ostioles, etc., enlarged 25 diameters.

Figs. 3 and 4. Photographs of Pleistocene specimen from Mount Hope (MacDonald, Cat. No. 35298, U.S.N.M.)

Fig. 3. Radiovertical section showing several superposed crusts and three well-developed hypothallia, enlarged 42 diameters.

4. A part of a cross section of one of the excrescences or branches, showing a single weakly developed hypothallium, enlarged 42 diameters. Compare structure of living specimen as shown in fig. 1, plate 2.

**Plate 6.**

*Archacolithothamnium episporum* M. A. Howe.

Photograph of section of the Pleistocene fossil from near Mount Hope (Cat. No. 35298, U.S.N.M.). A section magnified 73 diameters.

2. Lithothamnium vaughanii. A section showing irregular zonation, tetrasporic conceptacles, etc., enlarged 42 diameters.

3. Lithothamnium isthmi M. A. Howe. A section, slightly enlarged (11/8 of the natural dimensions), showing the type-specimen embedded in the matrix (from about 4 miles north of Gamboa Bridge, MacDonald and Vaughan, station 6021). The type material (Cat. No. 35301, U.S.N.M.), from which the section shown in plate 9 was obtained, occupies the central portion of the light area and is overgrown by crusts of what appears to be a different plant, probably a species of Lithophyllum.

PLATE 8.

Lithothamnium vaughanii M. A. Howe.

An enlargement of a part of the section shown in figure 2, plate 7, illustrating form of perithallial cells, the reduced secondary hypothallium, the somewhat specialized roof of the tetrasporic conceptacles, etc. Magnification 100 diameters.

PLATE 9.

Lithothamnium isthmi M. A. Howe.

A section of the type material (MacDonald and Vaughan, station 6021, Cat. No. 35301, U.S.N.M.), enlarged 100 diameters. The section shows the well-developed "coaxial" hypothallium, the smaller-celled perithallium, and the conceptacles with the coarse intersporangial tissue characteristic of the genus Lithothamnium.

PLATE 10.

Lithothamnium isthmi M. A. Howe.

A specimen from about one-third mile north of New Frijoles (MacDonald and Vaughan, station 6024-4, Cat. No. 35305, U.S.N.M.), natural size, showing fossil embedded in matrix, in both weathered and freshly broken surfaces.

PLATE 11.

Lithothamnium isthmi M. A. Howe.

A somewhat obliquely transverse section of a branch (specimen from about 4 miles north of Gamboa Bridge, MacDonald and Vaughan, station 6021, Cat. No. 35302, U.S.N.M.), enlarged 106 diameters.
ARCHAEOLOTHOTHAMNIUM EPISPORUM M. A. HOWE.

FOR EXPLANATION OF PLATE SEE PAGES 11, 12.
Archaeolithothamnium episporum M. A. Howe.

For explanation of plate see page 12.
ARCHAEOLOTHOAMNIUM EPISPORUM M. A. HOWE.

For explanation of plate see page 12
ARCHAEOLETHOTHAMNIUM EPISPORUM M. A. HOWE.

FOR EXPLANATION OF PLATE SEE PAGE 12.
Archeolithothamnium episporum M. A. Howe.

For explanation of plate see page 12.
Archaeolithothamnium episporum M. A. Howe.

For explanation of plate see page 12.
1, 2. Lithothamnium vaughanii M. A. Howe. 3. Lithothamnium isthmi M. A. Howe.

For explanation of plate see page 13.
LITHOTHAMNII M. A. HOWE.

For explanation of plate see page 13.
LITHOTHAMNIUM ISTHUI M. A. HOWE.

For explanation of plate see page 13.
LITHOTHAMNIUM ISTHMI M. A. HOWE.

FOR EXPLANATION OF PLATE SEE PAGE 13.
Lithothamnium isthmi M. A. Howe.

For explanation of plate see page 13.
## INDEX

<table>
<thead>
<tr>
<th>Archaeolithothamnium</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dimotum</td>
<td>5</td>
</tr>
<tr>
<td>episporum</td>
<td>1-6, 12</td>
</tr>
<tr>
<td>erythraeum</td>
<td>3-5</td>
</tr>
<tr>
<td>zonatosporum</td>
<td>5</td>
</tr>
<tr>
<td>Eulithothamnium fosliei</td>
<td>11</td>
</tr>
<tr>
<td>Gonileithon</td>
<td>3</td>
</tr>
<tr>
<td>Lithophyllum</td>
<td>3, 9-11, 13</td>
</tr>
<tr>
<td>crispatum</td>
<td>10j</td>
</tr>
<tr>
<td>daedaleum</td>
<td>8, 10</td>
</tr>
<tr>
<td>decussatum</td>
<td>10</td>
</tr>
<tr>
<td>racemus</td>
<td>7</td>
</tr>
<tr>
<td>Lithoporella melobesioides</td>
<td>2, 11</td>
</tr>
<tr>
<td>Lithothamnium</td>
<td>2, 8, 10, 11, 13</td>
</tr>
<tr>
<td>crassum</td>
<td>7</td>
</tr>
<tr>
<td>curasavicum</td>
<td>1, 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lithothamnium fosliei</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>fragilissimum</td>
<td>9</td>
</tr>
<tr>
<td>glaciale</td>
<td>7</td>
</tr>
<tr>
<td>isthmi</td>
<td>2, 8, 10, 11, 13</td>
</tr>
<tr>
<td>lichenoides</td>
<td>9, 10</td>
</tr>
<tr>
<td>philippii</td>
<td>10</td>
</tr>
<tr>
<td>pulchrum</td>
<td>11</td>
</tr>
<tr>
<td>ramoissimum</td>
<td>11</td>
</tr>
<tr>
<td>suganum</td>
<td>8</td>
</tr>
<tr>
<td>vaughanii</td>
<td>2, 6-8, 13</td>
</tr>
<tr>
<td>Mastophora melobesioides</td>
<td>11</td>
</tr>
<tr>
<td>Nullipora ramosissima</td>
<td>11</td>
</tr>
<tr>
<td>Sporolithon ptychodides</td>
<td>4, 5</td>
</tr>
<tr>
<td>Stichospora</td>
<td>7</td>
</tr>
<tr>
<td>Stromatopora compacta</td>
<td>1</td>
</tr>
</tbody>
</table>
THE FOSSIL HIGHER PLANTS FROM THE CANAL ZONE.

By Edward W. Berry,
Of the Johns Hopkins University, Baltimore.

INTRODUCTION.

It is a truism that the present floras and faunas of Central America are the result of a long series of antecedent geologic changes which might be amplified as geographic, climatic, and biologic. As the past can only be understood by means of our knowledge of the present, so, too, the present can only be understood by means of our knowledge of the past. Moreover, this can never be a local problem, and this is particularly true of the Isthmus of Panama marking as it does at times the highway of communication between the terrestrial life, both animal and plant, of North and South America; at other times marking one of the paths of communication between the marine life of the Atlantic and Pacific. Thus the history of the Central American region is of the utmost importance in any consideration of the extinct terrestrial faunas and floras of North America or the marine faunas that formerly flourished on the east and west coasts.

Our knowledge of the present flora of the isthmian region is based upon Seemann's flora and Hemsley's flora of Central America, supplemented by the scattered papers by numerous authors on special topics relating to this flora. As the results of the recent Biological Survey of the Canal Zone become available, we will doubtless have a secure basis for comparisons with antecedent floras both in this region and the areas north and south of it.

The present distribution of plant associations is in its broader outlines governed almost entirely by the interrelations between

1 R. T. Hill, who did some geological work on the Isthmus in 1895 for Alexander Agassiz, mentions lignite and fragments of fossil plants in the Culebra clays at the base of the canal cutting at Culebra station (Bull. Mus. Comp. Zool., vol. 28, No. 5, 1898), and the lignitic coal at Chiriqui Lagoon was studied by Dr. John Evans in 1857, who reported "that the fossil plants associated with the coal were endogenous and allied to or identical with those at present growing in the vicinity." (Repts. of Expl. & Surv. for the Location of Inter-oceanic ship canals, etc., by the U. S. Naval Exped., 1875, E. P. Lull, U. S. N., commanding, Washington, 1879.)

topography and the prevailing winds and the resulting variations in rainfall.

The climate is now moist tropical, modified by the nearness of the two oceans, and there is therefore but slight diurnal or annual variations in temperature. So far as information is available regarding the conditions during the Tertiary, there is no evidence that can be deduced from the fossil flora or the geographical history of the region to indicate that the climate was very different from what it is now at any time during the Tertiary, unless we are prepared to asent to enormous changes in the altitude of the land, for which the data does not seem to be adequate.

The prevailing winds now come from the northeast, and as the divide is near the Pacific Coast the major part of the Isthmus north of this low divide has a heavy rainfall, as, for instance, 170 inches at Porto Bello and 129 at Colon, as compared with 90 inches at Culebra or 71 inches at Ancon. There are two seasons—a short relatively dry season extending from January to April and a long and relatively wet season the balance of the year with the maximum of precipitation from September to December. Before the clearing of the French Canal Company forests covered six-tenths of the Isthmus, the remainder being broken forests and savannas. Evergreen tropical rain-forests of mixed angiosperms covered the entire northern watershed and part of the Darien region on the south side. Some of the forests of the southern watershed are what are known as monsoon forests, with many deciduous species, and at high altitudes there may be more gregarious types of forest as, for example, the oak forests which are so striking a feature in the uplands of Central America as you proceed to the northwest.

The shores are skirted with dunes abounding in Leguminosae and Euphorbiaceae with Coco palms and Hippomane. Low shores and tidal inlets are covered with mangrove swamps with Rhizophora, Avicennia, Conocarpus, etc. Less saline coastal marshes are covered with Acrostichum, Crescentia, or Paritium thickets. The evergreen forest is composed chiefly of species of Sterculiaceae, Tiliaceae, and Mimosaceae, Euphorbiaceae, Anacardiaceae, Rubiaceae, Myrtaceae, and Melastomataceae, with small palms like Chamaedorea, Trithrinax, and Bactris.

**CORRELATION.**

The fossil flora described in the present report is too limited for purposes of exact correlation, which may be expected to be settled by the marine faunas present at most horizons in the Isthmian region. Regarding the plants in the various formational units recognized in the Canal Zone by MacDonald a glance at the accompanying table of distribution will show that from the oldest (Bohio) to the young-
est (Gatun) plant-bearing formations there is no observable difference in floral facies, and while the plants are entirely too few for positive conclusions, and while not much variation can be expected in fossil floras of the Tropics unless after the lapse of long intervals of time or the intervention of marked changes in physical conditions, I am disposed to think that this so-called Oligocene series of formations does not represent any great interval of time.

Nearly all of the fossil plants are new, the only outside occurrences being the Hieronymia which is common to the Tertiary of Ecuador and the Palmoxyylon and Taenioxyylon both of which occur in the Oligocene of the island of Antigua, and both have related types in the Oligocene (Catahoula and Vicksburg) of our Southern States. In addition to the Hieronymia common to Ecuador there are several other elements in the Tertiary flora of the latter region that are similar to Panama forms, and it is not improbable that the coals of Loja in the Ecuadorian Andes are the same age as the so-called Oligocene series of Panama. Only one pre-Oligocene plant is recorded from Panama and the age (Eocene) rests on the stratigraphic observations of Doctor MacDonald and paleontologic determinations by C. W. Cooke. The form itself offers no intrinsic evidence of its age and might well be early Oligocene but for the fact that Doctor MacDonald collected the type stratigraphically below a bed containing a varietal form of the mollusk, Venericardia planicosta.

The chief question of interest in the correlation of these Panama beds is their equivalence in terms of the European section. The present flora offers no evidence on this point which must hence be determined by the accompanying marine faunas. However, in view of the traditional unscientific assumption that all of the fossiliferous beds of the Carribbeean region are Oligocene in age, it is of interest to note that Douvillé\(^1\) from a study of the foraminifera, pointed out as early as 1898, that a considerable part of the so-called Oligocene of the Isthmus was Aquitanian and Burdigalian in age; that is to say, lower Miocene according to the present conceptions of European geologists and palentologists.

In my preliminary announcement\(^2\) of the discovery of fossil plants in the Canal Zone I stated that none of the plants recognized indicated Eocene and that they were all probably Oligocene in age. This statement was perhaps overemphasized in a desire to offset the extreme views of certain foreign paleontologists who have held that these faunas were young Miocene or even Pliocene.

The question of the exact time in the Tertiary at which connections between North and South America were replaced by marine conditions is of the utmost importance in all studies of distribution of both

---

the marine faunas and the terrestrial faunas and floras. The floral evidence as previously stated is inconclusive. I should not, however, be inclined to consider any of the fossil plants, except one Eocene species, described in the present report as younger than Burdigalian nor older than Sannoisian (Lattorfian).

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Gatun formation</th>
<th>Canudo formation</th>
<th>Lower Oligocene Lime- stone</th>
<th>Caucancia formation</th>
<th>Quebrada formation</th>
<th>Bohia formation</th>
<th>Eocene</th>
<th>Oligocene of Antigua</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Palmoxylon palmaeides</em></td>
<td></td>
<td></td>
<td>6845</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Ficus culebrensis</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Guatteria culebrensis</em></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Myristolophyllum panamense</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Taeniocalyx multiradiatum</em></td>
<td></td>
<td></td>
<td>6523</td>
<td>6845</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td><em>Inga oligocarnea</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Cassia culebrensis</em></td>
<td></td>
<td></td>
<td>6840</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Hiraecolocalyx culebrensis</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Balanophora praecuasia</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Hieronymia Ichmanni</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Schmidelia heucensis</em></td>
<td></td>
<td></td>
<td>6840</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Mespilodaphne culebrensis</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Calyptrotheca guttulata</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Mesidostoma microsperma</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Elytrites macdonaldii</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Rubiaceae isonoides</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Palm rays                  | 6839           | 6837            |
| Fern fragments             | 6837 cf. Acerostichum |

**BOTANICAL CHARACTER.**

The fossil flora at present known from the Canal Zone is extremely limited and entirely too small for either purposes of adequate correlation or for deductions concerning the true botanical facies or the environmental conditions. Seventeen species are determined and two or three additional forms are tentatively recognized. This paucity is especially to be regretted since it is improbable that under the existing climatic conditions as favorable opportunities for the discovery and collection of fossil plants will ever be presented as during the digging of the canal. While fossil plants were nowhere found to be abundant in the shales, nevertheless, it is very probable that an experienced collector by working over a large amount of
material could have gotten together a much more representative collection.

The plants collected include ill-defined fragments of one fern, two underdetermined species of palm, represented by fragments of foliage, and a third represented by petrified stems, and 16 dicotyledons, of which two are represented by fruits and the balance by leaves.

Among the Dicotyledonae there are representatives of the orders Urticales, Ranales, Rosales, Geraniales, Sapindales, Thymeleales, Myrtales, Ebenales, and Rubiales. Orders conspicuous in the existing flora of the Isthmian region unrepresented among the fossils are the Arales, Poales, Cyperales, and Orchidales among the Monocotyledonae, and the Campanulales and Personales among the Dicotyledonae.

The following 14 families are represented by fossils in Panama: Moraceae, Anonaceae, Myristicaceae, Mimosaceae, Caesalpiniaceae, Papilionaceae, Malpighiaceae, Euphorbiaceae, Sapindaceae, Lauraceae, Myrtaceae, Melastomataceae, Ebenaceae, and Rubiaceae. Only the last, with two species, is represented by more than a single species. When so sparse and evenly distributed a representation of the families is present in a fossil flora, it is an indication that after allowing for some accidents of preservation, those families represented may be regarded as the most abundantly represented in the Tertiary flora of the region, and in this respect there is a very great similarity to the existing flora of the Isthmian region. The present forests of Panama are made up principally of species of Arecaceae, Moraceae, Mimosaceae, Papilionaceae, Sterculiaceae, Tiliaceae, Euphorbiaceae, Anacardiaceae, Myrtaceae, Melastomataceae, and Rubiaceae. The only ones of this list not found fossil are the Sterculiaceae, Tiliaceae, and Anacardiaceae, and as these three families are all abundant in the much more complete floras from the Tertiary of the southeastern United States, it is safe to assume that they were also present in the Tertiary flora of Panama. The mainly herbaceous families abundant in the Recent flora, which are hardly to be expected in the fossil flora, are the Poaceae, Cyperaceae, Orchidaceae, Araceae, and Compositae.

The bowers of wild figs of the existing flora are represented by a small-leaved species of Ficus from two localities in the Culebra formation. The family Anonaceae, which has numerous species of Anona and Guatteria in the Recent flora of Central America, is represented by a fine large species of the latter genus which is not uncommon in the Gatun, Caimito, and Culebra formations. Guatteria contains about 50 existing species of tropical shrubs and trees of varying habitats and exclusively American, and has not been previously recognized with certainty in fossil floras. Anona is abundant
in the Eocene and Oligocene of our Southern States, but *Guatteria* has not been recognized.

The Myristicaceae is represented by an infrequent species of *Myristicophyllum* in the Culebra formation, and in this connection it is of interest to note the presence of fruits and seeds of *Myristica* in the uppermost Eocene of Texas suggestive of the subgenera *Virola* and *Compsonopora*, both of which occur in the Recent flora of Central America. The Leguminosae have three fossil species. The Mimosaceae, which are very abundant in the existing forests of Panama, are represented by a fossil species of *Inga*, a large genus of tropical trees with upward of two-score species in Central America, nearly half of which are recorded from Panama. *Inga* is well represented in the abundant Eocene floras of our Southern States, and it is of interest to note the resemblance between the fossil species from Panama and a species described by Engelhardt from an unknown Tertiary horizon in Ecuador.

The Caesalpiniaecae is represented by a single species of *Cassia*, a large genus not only in the Recent equatorial floras but well represented in most fossil floras from the Upper Cretaceous to the present.

The Papilionaceae, very abundant in the existing flora of Panama, is supposed to be represented by the petrified wood of a large tree referred to the genus *Taenioxyylon* and found in the Cucuracha, Culebra, and Bohio formations.

The family of Malpighiaceae is represented by the genera *Hiraea* and *Banisteria*. The former has about 30 recent species, exclusively American, ranging from Mexico and the Antilles to tropical Brazil and Peru, and it is represented by a fossil species in the Eocene of the Mississippi embayment. *Banisteria* contains about 80 existing species, mostly climbing shrubs. It is at present confined to the American tropics, but appears to have been present in Europe as well as in the southern United States during the Tertiary.

The Euphorbiaceae, abundantly represented in the present forests of Panama, is represented in the Caimito formation by a species of *Hieronymia* apparently identical with one described by Engelhardt from the Tertiary of Ecuador. *Hieronymia*, not otherwise known in the fossil state, contains about a dozen existing species which are confined to tropical America, where they range from Mexico and the West Indies to Brazil.

The Sapindaceae, abundant in all fossil floras from the Upper Cretaceous onward, and exceedingly abundant in the Tertiary floras of the Mississippi embayment, is represented in the fossil flora of Panama by a species of *Schmidelia* found in the Caimito and Culebra formations. *Schmidelia* has a large number of existing species in the equatorial regions of both hemispheres and, except for petrified
material from the island of Antigua, it has not previously been recognized in the fossil state.

The family Lauraceae, so extensively represented in the Tertiary floras of the Mississippi embayment and in the Recent tropical flora of South America, is represented at Panama by a single fragmentary species which is referred to Mespilodaphne. The latter has numerous modern species in the tropics of America and Africa.

The Myrtaceae, one of the abundant families in the existing forests of tropical America, has a fossil species of *Calyptranthes* at Panama. This genus has about 70 exclusively American existing species ranging from Mexico and the West Indies to southern Brazil. Hemsley records 7 recent species from Central America, of which 2 are found on the Isthmus. It is also represented in the lower Eocene of the Mississippi embayment. The abundant, both Recent and fossil, representatives of the allied genera *Eugenia* and *Myrcia* have not been recognized in the fossil flora of the Isthmus.

The Melastomataceae, an immense tropical family in the existing flora and very abundant throughout Central America, has a single fossil species in the Culebra formation.

The family Ebenaceae, usually abundant in fossil floras from the Upper Cretaceous onward, and with a large number of species in tropical America, is represented on the Isthmus by the petrified fruits of a species of ebony (*Diospyros*) known to be from an older horizon (Eocene) than the balance of the known fossil flora.

The Rubiaceae, a prominent family in the existing flora of Central America, where according to Wallace (1911) it ranks fourth in size with 146 species, is represented by two fossil species, both found in the Gatun formation. These are referred to *Rondeletia* and *Rubiacites*.

The former has not heretofore been found fossil. It includes about 70 existing species of a variety of habitats, confined to the American tropics and chiefly massed in the Antilles and Central America. *Rubiacites* is represented by a fruit which is apparently referable to the tribe Ixoreae, now confined to the tropics of both hemispheres.

**TERTIARY ECOLOGY.**

The restricted variety and fragmentary condition of the fossil plants thus far collected inhibits a detailed discussion of the probable ecology of the Tertiary flora. In so far as climatic conditions are concerned the Tertiary plants indicate an abundant rainfall and relatively high equable temperatures such as prevail at the present time in the Hill country and Coastal Plain of the Isthmus. There is no indication of upland vegetation. None of the fossil plants indicate
mountains sufficiently high to harbor that mixture of temperate types such as is seen at the present time in the mountains of Central America, as, for example, above 6,000 feet in Costa Rica. There was plenty of opportunity for the introduction of such types had the climate been propitious, so that I would infer that the Tertiary relief was slight, that is under 5,000 feet and probably much less than this, although there is no evidence to warrant precision of statement.

On the other hand, the collected floras do not furnish any traces of the characteristic vegetations of low muddy shores, although types like *Rhizophora*, *Avicennia*, *Conocarpus*, *Laguncularia*, etc., were already in existence in Eocene times as we know from their presence in the Mississippi embayment of that time, where they were undoubtedly derived from the south. I do not infer that these costal types were absent in the Tertiary flora of the Isthmus. On the contrary they must have been present; but no traces of them have been discovered except the traces of *Acrostichum* in the Culebra formation.

The bulk of the fossil plants clearly belong to the evergreen rain forests and they have the appearance of having been washed into the basins of sedimentation by streams. None of the lithologic specimens that I have seen from the Isthmus indicate autochthonous swamp deposits either of coastal or valley situations and I picture the flora as one of a humid tropical character covering a country of low hills. This is of necessity a tentative conclusion and perhaps even such general deductions are unwarranted because of the very limited data with which I have had to deal.

**FLORA OF THE CANAL ZONE.**

**Arecales:**

Areceae—

*Palmoxyylon palmacites* (Sprengel) Stenzel.

**Urticales:**

Moraceae—

*Ficus culebrensis*, new species.

**Ranales:**

Anonaceae—

*Guatteria culebrensis*, new species.

Myristicaceae—

*Myristicophyllum panamense*, new species.

**Rosales:**

Leguminosae—

*Taenioxyylon multiradiatum* Felix.

*Inga oligocaenica*, new species.

*Cassia culebrensis*, new species.
Geraniales:
  Malpighiaceae—
  *Hirca oligocaenica*, new species.
  *Banisteria praenuntia*, new species.
Euphorbiaceae—
  *Hieronymia lehmanni* Engelhardt?

Sapindales:
  Sapindaceae—
  *Schmidelia bejucensis*, new species.

Thymeleales:
  Lauraceae—
  *Mespilodaphne culebrensis*, new species.

Myrtales:
  Myrtaceae—
  *Calyptranthes gatunensis*, new species.
  Melastomataceae—
  *Melastomites miconioides*, new species.

Ebenales:
  Ebenaceae—
  *Diospyros macdonaldi*, new species.

Rubiales:
  Rubiaceae—
  *Rondeletia goldmani*, new species.
  *Rubiacites ixoreoides*, new species.

Fern fragments of *Acrostichum*.
Palm rays.

**SYSTEMATIC PALEOBOTANY.**

**PTERIDOPHYTA.**

**Order FILICALES.**

**FERN FRAGMENTS OF ACROSTICHUM.**

The material from the Culebra formation, one-fourth mile south of Empire Bridge, contains several obscure fragments of large simple fern pinnules with reticulate venation strongly suggestive of *Acrostichum*, but too incomplete for identification. The genus now principally represented by the cosmopolitan tropical tidal marsh species *Acrostichum aureum* is abundant in the Eocene and Oligocene of both America and Europe, and is especially characteristic in the Jackson, Catahoula, and Vicksburg of our Gulf States.
SPERMATOPHYTA.

Order ARECALES.

Family ARECACEAE.

PALM RAYS.

The broken rays of apparently two species of palms occur sparingly in the Culebra formation at the locality one-fourth mile south of Empire Bridge. These are too incomplete for even tentative generic determination.

Genus PALMOXYLON Schenk.

Group LUNARIA.

PALMOXYLON PALMACITES (Sprengel) Stenzel.

Plate 12, fig. 1.

Endogenites palmacites Sprengel, Commentatio, p. 39, figs. 6, 6a, 1828.
Pasciculites palmacites Cotta. Dendrol., pp. 49, 89, pl. 9, figs. 1, 2, 1832.—Unger in Martius, p. 59, tab. geol. 3, fig. 6, 1845.
Palmacylon tenerum Felix. Foss. Hölzer Westindiens, p. 26, pl. 4, fig. 1, 1883.—Schenk in Zittel.
Palmacylon palmacites Stengel, Foss. Palmenhölzer, p. 245, pl. 20, fig. 253, 1904.

Description.—Fibro-vascular bundles small, very numerous, closely spaced, orbicular or ovate in cross section, uniformly distributed as a rule, 0.60 mm. to 0.75 mm. in diameter, and rarely, if ever, that distance from one another. Auxiliary bundles absent.

Sclerenchyma portion excavated more or less deeply to receive the vascular portion, which is often nearly equal to it in size. Occasionally a thin zone of sclerenchyma entirely surrounds the vascular portion. Sclerenchyma fibres small, isodiametric, greatly thickened, of nearly uniform size, about 0.035 mm. in diameter. Vessels variable in size, ranging from 0.072 mm. to 0.18 mm. in diameter, usually two large vessels and either none or several small vessels on the side away from the bast in each bundle. The phloem portion in general destroyed and represented by a disorganized cavity between the vessels and the bast.

The ground mass of the stem consists of thin walled parenchyma without intercellular spaces. The cells are small, isodiametric, rounded pentagonal or hexagonal except where there are but one or two rows between closely adjacent bundles, in which case they are
narrowly compressed and elongated parallel to the sides of the bundles. Their diameter varies from 0.035 mm. to 0.10 mm. Scattered through the stem parenchyma are darker cells which in polarized light appear to be gum cells. They are slightly larger than the parenchyma cells, being from 0.072 mm. to 0.108 mm. in diameter.

Occasional bundles are seen to be branching. These are the fasciculi fibroductores or Kreuzungsbündel.

This species was first recognized by Sprengel in 1828, who referred it to *Endogenites*; Cotta four years later transferred it to *Fasciculites*, and Corda in 1845 referred it to *Palmacites*. When Felix came to publish on the Antigua woods in 1883 he recognized this species, but in describing it under the genus *Palmoxylon* which had been proposed by Schenk only a year or two before he took the liberty of giving it the new name of *tenerum*, which under the rules of nomenclature has no standing as Stenzel recognized in print in 1904.

The specimen from Panama is small and may be from near the periphery of a stem, although in the group *Lunaria* there is little difference between the central and peripheral regions. In the size, outline, and crowding of the fibrovascular bundles as well as in the character of the parenchyma of the groundmass the present species greatly resembles *Palmoxylon integrum* described by Felix from Cuba and considered by Stenzel as merely a variety of the Antiguan species *Palmoxylon antiquense* (Unger) Felix. It differs from that species in altogether lacking the numerous auxiliary sclerenchyma bundles which are so well marked in *Palmoxylon integrum*. A further difference is the presence of gum or mucilage cells which are fairly numerous in the Panama specimen of *Palmoxylon palmacites* and which might upon a merely superficial examination be mistaken for auxiliary sclerenchyma bundles. Among the Oligocene species of *Palmoxylon* from the southern United States *Palmoxylon mississippiense* Stenzel is very similar to the present species.

Other described fossil species which show more or less resemblances are *Palmoxylon stellatum*, aschersoni, variabile, and ceylanicum. The nearest affinity among recent palms is not determinable in the present state of our knowledge of the anatomy of the latter. The present type of structure is commonly known as the Cocos-like type.

For some unknown reason the upper Eocene and lower Oligocene in southeastern North America abounds in silicified palm wood. Palm leaves are often very abundant in the Wilcox and Claiborne Eocene and in the Apalachicola Oligocene; but all of the petrified

---

2 Stenzel, Foss. Palmenhölzer, p. 154, pl. 1, figs. 1–10, 1904.
3 Felix, Foss. Hölz. Westindiens, p. 22, pl. 4, fig. 5.
4 Stenzel, Foss. Palmenhölzer, p. 248, pl. 21, figs. 254–265.
palm wood in our Gulf region is confined to the Jackson or Vicksburg groups.

The island of Antigua, celebrated for at least a century for its petrified woods, has furnished at least seven species of petrified palms, five of which were known to Unger as early as 1850, and one was figured by Witham in 1833. These also are of Oligocene age. There are two additional Oligocene species described from the West Indies without definite information as to exact locality, and there is also a species from Trinidad and another from Cuba. The Oligocene species at present known from the southern United States are seven in number, four of which have not been found outside of that region, while one or possibly two are common to Antigua, and a third has been reported by Felix from Southern Mexico.

Occurrence.—Cucuracha formation, green clays, Gaillard Cut (loc. 6586). Collected by D. F. MacDonald.


Order URTICALES.

Family MORACEAE.

Genus FICUS Linnaeus.

FICUS CULEBRENSIS, new species.

Plate 13, fig. 1.

Description.—Leaves of relatively small size, broadly oblong-lanceolate in general outline, apex acute but not extended or cuspidate. Base bluntly pointed. Margins evenly rounded. Texture coriaceous. Length about 8 cm. Maximum width, in the middle part of the leaf, about 2.15 cm. Petiole short, stout, and curved. Midrib stout and prominent on the under surface of the leaf. Secondaries thin, very numerous, evenly spaced, subparallel; they diverge from the midrib at wide angles averaging about 75 degrees, pursue an almost straight outward course, their ends being connected well within the margins by regular flat arches formed by their abrupt camptodrome endings. Tertiaries obsolete.

This is an especially well-marked species of the lanceolate leafed section of Ficus, and it may be matched by a number of still existing species found in the American tropics. Among such a large number of both existing and fossil forms detailed comparisons are not especially pertinent. Two comparisons that seem significant are the resemblance of the present form to Ficus newtonensis Berry of the Upper Claiborne of the Mississippi embayment and to the forms from the Sannoisian of Haering in the Tyrol which Ettingshausen[^1] refers.

[^1]: Ettingshausen, Tert. Fl. von Haering, p. 41, pl. 10, figs. 6, 8, 1853.
to *Ficus jynx* Unger, but which appear to me to be decidedly different from Unger's type.


**Order RANALES.**

**Family ANONACEAE.**

**Genus GUATTERIA** Ruiz and Pavon.

**GUATTERIA CULEBRENSIS**, new species.

Plate 13, fig. 2.

**Description.**—Leaves of large size, broadly ovate in general outline, with a narrowed slightly decurrent base and a narrowed and extended acuminate tip. Length about 20 cm. Maximum width, approximately midway between the apex and the base, between 6 cm. and 7 cm. Margins entire. Texture coriaceous. Petiole short and stout, enlarged proximad, about 2.25 cm. in length. Midrib stout and prominent. Secondaries mediumly stout and prominent, about ten opposite to alternate pairs diverge from the midrib at angles ranging from 45° to 60°, sweeping upward in regular ascending subparallel curves, camptodrome in the marginal region. Tertiaries, where visible, percurrent.

The present is one of the more abundant and better preserved forms from the Canal Zone, but the large size of the leaves usually results in fragmentary specimens, the tip being almost invariably missing. The species shows great similarity with various existing forms of Anonaceae. It is very close to *Anona maregravii* Martius of Venezuela, French and Dutch Guiana, and Brazil (Bahia and Pernambuco). It is, however, among the various species of *Guatteria* that the closest homologies are found. The latter genus contains about fifty species of shrubs and trees, exclusively American and found in Mexico, Central America, tropical South America, and in the northern Andes. The fossil may be compared with a large number of the existing species, as for example *Guatteria ouregon* Dunal, a large tree of the Carribbean islands and equatorial South America. *Guatteria dolichopoda* De Candolle or *G. grandiflora* De Candolle of Central America.

The family Anonaceae contains about 700 existing species, distributed among about 48 genera, only two of which are present in North America. The family is practically confined to the Tropics.

---

1 The Asiatic species of various authors are referred to the genus *Polyalthia*. 8370°—18g—Bull. 103—3
a single Australian species, and the North American genus *Asimina*, with 6 or 7 species being the only conspicuously extratropical forms. The area of maximum representation is southeastern Asia and the adjoining region of Malaysia, for while only 16 genera are confined to this region it contains over 350 species, and six additional genera (*Miliusa, Uvaria, Polyalthia, Oxymitra, Melodium*, and *Poporrvia*), with a total of over 250 species have the bulk of their species in this area. Only a single genus is confined to Australia, and the bulk of the Australian species are to be regarded as migrants from the preceding area. There are upwards of 100 species and 6 peculiar genera in tropical Africa; and America has about 200 species and 10 peculiar genera. These are all confined to the Tropics, except for a species of *Anona*, which reaches the coast of peninsular Florida, and for the genus *Asimina*, with six or seven species of shrubs and small trees of the south Atlantic and Gulf States. One of these, *Asimina triloba* Dunal, is hardy as far north as New York, and has the distinction of growing the farthest distance from the Equator of any existing member of the family. The fossil record of the Anonaceae is very incomplete, only the genera *Anona* Linnaeus and *Asimina* Adanson, being known with certainty. Both of these genera are present in the flora of the Wilcox group of the Mississippi embayment.

The genus *Guatteria* has not, so far as I know, been heretofore found fossil, except for a doubtful species described by Hollick from the Upper Cretaceous of Marthas Vineyard and Long Island. The genus *Uvaria* Linnaeus has a Pliocene and three Pleistocene species on the Island of Java, and the genera *Melodium* Dunal and *Mitrphora* Blume are both represented in the Pleistocene of that island.

The genus *Anona* has from fifteen to twenty fossil species, five of which are also represented by seeds. The oldest is a species described from the Dakota sandstone. There is a second species in the late Cretaceous or Early Eocene of the Rocky Mountain province. The flora of the Wilcox affords a glimpse into the true stage of evolution of Tertiary floras in that expanded belt of the American equatorial region which was the center of radiation of so many recent types. There were three exceedingly well-marked species of Anona along the Wilcox coast and their leaves are very common at some localities, although no seeds have as yet been discovered. I assume that these Wilcox forms had habits similar to those of the majority of the existing species, exemplified by our Florida *Anona glabra* Linnaeus, or pond apple, which frequents shallow fresh-water swamps, low shady hammocks, or stream borders near the coast. Other species occur in the low coppice association or on edges of brackish swamps on the Bahamas. The cultivated species, as, for example, the American *Anona reticulata* Linnaeus, which is planted in Guam, often
spreads naturally along the inner beaches, while attempts to introduce others of the most highly esteemed American species in the Orient have failed. From its prevalence among the existing species the habit of growing in wet, shaded soils is evidently an old one, and since the Wilcox Anonas are associated with a strand flora the assumption that they grew on the inner beaches or the shaded and more swampy edges of lagoons possesses every degree of probability.

In the pipe clays of Alum Bay which were contemporaneous with the Wilcox there are two species of Anona, and Engelhardt has described two species from the Eocene or Oligocene of Chili. The Oligocene record shows a species in France and a second in Saxony. In the Miocene there are two species each in England, Styria, and Croatia, and one each in Bohemia, Colorado, and Transylvania. There is one each in the Pliocene of France and Italy, showing how modern was their extinction in the south of Europe.

The genus Asimina has only four or five recorded fossil species. These are all American except for a form from the Pliocene of Italy which has been referred to this genus, although I suspect that it represents Anona, since Asimina appears to have originated and been confined to the Western Hemisphere. The oldest known species is based on foliage which is found in the basal Eocene of the Rocky Mountains (Denver formation) and of the embayment (Midway Group). There is a single species based on a seed from the basal Wilcox and no other records except a form close to the modern from the late Miocene of New Jersey (Bridgeton sandstone) and the occurrence of the existing Asimina triöba Dunal in the interglacial beds of the Don valley in Ontario. There are 17 existing species of Anona recorded from Central America, six of which are known from Panama. Hemsley records 11 species of Guatteria from Central America, at least two of which occur in Panama.


Family MYRISTICACEAE.

Genus MYRISTICOPHYLLUM Geyler.

MYRISTICOPHYLLUM PANAMENSE, new species.

Plate 13, fig. 3.

Description.—Leaves ovate or ovate lanceolate in outline with pointed apex and base, entire, evenly rounded margins, subcoriaceous in texture. Length about 9 cm. Maximum width, midway between the apex and the base, about 3.3 cm. Petiole slender, about 8 mm. long. Midrib slender. Secondaries thin, about 8 subopposite ascend-
ing subparallel pairs; they diverge from the midrib at acute angles and are subparallel with the lower lateral margins. Eventually camp-todrome. Tertiaries obsolete.

This species is unfortunately represented by fragmentary remains inadequate for conclusive identification. The genus *Myristica* Linnæus contains about two score existing species, rather more than half being American tropical forms, now often segregated into several genera. Many are insular and coastal forms, Schimper recording 4 species in the Indomalayan strand flora and several species ranging eastward in the Pacific to the Fiji, Tonga, and Samoan Islands, and their fruits are recorded by both Gaudichaud and Guppy in the sea drift, although the oriental species are normally distributed by fruit pigeons (*Mosley*, *Hemsley*, *Guppy*).

De Candolle and Miquel both considered the foliage, especially the venation, as offering the best criteria for differentiation, but in the absence of comparative material and the incomplete character of the Panama fossil it is not possible to apply these criteria. The American Recent species number about 25, and these are mainly South American in their distribution, although the sections or genera *Virola* Aublet and *Compsonoeura* De Candolle both occur in Central America.

The distribution of the Recent species in tropical America, Asia, and Africa is conclusive evidence of a Tertiary history, although this evidence is practically unknown. Geyer \(^1\) described two forms of leaf fragments from the Miocene of Labuan (Borneo) and Engelhardt \(^2\) a third from the Tertiary of Ecuador and Chile. The most conclusive evidence of their Tertiary radiation is furnished by the characteristic fruits described recently by the writer \(^3\) and preserved in the wind-blown sands of the uppermost Eocene of Texas.


**Order ROSALES.**

*Superfamily LEGUMINOSAE.*

*Genus TAENIOXYLON* Felix.

*TAENIOXYLON MULTIRADIAUM* Felix.

Plates 14 and 15.

*Taenioxylon multiradiatum* Felix. Die fossilen Hölzer Westindiens. Samml. palæont. Abh., ser. 1, Hefl 1, p. 11, pl. 1, figs. 10, 11; pl. 2, fig. 10, 1883.

**Transverse section.**—In a radial distance of 5 cm. there are no definite annual or seasonal rings. In certain zones the vessels are

---

\(^1\) Geyer, H. T. *Vega* Expedition, vol. 4, p. 498, pl. 33, figs. 3–6, 1887.

\(^2\) Engelhardt, H., Abh. Senek. Naturf. Gesellsch., vol. 16, p. 663, pl. 6, fig. 9; pl. 7, fig. 12, 1891; vol. 19, p. 13, pl. 1, fig. 21, 1895.

larger, more generally compound, and closer together, and in other zones they are more distant, slightly smaller, and prevalingly single. No changes are observable in the other elements and there is no regular alteration of vessel rich and vessel poor areas nor any change from so-called summer to spring wood such as characterizes the trees of the temperate zone.

Vessels single or two, three, or four together in radial rows (an anomalous group of five vessels in juxtaposition is shown in the detailed drawing). Outline of single vessels elliptical, those in groups flattened on one or both sides by mutual compression; their tangential diameter ranging from 0.10 mm. to 0.14 mm.; their radial diameter ranging from 0.12 mm. to 0.16 mm., exceptionally large ones up to 0.22 mm.; their walls thick, 0.0067 mm. to 0.01 mm. in thickness, clearly showing the numerous small pits in section. Vessels frequently filled with gum. Vessels usually surrounded by one to three layers of rounded or more or less compressed thin-walled wood parenchyma, somewhat variable in amount in different parts of the stem and tending to form tangential bands. Prosenchyma very abundant, the elements polygonal, small, somewhat smaller than those of the wood parenchyma, and thick walled. Rays very numerous, one or two cells wide as seen in transverse sections, flexuous in their courses since they are bowed out around the large vessels and approach more or less in the radial intervals between vessels; from 0.10 mm. to 0.20 mm. apart, averaging nearer the former than the latter figure. The ray cells toward the ends of the rays which appear to be those usually seen in the several sections examined are not elongated radially but are nearly isodiametric and about 0.02 mm. in diameter.

Radial section.—The radial section shows the close set, fine, transversely elongated pits of the vessels which have simple perforations. The wood parenchyma is septate, the cells being about 3½ times as long as wide with large simple pits. The rays are of variable height, from 9 to 17 cells. They are seen in radial view to consist of a central series of radially elongated cells with numerous fine simple pits, above and below which is a series of longitudinally elongated cells, beyond which are one or two rows of isodiametric cells which are regularly hexagonal in this view.

Tangential section.—The tangential section shows the uniform close set fine pitting on all the walls of the vessels, the relative short length and the large simple pits of the adjoining septate wood parenchyma. The rays are seen to be very numerous, and separated by but few rows of flexuous prosenchyma; they are lenticular in outline and of variable height, one or two rays of terminal cells (those which are hexagonal in outline in the radial view) are single; then come one to three biseriate rows (those longitudinally elongated in the
radial view); toward the median region the rays are three or four cells broad (the radially elongated cells in the radial view).

Felix states that in the Antigua material the rays were usually biseriate, while uniseriate and triseriate rays were rare. I do not know the extent of his material, but in the case of that from Panama I had but few radial sections cut. Ray cells frequently filled to a greater or less degree with gum.

Remarks.—Fragments of the wood of this species are very common in the collections from Panama, but a good deal was rather badly decayed before petrifaction. That which has formed the chief basis for the foregoing description and all of the photographs and drawings is beautifully preserved. The species is clearly identical with the type, as very insufficiently described and illustrated by Felix. One highly ferruginized and fairly well preserved quadrant of a trunk indicates a large tree, with a diameter of at least 25 cm.

The genus Tænioxyylon was established by Felix in 1882 with T. varians from Antigua as the type. He has since described 7 additional species including 2 additional from Antigua, 1 from southern Brazil, 1 from East Indies, 1 from Philippines, 1 from Caucasus, and 1 from the Swabian Alps. All are of Tertiary age and show resemblances to various members of the 3 Leguminous families, Caesalpiniaceae, Miomosaceae, and Papilionaceae. Felix considers the present species to be a member of the Papilionaceae, and it agrees entirely with Solereders account of the anatomy of this family. The two kinds of ray cells described have, according to Saupe, been shown to occur in the following tribes in this family, namely the Podalyrieae, Genisteeae, Galegeae, Hedysaraceae, and Sophorae. Without much recent comparative material, which is unavailable, it is impossible to allocate the present species more definitely within this extensive family.


Collections.—U. S. National Museum, Johns Hopkins University.

Family MIMOSACEAE.

Genus INGA Willdenow.

INGA OLIGOCAENICA, new species.
Plate 16, fig. 2.

Description.—Leaflets rather above medium size, elliptical-ovate and very inequilateral in general outline. Apex abruptly acute, not
extended. Base very inequilateral, truncate or ascending on one side and wide and cordate on the other. Margins entire, full. Texture subcoriaceous. Length about 8 cm. or 9 cm. Maximum width, at or slightly above the middle. about 4 cm. Petiolule curved, short and stout, about 3 mm. long. Midrib stout, greatly curved. Secondaries thin, five or six pairs, angles of divergence and courses various, all ultimately camptodrome; lower pair opposite, from the top of petiolule; they diverge from the midrib at angles of about 45 degrees, curving slightly outward and then ascending, parallel with the respective margins; the one in the narrow side of the lamina arches along the margin in a brochiodrome manner; the one in the wide side of the lamina sends off on the outside a series of regularly spaced camptodrome tertries. Tertiary venation for the most part obsolete.

This characteristic species may be compared with *Inga densiflora* Bentham,1 *Inga edulis* Martius,2 *Inga marginata* Willdenow,3 or *Inga speciosa* Spruce4 and with various other of the larger-leafed species of *Inga* in the American Tropics to which region the 212 of its existing species of shrubs and trees are confined. It may also be compared with a number of tropical American species of *Cassia*, as, for example, *Cassia ruseifolia* Jacquin.

About fifteen fossil species have been referred to *Inga*. These include three from the Upper Cretaceous, two European, and one North American. There are also two or three species in the Oligocene of Europe, one in the Pliocene of Bolivia, two in the Tertiary of Ecuador, and one in the Tertiary of Colombia, four well-marked species in the Lower Eocene of the Mississippi embayment (Wilcox Group) and one in the middle Eocene of that region (Claihebore Group). The Panama species is not especially close to any of the foregoing. It is nearest, however, to *Inga latifolia*, described by Engelhardt5 from the Tertiary of Ecuador, differing in its broader form and more inequilateral base.

Pittier records 14 existing species of *Inga*, from Panama.6 Hemsley lists 35 species in his flora of Central America, or which number 18 are recorded from Panama.

Occurrence.—Lower part of Culebra beds one-fourth mile south of Empire Bridge. (Collected by D. F. MacDonald.) U.S.G.S. 6837. Type.—Cat. No. 35311, U.S.N.M.

2 Martius, Flora, vol. 20, Beibl., p. 113, 1857 (Brazil).
Family CAESALPINIACEAE.

Genus CASSIA Linnaeus.

CASSIA CULEBRENSIS, new species.

Plate 16, fig. 1.

*Description.*—Leaves obviously pinnately compound. Leaflets ovate, slightly inequilateral and falcate, with an obliquely acuminate, practically equilateral tip, and an acuminate markedly inequilateral base. Length about 6.25 cm. Maximum width, about midway between the apex and the base, 2.75 cm.; one side of the lamina 15 mm. wide, the other 12.5 mm. wide. Texture mediumly coriaceous. Petiolule reduced to a thickened proximal part of the midrib extending but 1 mm. below the point of junction of one margin and about 2.5 mm. below the point of junction of the opposite margin. Margins entire, evenly rounded and full. Midrib relatively thin, not prominent, curved. Secondaries thin, numerous, about 10 subopposite to alternate pairs; they diverge from the midrib at wide angles, about 70° in the middle part of the leaflet, are nearly straight regularly spaced and subparallel in their outward course for two-thirds of the distance to the margin where the principal ones fork to join in rounded arches the similar branches of adjacent secondaries; the secondaries in the apical and basal portions of the leaflet are regularly camptodrome; those toward the tip of the leaflet more closely spaced. Marginal tertiaries camptodrome, internal tertiaries mostly obsolete.

This type in its general form and the character of its base and petiolule indicates that it is a leaflet of a pinnate leguminous leaf. Its general appearance suggests comparisons with the genera *Sweetia, Myrocarpus, Toluifera, Cassia,* and *Sophora*—the first three confined to tropical South America and the last two cosmopolitan in the existing flora. While the evidence is not conclusive, I prefer to consider it more closely allied to *Cassia* than to the other genera mentioned, particularly as the venation characters are such as I have considered referable to *Cassia* in my studies of the fossil floras of the southern United States. No species related to the Panama form is known from the Oligocene of the United States.

The modern species of *Cassia* are very numerous, upwards of 400 having been described. They comprise herbs, shrubs, and trees of varied habitats in the warmer parts of both hemispheres, particularly tropical America. The fossil species are also numerous and the generic history goes back to near the base of the Upper Cretaceous. The genus has been continuously represented in the warmer parts of
America from the time of deposition of the Tuscaloosa sediments of Alabama to the present.

_Occurrence._—Culebra formation, lower part, one-fourth mile south of Empire Bridge (collected by D. F. MacDonald) U.S.G.S. 6837:
_Type._—Cat. No. 35312, U.S.N.M.

**Order GERANIALES.**

**Family MALPIGHIACEAE.**

**Genus HIRAEA Jacquin.**

HIRAEA OLIGOCAENICA, _new species._
Plate 17, fig. 1.

_Description._—Leaves relatively large, ovate-lanceolate in outline, falcate, with an equally cuneately pointed apex and base. Margins entire, evenly curved. Texture subcoriaceous. Length about 9.5 cm. Maximum width, at or somewhat below the middle, about 3.5 cm. Petiole short, stout, about 3 mm. in length. Midrib stout, flexuous. Secondaries thin, regularly spaced, about 9 pairs, prevalingly alternate; they diverge from the midrib at angles of about 45° and sweep upward in regular subparallel slight curves, and are camptodrome in the marginal region. Tertiaries obsolete.

This genus, which has well characterized leaves, has seldom been recognized in the fossil state. One species ¹ is not uncommon in the lower Eocene of the Mississippi embayment, and Ettingshausen ² has recorded, but not described, a second species from the Ypresian of Alum Bay, England.

The existing species number between 25 and 30 and are exclusively American, ranging from Mexico and the Antilles throughout Central and northern South America to the Peruvian tropics.

The present fossil species is not unlike _Hiraea wilcoxiana_ Berry ³ from the lower Eocene of Tennessee and is closely comparable with the existing _Hiraea chrysophylla_ Jussieu of the northern coastal region of South America.

_Occurrence._—Caimito formation 7 miles northeast of Bejuca (U.S.G.S. station 6840). Collected by D. F. MacDonald.
_Type._—Cat. No. 35313, U.S.N.M.

**Genus BANISTERIA Linnaeus.**

BANISTERIA PRAENUNTIA, _new species._
Plate 17, fig. 2.

_Description._—Leaves of medium size, broadly ovate in general outline, with an abruptly acuminate tip and a broad rounded or cuneate base. Length about 8 cm. Maximum width, at or slightly above the

---

¹ Berry, E. W., U. S. Geol. Survey Prof. Paper 91, p. 257, pl. 57, fig. 8; pl. 109, fig. 6, 1916.
middle, about 5 cm. Margins entire, full and rather evenly rounded. Petiolar character unknown. Midrib of medium size, uncharacteristic. Secondaries thin, seven or eight opposite to alternate pairs diverge from the midrib at regular intervals at angles varying from 45° in the upper part of the leaf to 55° in the basal part; they ascend in slight but subparallel curves increasing in intensity as they proceed toward the margins with which they become subparallel and eventually camptodrome. Tertiaries thin, mostly obsolete. Leaf substance thin but apparently of a somewhat coriaceous texture.

The present species receives its name from its supposed praenunial relationship to the existing Banisteria sinemariensis De Candolle, a form ranging from the West Indies to Brazil and whose somewhat variable leaves may be exactly matched by the fossil.

The genus contains upward of eighty existing species, mostly climbing shrubs, confined to the American tropics and largely developed in northern South America. Its geological history goes back to the Lower Eocene, a species having been described by Watelet from the Ypresian of the Paris basin and four homotaxial species, one based on seeds, having been described by the writer from the Wilcox group of the Mississippi embayment in Western Tennessee and Kentucky. Several additional fossil species have been described from the European Tertiary, from all of which the Panama fossil is conspicuously different, its major differential character being its relatively short and broad outline.

A species based upon fruits has been described by Engelhardt1 from the Tertiary of Ecuador.

There are 5 species of Banisteria recorded by Hemsley from Central America, 3 of these in Panama, B. billbergiana Beurling on the seashore of the island of Manzanillo. Two additional Panama species of Banisteria are referred to the allied genus Heteropterys Kunth by Hemsley.


Family EUPHORBIACEAE.

Genus HIERONYMIA Allem.

Hieronymia Lehmanni Engelhardt (?).

Plate 16, fig. 3.


Description.—Leaves broadly elliptical or somewhat deltoid and inequilateral in outline, with a shortly acuminate tip and broadly

rounded full lower lateral margins and a very wide, somewhat obliquely truncated base. Length about 12 cm. Maximum width, in the lower half of the leaf, about 10 cm. Margins entire, full, and rounded. Texture thin but coriaceous. Midrib stout, curved, prominent on the lower surface of the leaf. Secondaries stout, 10 or 11 irregularly spaced pairs, prominent on the lower surface of the leaf; they diverge from the midrib at wide angles which become more acute in the apical part of the leaf, those on the narrower side are more ascending and somewhat straighter than those on the wide side, all are conspicuously camptodrome at some distance from the margin. Tertiaries thin, mostly percurrent. Areolation of small, isodiametric polygonal meshes, well marked on the under side of the leaf.

This large leaf is unfortunately represented by fragmentary material from a single locality in the Caimito formation. In some respects its characters suggest a broad *Ficus*, but it seems clearly identical with the species described by Engelhardt in 1895 from the Tertiary of Ecuador. I have, however, queried the determination because of the broken character of the Panama material. In the illustration I have reconstructed a leaf from a combination of the Panama material with the more complete specimens figured by Engelhardt from Ecuador. The two largest fragments from Panama are indicated on the drawing by tinting. It is unfortunate for purposes of correlation that the present determination can not be conclusive, although in view of other similarities shown between the Oligocene plants of Panama and those from the Tertiary of Ecuador, I am disposed to regard the present determination as fairly satisfactory.

The genus *Hieronymia* comprises about a dozen existing species of shrubs and trees confined to tropical America and rather widely distributed from Mexico to Brazil as well as in the West Indies.

**Occurrence.**—Caimito formation, 7 miles northeast of Bejuca (U.S.G.S. station No. 6840). (Collected by D. F. MacDonald.)

**Collection.**—U. S. National Museum, Cat. No. 35314.

# Order SAPINDALES.

## Family SAPINDACEAE.

### Genus SCHMIDELIA Linnaeus.

*SCHMIDELIA BEJUCENSIS* new species.

*Plate 17, fig. 4.*

**Description.**—Leaf or leaflet elongate elliptic in outline, inequilateral. Apex and tip equally and bluntly pointed inequilateral. Margins entire. Texture coriaceous. Length about 11 cm. Maxi-

---

1 Über neue Tertiärpflanzen Süd-Amerikas, vol. 19, p. 11, 1895.
mum width, midway between the apex and the base, about 4.5 cm. Width on one side of the midrib 21.5 mm., on opposite side 24 mm. Petiole missing. Midrib flexuous, stout, and prominent. Secondaries stout, regularly spaced, mostly immersed, about 7 alternate pairs diverge from the midrib at angles of about 50°, curving upward subparallel and camptodrome in the marginal region. Tertiaries mostly obsolete, a few percurrent ones seen.

This large and striking leaf is referred to the sapindaceous genus *Schmideliopsis*, which comprises about 100 existing species of the equatorial regions of both hemispheres with unifoliate or palmately compound leaves. About half of the species are American where they are confined to the Antilles, Central, and tropical South America. They are sometimes referred to the genus *Allophylus* Linnaeus (as by Radlkofer) and with the exception of this genus all of the members of the tribe Thouiniceae are confined to America. Fossil representatives have been unknown except for the petrified wood from the Oligocene of the island of Antigua which Felix described as *Schmideliopsis*.


Caimito formation, 7 miles northeast of Bejuca (U.S.G.S. 6840). Collected by D. F. MacDonald.)

Type.—Cat. No. 35315, U.S.N.M.

Order THYMELEALES.

Family LAURACEAE.

Genus MESPILODAPHNE Nees.

MESPILODAPHNE CULEBRENsis, new species.

Plate 17, fig. 3.

Description.—Leaves lanceolate-falcate in general outline, with acuminate apex and base. Margins entire. Texture subcoriaceous. Length about 10 cm. Maximum width, in the middle part of the leaf, about 2.5 cm. Petiole missing. Midrib stout, curved, prominent on the under surface of the leaf. Secondaries stout, remote, regularly spaced, nine or ten subopposite to alternate pairs, they diverge from the midrib at angles of about 65 degrees and are conspicuously camptodrome close to the margins. Tertiaries obscured by the poor preservation of the material.

The present species resembles numerous existing and fossil species of Lauraceae, from all of which, however, it appears distinct. It is similar to *Mespilodaphne columbiana* Berry of the Upper Claiborne of the Mississippi embayment, but is a stouter, more falcate, shorter, and less acuminate form.

1 Felix, J., Die fossile Hölzer Westindiens, p. 16, pl. 2, figs. 6, 8. 1883.
The modern species of *MespiJodaphne* are numerous, inhabiting Africa and tropical America, and are often united with *Oreodaphne* and *Strychnodaphne* to form the composite genus *Ocotea* of Aublet. Their fossil history is almost entirely lost in the multitude of species that have been referred to the form genera *Laurus* and *Laurophyllum*. *MespiJodaphne* is abundant and varied throughout the Eocene and Oligocene of the Mississippi embayment area.

**Occurrence.**—Culebra formation, upper part. East wall of the Gaillard Cut just north of Canal Zone station 1760. (Collected by M. I. Goldman.)

**Order MYRTALES.**

**Family MYRTACEAE.**

**Genus CALYPTRANTHES** Swartz.

**CALYPTRANTHES GATUNENSIS**, new species.

Plate 18, fig. 1.

**Description.**—Leaves broadly oblong-elliptic in general outline, widest in the middle and tapering equally in both directions to the abruptly acute apex and base. Margins entire. Texture subcoriaceous. Length between 7 cm. and 8 cm. Maximum width between 3.5 cm. and 4 cm. Petiole missing. Midrib stout, somewhat curved, prominent on the lower surface of the leaf. Secondaries thin, very numerous, and close set, often inosculating by forking; they diverge from the midrib at angles averaging about 70 degrees, at intervals of 1 mm. to 3 mm., pursue a but slightly curved outwardly ascending course and have their ends united by an aerodrome vein on each edge of the lamina parallel with and from 1 mm. to 2 mm. within the margin. Tertiaries forming open isodiametric polygonal meshes.

The present well-marked species closely resembles the only other named fossil form *Calyptranthes eocenica* Berry from the lower Eocene of the Mississippi embayment (Wilcox Group). It may also be compared with the slightly smaller *Myrtus rectinervis* described by Saporta\(^1\) from the Sannoisian of southeastern France.

The genus *Calyptranthes*, which is exclusively American in the existing flora, has about seventy species ranging from Mexico and the West Indies to southern Brazil. There is a strong generic likeness between the leaves of all of the species. *Calyptranthes zyggiJum* De Candolle may be mentioned, among others, as a form with leaves almost exactly like the fossil. There is also a marked family resemblance to some of the existing tropical American species of *Eugenia*, and more especially *Myrica*, *Myrica multiflora* De Candolle from the Guianas being very similar to the present species.

---

\(^1\) Saporta, Études, vol. 1, p. 251, pl. 11, fig. 5, 1863.
Hemsley records 7 existing species of *Calyptranthes* from Central America, two of which occur in Panama.

_Occurrence._—Gatun formation, Gatun Borrow Pits. (Collected by M. I. Goldman.)

**Family MELASTOMATACEAE.**

**Genus MELASTOMITES Unger.**

*MELASTOMITES MICONIOIDES,* new species.

Plate 18, fig. 2.

_Description._—Leaf oblong-elliptic in outline, of relatively small size, with an equally and bluntly pointed apex and base. Length about 6 cm. Maximum width, in the middle part, about 2.25 cm. Margins entire. Texture subcoriaceous. Petiole short and stout. Midrib stout and prominent. Lateral primaries stout, prominent, diverging from the midrib at an acute angle just above the base and acrodrome. From the disposition of the outwardly directed nervilles from the primaries it is probable that subordinate acrodrome primaries constitute an infra marginal vein on each side, but these can not be made out. Close-set subparallel nervilles run transversely between the midrib and the primaries.

This species is represented by a small amount of fragmentary material, too poor to permit definite generic determination. It is, therefore, referred to the form-genus *Malastomites* proposed by Unger for generically undeterminable leaves of the Melastomataceae. While the fossil somewhat suggests the leaves of various Lauraceous genera, such as *Cinnamomum,* *Camphoromaea,* *Goeppertia,* and *Cryptocarya,* its characters are clearly those of the Melastomataceae. It particularly suggests the genus *Tibouchina* Aublet, which has upward of 200 species of shrubs and undershrubs in tropical America.

The family Melastomataceae is a relatively large one, with about 150 genera and over three thousand species. It is almost strictly tropical, although some members range southward to 40° south latitude. This great family is typically American, seven of the fifteen tribes into which it is divided being confined to tropical America, and about 2,500 of the existing species being also endemic in this region. While the geologic history of this vast assemblage of forms is practically unknown, there is no evidence to disprove the theory that it, like the allied families Combretaceae and Myrtaceae, had its origin in that most prolific region—the American tropics.

The few fossil forms that have been found, including leaves, flowers, and calices, have been referred to the form-genus *Melastomites* first proposed by Unger. A doubtfully determined species, which probably belongs to the Lauraceae, has been recorded from the Up-
per Cretaceous of Westphalia. The only known Eocene species is
the well-marked form present in the lower Eocene of the Mississippi
embayment region (Wilcox Group.) Four Oligocene species have
been described from Bohemia, Styria, and Egypt; four Miocene
species from Switzerland, Prussia, and Croatia; and a Pliocene
species from Italy.

Occurrence.—Culebra formation, upper part. East wall of Gail-
lard Cut just north of Canal Zone station 1760. (Collected by M. I.
Goldman.)

Order EBENALES.

Family EBENACEAE.

Genus DISOPYROS Linnaeus.

DISOPYROS MACDONALDI, new species.

Plate 18, figs. 4–8.

Description.—Globose berry-like fruits of small size and consider-
able consistency, possibly preserved in an unripe state since the flesh
is stringy and with a great many tannin cells. The great abundance
of these fruits in the andesitic tuffs makes it seem more probable,
however, that they are mature, particularly as some are greatly flat-
tened. The numerous elongated pendulous seeds and the amount of
vascular fibers in the flesh would tend to prevent much compression
in a certain number of cases. Diameter 12 to 15 mm. Flesh hard,
very tanniferous, and with numerous fibers. Seeds 8 to 10 in number,
oblong, elliptical, compressed, with a hard seed coat. The interior
of the seeds is filled with amorphous silica and fails to show any
structure. Seeds about 7.5 mm. long, averaging 3 mm. high and 1
mm. to 2 mm. thick, very unequally developed, one to three usually
more or less abortive. Peduncle not preserved, nor do any of the
specimens show the calyx.

These seeds are exceedingly abundant and more or less perfectly
silicified, the flesh being dark brown and the seeds white, making
very striking objects. They are clearly referable to Diospyros and
so far as I know represent the only known petrified fruits of this
genus, although the persistent calices are not uncommon as impres-
sions from the Upper Cretaceous onward. The modern species have
from 4 to 12 compressed seeds which tend to become less numerous
with the increase in the fleshy part of the fruit, so that possibly these
more consistent and prevalingly 10-seeded fossil fruits may represent
an earlier stage in their evolution, although this seems doubtful
since the calyx of a very large fruited form is known from the Upper
Eocene of southwestern Texas.
Diospyros is cosmopolitan in the existing flora with about 180 species in the warmer regions of both hemispheres. Mostly Oriental, but not uncommon in the southern United States, Antilles, and from Mexico through tropical South America. Upward of 100 fossil species are known ranging in age from the Upper Cretaceous to the present.

Occurrence.—Section near mouth of Tonosi River, in deposits of Eocene age (MacDonald).

Type.—Cat. No. 35316, U.S.N.M.

Order RUBIALES.

Family RUBIACEAE.

Genus RONDELETIA Plumier.

RONDELETIA GOLDMANI, new species.

Plate 18, fig. 3.

Description.—Leaves lanceolate in outline, somewhat falcate and inequilateral, with an equally acuminate apex and base. Length between 12 cm. and 13 cm. Maximum width, midway between the apex and the base, about 3 cm., 13.5 mm. on the concave side and 15.5 mm. on the convex side. Margins entire. Texture coriaceous. Petiole short and stout, expanded proximad, about 5 mm. long. Midrib curved, stout, and prominent. Secondaries thin, numerous, subopposite to alternate, rather regularly spaced; about 15 pairs diverge from the midrib at angles of about 45° and ascend in rather flat but regular and subparallel curves and are camptodrome in the marginal region. Tertiaries obsolete.

This well-marked species is referred to the subfamily Cinchonoidae and tribe Rondeletieae and seems to indicate an Oligocene species of Rondeletia, a genus of shrubs and trees confined to tropical America and not heretofore found fossil. Rondeletia has about 70 existing species, a few of which occur in northern South America, but the majority are confined to the Antilles (45 species) and Central America (24 species). The present species may be compared with the existing Rondeletia racemosa Swartz of Jamaica, and with other Antillean and Central American forms. More remote comparisons may be made with certain species of Psychotria, as, for example, Psychotria barbiflora De Candolle of Brazil, and with the genus Tapiria Jussieu of the Anacardiaceae, a fossil species of which, Tapiria lanceolata, has been described by Engelhardt from the Tertiary of Ecua-

from 4 M. is •cm. A and the ligneous, Tertiary dor. Another fossil species somewhat resembling the Panama form is Cinchonidium multinerve described by Ettingshausen¹ from the Tertiary of Priesen, Bohemia.

Named in honor of Dr. Marcus I. Goldman, who collected it while a Fellow at the Johns Hopkins University.

Occurrence.—Gatun formation, Gatun Borrow Pits. (Collected by M. I. Goldman.)

Genus RUBIACITES Weber.

RUBIACITES IXOREOIDES, new species.

Plate 18, figs. 9–12.

Description.—Fruit bilocular, indehiscent or tardily dehiscent, ligneous, capsular-like. Form a prolate spheroid 2.7 cm. long and 2 cm. in diameter. The surface roughened by small tuberulations and pits. Walls about 2 mm. thick. Median partition thin. Seeds one in each cell, suspended, elliptical in both transverse and longitudinal sections, compressed along the central partition. Surface striate. Endosperm not ruminating. One seed is more fully developed than the other. The larger is about 2 cm. long, 1.4 cm. wide and 9 mm. thick.

This well marked form is unfortunately represented by but a single specimen which however shows most of the cavity occupied by the fruit, the two contained seeds partially petrified and the lignified wall and part of the partition. The accompanying illustrations show the external appearance of the fruit (fig. 9) and a side view showing the relative development of the two seeds (fig. 10). Figure 12 shows a lignified end of the fruit with the median partition and figure 11 is a side view with the smaller seed in front and the larger forming the background. So far as I know nothing like it has previously been found fossil.

There seems to be no question but that the present fruit represents some Oligocene species of Rubiaceae and it is consequently referred to the form-genus Rubiacites proposed by Weber, although probably not congeneric with the previously described fossil species of Rubiacites. The fruits of this large family exhibit considerable variety being either capsular, achene-like or drupaceous. Without a much larger amount of recent comparative material than is available it is not possible to definitely fix the botanical relation of the present species which, however, appears to be referable to the tribe Ixoreae or the Psychotrieae. The specific name chosen suggests a resemblance to the fruits of Ixora Linnaeus, a genus with over 100 species of

¹ Ettingshausen, C. von, Die Fossile Flora des Tertiär-Beckens von Billn, Theil 2, p. 208, pl. 36, fig. 5, 1868.
shrubs and small trees found in the tropics of both hemispheres but chiefly Asiatic.

Occurrence.—Gatun formation. Gatun Borrow Pits. (Collected by M. I. Goldman.)

EXPLANATION OF PLATES.

**PLATE 12.**

*Palmoxyylon palmacites* (Sprengel) Stenzel. Cucuracha formation.

Fig. 1. Showing abundance of fibrovascular bundles and gum cells. ×20.

**PLATE 13.**

1. *Ficus culebrensis* Berry. Culebra formation.

**PLATE 14.**

*Taenioxylon multiradiatum* Felix. Culebra formation.

Fig. 1. Transverse section. ×25.

2. Same. ×200.

**PLATE 15.**

*Taenioxylon multiradiatum* Felix. Culebra formation.

Fig. 1. Radial section. ×200.

2. Tangential section. ×200.

**PLATE 16.**

2. *Inga oligocaenica* Berry. Culebra formation.

**PLATE 17.**


**PLATE 18.**

4-5. *Diosypros macdonaldi* Berry. Eocene (?).
4. Showing abundance of fruits in tuffs.
5, 7, 8. Transverse median sections of fruits.
6. Longitudinal median section of fruit.
10. Median longitudinal section showing unequally developed seeds.
11. Side view of seeds.
12. Lignified fragment showing end walls and partition.
Palmoxyylon palmacites (Sprengel) Stenzel.

For explanation of plate see page 44.
FOSSIL DICOTYLEDONOUS LEAVES.

FOR EXPLANATION OF PLATE SEE PAGE 44.
Taenioxylon multiradiatum Felix.

For explanation of plate see page 44.
Taenioxyylon multiradiatum Felix.

For explanation of plate see page 44.
Fossil Dicotyledonous Leaves.

For explanation of plate see page 44.
FOSSIL DICOTYLEDONOUS LEAVES.

For explanation of plate see page 44.

For explanation of plate see page 44.
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrostichum</td>
</tr>
<tr>
<td>Allophylus</td>
</tr>
<tr>
<td>Anona</td>
</tr>
<tr>
<td>Artocarpus</td>
</tr>
<tr>
<td>Aureum</td>
</tr>
<tr>
<td>Banisteria</td>
</tr>
<tr>
<td>Calyptranthes</td>
</tr>
<tr>
<td>Camphoromaea</td>
</tr>
<tr>
<td>Cassia</td>
</tr>
<tr>
<td>Chamaedorea</td>
</tr>
<tr>
<td>Cichorium multitervae</td>
</tr>
<tr>
<td>Cinnamomum</td>
</tr>
<tr>
<td>Compsoneura</td>
</tr>
<tr>
<td>Cryptocarya</td>
</tr>
<tr>
<td>Diospyros</td>
</tr>
<tr>
<td>Endogenites palmacites</td>
</tr>
<tr>
<td>Eugenia</td>
</tr>
<tr>
<td>Fasciculites palmacites</td>
</tr>
<tr>
<td>Ficus</td>
</tr>
<tr>
<td>Geopqtporia</td>
</tr>
<tr>
<td>Guatteria</td>
</tr>
<tr>
<td>Hippomane</td>
</tr>
<tr>
<td>Ixora</td>
</tr>
<tr>
<td>Laguncularia</td>
</tr>
<tr>
<td>Laurus</td>
</tr>
<tr>
<td>Laurophyllum</td>
</tr>
<tr>
<td>Melastomites</td>
</tr>
<tr>
<td>Melodorum</td>
</tr>
<tr>
<td>Mesplodiapne</td>
</tr>
<tr>
<td>Mitrephora</td>
</tr>
<tr>
<td>Myrcia</td>
</tr>
<tr>
<td>Myristicophyllum</td>
</tr>
<tr>
<td>Myrocarpus</td>
</tr>
<tr>
<td>Myrtus rectinervis</td>
</tr>
<tr>
<td>Ocotea</td>
</tr>
<tr>
<td>Oreodaphne</td>
</tr>
<tr>
<td>Palmacites dubius</td>
</tr>
<tr>
<td>Palmoxylon</td>
</tr>
<tr>
<td>Paritium</td>
</tr>
<tr>
<td>Psychotria barbiflora</td>
</tr>
<tr>
<td>Rhizophora</td>
</tr>
<tr>
<td>Rondeletia</td>
</tr>
<tr>
<td>Rubiactes</td>
</tr>
<tr>
<td>Rubiactes</td>
</tr>
<tr>
<td>Ruellia</td>
</tr>
<tr>
<td>Schmidelia</td>
</tr>
<tr>
<td>Sophora</td>
</tr>
<tr>
<td>Sweetia</td>
</tr>
<tr>
<td>Taenoxylon</td>
</tr>
<tr>
<td>Venericardia planicosta</td>
</tr>
<tr>
<td>Virola</td>
</tr>
</tbody>
</table>
THE SMALLER FOSSIL FORAMINIFERA OF THE PANAMA CANAL ZONE.

By Joseph Augustine Cushman,
Of the United States Geological Survey.

INTRODUCTION.

The collection of fossil foraminifera included in this report were sent to the writer by the United States Geological Survey. It consists almost entirely of material collected by Messrs. D. F. MacDonald and T. Wayland Vaughan in 1911, to whom I am indebted for data as to the geological correlation. The names applied to the geologic formations are those used in MacDonald's "Sedimentary formations of the Panama Canal Zone, with special reference to the stratigraphic relations of the fossiliferous beds," which appears in the latter part of this volume. Where former correlation has seemed not to apply to the foraminifera, especially those of three stations, 6033c, 6035, and 6036a, discussion of the data obtained from the foraminifera is given in detail later.

The orbitoids and nummulites are both well represented in the collection, but as these require special study in connection with those of the Coastal Plain and of the West Indian region it seems advisable to treat them in a separate paper which immediately follows the present one.

The following data are given for only the stations from which foraminifera were obtained and which are recorded in this paper.

LIST OF MATERIAL.

U.S.G.S. station 6009.—Oligocene—Culebra formation (upper part).
From section in Canal cut 600 feet south of Miraflores Locks.
Dark, soft, fairly well laminated clay rock.
Few foraminifera and rather poorly preserved.

6010.—Oligocene—Culebra formation (lower part).
From section—Pedro Miguel Locks to Paraiso Bridge.
Dark, well laminated, very soft, carbonaceous clay rocks.
Foraminifera in fairly good numbers and a rather varied assortment; mostly stained black, except certain of the Miliolidae, which still keep their calcareous tests more or less in their original condition.
6012.—Oligocene—Culebra formation.
From section—west side of Gaillard Cut.
   a. Dark, well laminated soft and very friable carbonaceous shale.
      Few foraminifera—some glauconit, others well preserved.
   c. From a lens of sandy limestone 5 feet thick.
      Few foraminifera—some stained, some glauconitic, rather poorly
      preserved as to details.
   d. From lenses of limy sandstone at base of gravel, 3 feet thick.
      Few foraminifera and these poorly preserved.

6015.—Oligocene—Emperador limestone.
From old quarry, one-fourth mile north of west from Empire.
Cream-colored, coral limestone.
Few foraminifera.

6016.—Oligocene—Emperador limestone.
From old quarry, one-third mile north of west of Empire.
Few poorly preserved foraminifera.

6019.—Section on west side of Gaillard Cut near Las Cascadas.
   a-f. Oligocene—Culebra formation.
   a. Grayish, rather nodular, impure limestone.
      Foraminifera few and poor.
   b. Dark, well stratified, very friable, tufaceous material.
      Foraminifera few and poor except Orbitolites, which are large
      and fine.
   c. Grayish, well stratified, very friable, tufaceous sandstone.
      Few casts of foraminifera and central portions of orbitoids.
   d. Grayish-green, limy, tufaceous sandstone.
      Very few foraminifera, poor specimens.
   e. Thin-bedded, light gray to cream-colored, limy sandstone with
      some partings of light-colored clay.
      Orbitoids and Orbitolites? only.
   f. Dark, very friable shales and tuffs.
      Foraminifera fairly common, some well preserved, others glau-
      conitic.
   g. Oligocene—Emperador limestone.
      Light gray to yellowish gray, somewhat sandy limestone.
      Some orbitoids and Orbitolites? but little else in the way of
      foraminifera.

6020.—Oligocene—Culebra formation.
Same locality as 6019.
   a-c. Dark-gray carbonaceous clays, friable shales and tuffs.
   a. Foraminifera numerous but of few species, mostly glauconitic,
      at least in part.
   c. A few Orbitolites in the coralliferous layer.
6024.—Section in railway cuts near New Frijoles.
   a. Oligocene—Culebra formation.
   Dark, basic, orbitoidal, tufaceous material.
   Many worn central portions of Orbitoids and a very few other
   foraminifera poorly preserved.

6025.—Oligocene—Culebra formation (upper part).
   About 200 yards south of southern end of switch at Bohio
   Ridge station relocated line Panama Railroad.
   Contains a number of species of foraminifera but for the most
   part broken or poorly preserved.

6026.—Two miles south of Monte Lirio.
   Somewhat coarse-grained sandstone.
   Few poor specimens of foraminifera.

6029.—Section one-half mile from Camp Cotton, toward Monte Lirio,
   at big curve on railroad. Miocene—Gatun formation.
   a. Bluish, fossiliferous argillite.
   Very few foraminifera.
   b. Bluish argillite.
   Few foraminifera, but considerably more than in a.
   c. Bluish, fossiliferous argillite.
   Very few poor specimens of Amphistegina.

6030.—Railroad cut north side of Big Swamp, one and one-half miles
   north of Monte Lirio. Miocene—Gatun formation.
   Bluish gray, argillaceous beds.
   The only foraminifera consisted of a single specimen of Trilo-
   culina.

6031.—Section in cut one-half mile west of Camp Cotton toward
   Gatun. Miocene—Gatun formation.
   Conglomerate bed and sandy marl 1 foot above.
   A few poorly preserved specimens of Quinqueloculina were the
   only foraminifera.

6033.—Generalized section of the bluffs exposed along the Panama
   Railroad, relocated line, about 3,500 feet south of Gatun Railroad
   Station. Miocene Gatun—formation.
   c. Dark-colored, marly, fossiliferous clay.
   Rich in foraminifera, especially in specimens. A fair number
   of species, well preserved.

6035.—Vicinity of Mindi Hill. Miocene—Gatun formation.
   Gray-green, fine grained sandy shell marl.
   Very fine-grained material, but with numerous species and speci-
   mens of foraminifera representing an off-shore assemblage.

6036.—Monkey Hill, Mount Hope Station. Miocene—Gatun for-
   mation.
   Dark-colored, fine grained, sandy clay marl.
Specimens of foraminifera numerous and well preserved, representing an off-shore assemblage comparable to 6035.

5850.—Near Mount Hope—Pleistocene.

Loose shells and marl obtained from ditch through swampy ground about one-fourth mile from present sea beach and about 6 to 8 feet above high tide.

Contains a few foraminifera of common shallow water, tropical species.

The geological position of certain material from near the Atlantic end of the canal seems from the evidence of the contained foraminifera to be younger than the position previously assigned to it—the upper Oligocene. By a reference to the table of distribution it will be noted that the great majority of the species occurring at the stations in question; 6533c, 6035, and 6036, do not occur in the material of definitely Oligocene age. In such cases as that of Cristellaria rotulata there is a slight difference in the specimens from these stations and those from the Pacific side, 6010, 6012a, 6012c, but the specimens at the latter stations were in small quantity, and the differences could not be made use of, mainly from lack of a sufficient number of specimens. In the case of Cristellaria vaughani this seems to be a well-characterized species occurring at several stations, but even in it there are very minor differences. Among the species of Globigerina, the more generalized species such as G. bulloides, which has a very wide geological range, occur more or less constantly throughout the collections, but the strongest evidence comes from the last three species and Orbulina, which are very rarely found fossil, and then only in the very latest tertiary. These were well characterized species, the specimens are very clean and complete, and resemble a modern Globigerina ooze of considerable depth. The three species of Pulvinulina also occur nowhere but at these stations. Pulvinulina concentrica is essentially a recent species and P. menardii is characteristic of modern Globigerina ooze. Sigmoilina tenus and S. asperula are also species of recent Globigerina ooze of moderate depths. On the other hand, the lack of certain things is also significant. Amphistegina, which occurs more or less regularly in the other portion of the material, is entirely wanting in the three Pacific stations, 6033c, 6035, and 6036. Polystomella also does not occur. Both the last two genera are very characteristic of the coastal plain Oligocene of the United States. It may be argued in this case, however, that the stations were originally too far from shore to have these genera which are more characteristic of shallow littoral conditions.

On the whole, the foraminifera bear out the geological determinations based upon the other groups of organisms.
### Table of distribution.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6009</td>
<td>6010</td>
<td>6012a</td>
<td>6012d</td>
<td>6016</td>
<td>6019a</td>
</tr>
<tr>
<td></td>
<td>6019b</td>
<td>6019c</td>
<td>6019d</td>
<td>6019e</td>
<td>6019f</td>
<td>6019g</td>
</tr>
<tr>
<td></td>
<td>6019h</td>
<td>6019i</td>
<td>6019j</td>
<td>6020a</td>
<td>6020b</td>
<td>6020c</td>
</tr>
<tr>
<td></td>
<td>6020d</td>
<td>6020e</td>
<td>6020f</td>
<td>6020g</td>
<td>6020h</td>
<td>6020i</td>
</tr>
<tr>
<td></td>
<td>6020j</td>
<td>6020k</td>
<td>6020l</td>
<td>6020m</td>
<td>6020n</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6020o</td>
<td>6020p</td>
<td>6020q</td>
<td>6020r</td>
<td>6020s</td>
<td></td>
</tr>
</tbody>
</table>

<p>|                     | +          | +       | +      | +        |        |              |
|                     | +          |         |        | +        |        |              |
| Tectularia abbreviata d’Orbigny | +          | +       | +      | +        |        |              |
|                     | +          |         |        | +        |        |              |
| agglutinata d’Orbigny | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| laminata, new species | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| subagglutinata, new species | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| carinata d’Orbigny | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| panamensis, new species | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| Chrysotilina pulchella, new species | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| Bolivia punctata d’Orbigny | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| acutangula (Costa) | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| Rigenerina nodosaria d’Orbigny | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| Gaudryina jenkinsi Cushman | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| trispinulata Cushman | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| Clavulina parisiensis d’Orbigny | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| communis d’Orbigny | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| Virgulina aquamoe d’Orbigny | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| Lagena striata, var. strumosa Reuss | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| Nodosaria communis d’Orbigny | +          |         |        | +        |        |              |
| insecta Schwager | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| Cristellaria rotata (Lamarck) | +          |         |        | +        |        |              |
| Italica Defrance | +          |         |        | +        |        |              |
|                     | +          |         |        | +        |        |              |
| prothuberus, new species | +          |         |        | +        |        |              |
| vaughani, new species | +          |         |        | +        |        |              |
| Urgerina canariensis d’Orbigny | +          |         |        | +        |        |              |
| pygmaea d’Orbigny | +          |         |        | +        |        |              |
| fenuilliata Reuss | +          |         |        | +        |        |              |
| Bifurgerina raphani, var. transversa, new variety | +          |         |        | +        |        |              |
| Globigerina bulloides d’Orbigny | +          |         |        | +        |        |              |
| inflata d’Orbigny | +          |         |        | +        |        |              |
| dubia Egger | +          |         |        | +        |        |              |
| conglobata H. B. Brady | +          |         |        | +        |        |              |
| squamulifera H. B. Brady | +          |         |        | +        |        |              |
| equilateralis H. B. Brady | +          |         |        | +        |        |              |</p>
<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbulina universa d'Orbigny</td>
<td>+ +</td>
</tr>
<tr>
<td>Discorbin obtusa d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>Truncatulina americana, new species</td>
<td>+ + + +</td>
</tr>
<tr>
<td>pycnica Hantken</td>
<td></td>
</tr>
<tr>
<td>angulata (d'Orbigny)</td>
<td></td>
</tr>
<tr>
<td>wuellerstorfi (Schwager)</td>
<td></td>
</tr>
<tr>
<td>culebra, new species</td>
<td></td>
</tr>
<tr>
<td>Pulvinulina oblonga (Williams)</td>
<td></td>
</tr>
<tr>
<td>concentrica Parker and Jones</td>
<td></td>
</tr>
<tr>
<td>menardii (d'Orbigny)</td>
<td></td>
</tr>
<tr>
<td>Siphonina reficiata (Czepek)</td>
<td></td>
</tr>
<tr>
<td>Nonionina impressa (Walker and Jacob)</td>
<td></td>
</tr>
<tr>
<td>oftenina (Fichtel and Moll)</td>
<td></td>
</tr>
<tr>
<td>panamensis, new species</td>
<td></td>
</tr>
<tr>
<td>Polystomella striato-punctata (Fichtel and Moll)</td>
<td></td>
</tr>
<tr>
<td>sagra d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>macsella (Fichtel and Moll)</td>
<td></td>
</tr>
<tr>
<td>crista (Linnaeus)</td>
<td></td>
</tr>
<tr>
<td>craticulata (Fichtel and Moll)</td>
<td></td>
</tr>
<tr>
<td>Amphistegina lessonii d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>Quinqueloculina seminulum (Linnaeus)</td>
<td></td>
</tr>
<tr>
<td>var.</td>
<td></td>
</tr>
<tr>
<td>contorta d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>audrianae d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>undanae Karr</td>
<td></td>
</tr>
<tr>
<td>bicornis (Walker and Jacob)</td>
<td></td>
</tr>
<tr>
<td>panamensis, new species</td>
<td></td>
</tr>
<tr>
<td>Sigmolina tenax (Czepek)</td>
<td></td>
</tr>
<tr>
<td>asperula (Karrar)</td>
<td></td>
</tr>
<tr>
<td>Triloculina trigonula (Lamarck)</td>
<td></td>
</tr>
<tr>
<td>tricarinata d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>bulbosa, new species</td>
<td></td>
</tr>
<tr>
<td>projecta, new species</td>
<td></td>
</tr>
<tr>
<td>Biloculina bulboides d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>Spiroloculina cassata d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>Orbiculina adamsa (Fichtel and Moll)</td>
<td></td>
</tr>
<tr>
<td>Orbitolites americana, new species</td>
<td></td>
</tr>
</tbody>
</table>
DESCRIPTIONS OF SPECIES.

Family TEXTULARIIDAE.

Genus TEXTULARIA Defrance, 1824.

TEXTULARIA ABBREVIATA d'Orbigny.

Plate 19, fig. 1.


Description.—Test broad and short, somewhat compressed, chambers comparatively few in number, broad near the center and tapering to the periphery, sutures in these specimens indistinct, aperture an arched slit extending nearly across the test, wall comparatively smooth.

Length 0.65 mm., breadth about 1 mm. Cat. No. 324608, U.S.N.M.

Specimens from U.S.G.S. No. 6010, from the Culebra formation, dark clay north of Pedro Miguel Locks. Apparently the material is rather metamorphosed and more or less glauconitic so that little of the original test is preserved. This is a rather common Tertiary species.

TEXTULARIA SAGITTULA Defrance.

Plate 19, fig. 2.


Description.—Test elongate, tapering, much compressed especially at sides, chambers numerous, sutures indistinct, aperture a curved slit occupying about one-half the width of the base of the chamber.

Length about 1.5 mm., breadth 1 mm. Cat. No. 324609, U.S.N.M.

A few poorly preserved specimens from U.S.G.S. No. 6025, from the Culebra formation, foraminiferal marl and coarse sandstone about 200 yards south of southern end of switch at Bohio Ridge station, relocated line, Panama Railroad.

Although this material is more or less glauconitic and poorly preserved the three specimens, one of which is here figured, are referred with a reasonable degree of certainty to this species.

A single fragmentary specimen from U.S.G.S. No. 6026, from the Culebra formation, coarse, sandy foraminiferal marl about half way between Monte Lirio and Bohio Ridge, relocated line, Panama Railroad, seems also to be this species.
TEXTULARIA AGGLUTINANS d'Orbigny.

Plate 19, fig. 3.


Description.—Test elongate, tapering, but slightly compressed laterally, chambers high, sutures deep, outline sinuous, end view broadly elliptical, wall composed of rather coarse agglutinated material, aperture a narrow slit a little more than half the width of the base of the chamber.

Length 1.23 mm., breadth 0.65 mm. Cat. No. 324610, U.S.N.M.

A single specimen here figured seems referable to this species. It is from U.S.G.S. No. 6019—f, from the uppermost bed of the Culebra formation, the lower limestone of the Las Cascadas section, opposite Las Cascadas, Gaillard Cut. Although not so rounded in end view as this species usually is in recent specimens, the general characters, wall structure, high rotund chambers and lobulated outline seem to place it here.

TEXTULARIA LAMINATA, new species.

Plate 19, fig. 4.

Description.—Test elongate, cuneate, tapering from the widest part near the apertural end, gradually and evenly to the initial end which is subacute, median line raised thence tapering rapidly toward the periphery which is thin and extends out into a lamella-like border, chambers numerous, wide and low, sutural lines raised, somewhat curved backward; border irregular, wall finely arenaceous; aperture indistinct.

Length 2 mm., breadth 1.2 mm.

Specimen figured from U.S.G.S. No. 6010, from lower part of the Culebra formation, dark clay north of Pedro Miguel Locks. Specimen rather better preserved than most from this station. The end view of this specimen is mainly rhomboidal with the bordering carina extending outward in a thin carina. It is in some ways suggestive of Textularia carinata but differs in many respects from that species which is also figured on plate 19, fig. 6.

Type-specimen.—Cat. No. 324611, U.S.N.M.

TEXTULARIA SUBAGGLUTINANS, new species.

Plate 19, fig. 5.

Description.—Test subrhomboidal in front view tapering from the middle toward either end, in end view oblong, sides truncated; chambers comparatively few, somewhat inflated, sutures conspicuously de-
pressed, wall composed of rather coarse arenaceous material, aperture extending into the base of the chamber in a narrow rounded opening deeper than wide.

Length 1.3 mm., breadth 0.85 mm.

This species was fairly common from U.S.G.S. No. 6033c, the Gatun formation, in marl from second bed from bottom, just below lower clay, Gatun section, relocated line Panama Railroad.

This species may be distinguished from Textularia agglutinans by the truncated sides, the oblong end view and especially by the deep, narrow aperture.

*Type specimen.*—Cat. No. 324612, U.S.N.M.

**TEXTULARIA CARINATA** d'Orbigny.

Plate 19, fig. 6.


*Description.*—Test much compressed, rather abruptly tapering toward the initial end, sutures strongly limbate, in well-preserved specimens extending out from the periphery in angular spine-like projections, aperture narrow, elongate.

Length 1 mm., breadth 0.65 mm. Cat. No. 324613, U.S.N.M.

The only material of this species is from U.S.G.S. No. 6036, from the Gatun formation, a dark-colored, fine-grained, sandy clay marl from Monkey Hill, Mount Hope Station. It is very evidently this species and is well preserved.

**TEXTULARIA PANAMENSIS,** new species.

Plate 20, fig. 1.

*Description.*—Test rhomboid in front view, very much compressed, in end view long and narrow, the faces nearly parallel, sides rounded; composed of comparatively few chambers but variable: long and low, sutures somewhat depressed, wall rather coarsely arenaceous; aperture indistinct.

Length 0.85 mm., breadth 0.65 mm.

The figured specimen is from U.S.G.S. No. 6036, from the Gatun formation, a dark-colored, fine-grained sandy clay marl from Monkey Hill, Mount Hope Station. Specimens were common from U.S.G.S. No. 6033c, in marl from second bed from bottom, just below lower clay, Gatun section, relocated Panama Railroad.

This is a rather striking species, with its very flat, broad front view and very compressed character of the test.

*Type-specimen.*—Cat. No. 324614, U.S.N.M.
Genus CHRYSALIDINA d'Orbigny, 1846.

CHRYSALIDINA PULCHELLA, new species.

Plate 20, fig. 2.

Description.—Test elongate, gently tapering, broadest at the apical end; in end view triangular; early chambers triserial, later ones uniserial; chambers in uniserial portion triangular, the sutures distinct, gently curved backward at the angles, outline more or less irregular, apertural face gently convex, with indications of numerous circular apertural openings, wall smooth.

Length 0.5 mm., breadth 0.2 mm.

This species occurred at U.S.G.S. No. 6036, the Gatun formation, in dark-colored, fine-grained, sandy clay marl, from Monkey Hill, Mount Hope Station.

The species differs from the only known recent species, *Chrysalidina dimorpha*, in the more tapering and elongate test, the greater irregularity of the contour and test in general and its generally less trim and neat appearance. The specimen figured is well preserved in its general characters, except those of the apertural face, which are somewhat obscured.

Type-specimen.—Cat. No. 324615, U.S.N.M.

Genus BOLIVINA d'Orbigny, 1826.

BOLIVINA cf. B. PUNCTATA d'Orbigny.

Plate 21, fig. 3.


Description.—Test much elongate, sides nearly parallel, abruptly tapering at the initial end, chambers numerous, usually higher than broad, inflated, sutures distinct but slightly depressed; wall finely punctate, occasionally becoming slightly striate.

Length 0.60 mm., breadth 0.15 mm. Cat. No. 324616a, b, U.S.N.M.

Specimens which seem referable to this species were obtained at U.S.G.S. No. 6033c, Gatun formation, marl from second bed from bottom, just below lower clay, Gatun section, relocated line Panama Railroad and 6035, Gatun formation, from gray green, fine grained, sandy shell marl, vicinity of Mindi Hill. There is a tendency for the specimens to take on a semi-striate appearance, an extreme form both in shape and striation shown in plate 21, figure 3.

BOLIVINA AENARIENSIS (Costa).

Plate 21, fig. 2.

*Brizalina aenariensis* Costa, Atti Acad. Pontaniana, vol. 7, 1856, p. 297, pl. 15, fig. 1, A. B.

Description.—Test much compressed, composed of numerous chambers about twice as broad as high, sutures distinct, slightly curved backward, chambers slightly inflated, especially in the center, test bordered by a narrow but distinct carina; surface smooth except for several longitudinal raised costae radiating from the initial end which carries also a short spine.

Length 0.65 mm., breadth 0.35 mm. Cat. No. 324617a, b, U.S.N.M.

A few specimens were obtained from U.S.G.S. No. 6033c, Gatun formation, in marl from second bed from bottom, just below lower clay, Gatun section, relocated line, Panama Railroad.

While these specimens are not absolutely typical they undoubtedly belong to this species.

Very typical specimens occur at U.S.G.S. No. 6036, Gatun formation, in dark colored, fine grained, sandy clay marl, from Monkey Hill, Mount Hope Station.

BOLIVINA ROBUSTA H. B. Brady.

Plate 21, fig. 4.


Description.—Test compressed, gradually tapering toward the apical end; chambers comparatively few; about twice as broad as high; sutures limbate, gently curved backward, often slightly lobulated or occasionally showing traces of reticulation on the surface, wall otherwise smooth but punctate, not spinose at the apical end.

Length 0.45 mm., breadth 0.25 mm. Cat. No. 324618, U.S.N.M.

These specimens, an extreme form of which is figured, are many of them very close to typical B. robusta which is at best either a variable species or one including more than one form. The sutures are usually limbate, as shown in some of Brady’s figures, but no apical spine is apparently in any of the specimens in this material. They were from U.S.G.S. No. 6035, Gatun formation, from gray green, fine grained, sandy shell marl, vicinity of Mindi Hill.

BOLIVINA, species?

Plate 21, fig. 1.

This specimen is rather ill-defined and cannot be definitely determined from the single example, the sutures are limbate as in Bolivina robusta Brady, but have apparently no secondary extensions as in that species. The whole specimen seems to be replaced. The specimen is from U.S.G.S. 6010, lower part of the Culebra formation, from dark clay north of Pedro Miguel Locks. Cat. No. 324619, U.S.N.M.
Genus BIGENERINA d’Orbigny, 1826.

BIGENERINA NODOSARIA d’Orbigny.

Plate 21, fig. 5.


Description.—Test elongate, subcylindrical, early portion consisting of a few chambers arranged as in Textularia, later ones uniserial, early portion tapering abruptly toward the apical end, wall coarsely arenaceous, sutures rather indistinct, aperture circular and central.

Length 2 mm., breadth 0.8 mm. Cat. No. 324620, U.S.N.M.

Several specimens in excellent condition were obtained from U.S.G.S. No. 6036, Gatun formation, in dark-colored, fine-grained, sandy clay marl from Monkey Hill, Mount Hope Station.

These specimens, as in the one figured, have but a slight indication of the biserial chambers from the exterior, but otherwise seem to be typical. At first glance they might be taken for a species of Clavulina.

Genus GAUDRYINA d’Orbigny, 1839.

GAUDRYINA FLINTII Cushman.

Plate 20, fig. 4.


Description.—Test subconical, early portion rounded conical, triserial, later portion subcylindrical, biserial chambers of later portion nearly semicircular in transverse section, sutures distinct; wall arenaceous; aperture subcircular, at the base of the inner margin of the chamber.

Length 1.20 mm., breadth 0.72 mm. Cat. No. 324621.

A single specimen which seems to be close to recent specimens of this species was obtained from U.S.G.S. No. 6010, lower part of the Culebra formation, in dark clay, north of Pedro Miguel Locks. The specimen is somewhat glauconitic and certain of the details are more or less obscured.

GAUDRYINA TRIANGULARIS Cushman.

Plate 20, fig. 3.

Gaudryina triangularis Cushman, Bull. 71, U. S. Nat. Mus., pt. 2. 1911, p. 65, figs. 104a–c.

Description.—Test somewhat longer than broad, early portion triangular, the faces somewhat concave, triserial; later portion biserial,
rounded in transverse section; wall coarsely arenaceous, chambers comparatively few, sutures indistinct, aperture a narrow slit at the base of the inner margin of the last formed chamber.

Length 1.7 mm., breadth 1.0 mm.  Cat. No. 324622, U.S.N.M.

A single specimen which seems to belong to this species was found in material from U.S.G.S. No. 6010, lower part of the Culebra formation, in dark clay, north of Pedro Miguel Locks. The specimen, like many others from this station, is glauconitic and not well preserved in all its details.

Genus CLAVULINA d'Orbigny, 1826.

CLAVULINA PARISIENSIS d'Orbigny.

Plate 20, fig. 5.


Description.—Test elongate, subcylindrical, early portion conical, later portion gradually increasing in diameter toward the apertural end, chambers comparatively few, those of the uniserial portion circular in cross section, wall coarsely arenaceous, somewhat rough; aperture circular, terminal.

Length nearly 2 mm., diameter 0.7 mm.  Cat. No. 324623, U.S.N.M.

A single specimen representing this species was obtained in material from U.S.G.S. No. 6010, lower part of the Culebra formation, in dark clay north of Pedro Miguel Locks. Both this and the following are common Tertiary species.

CLAVULINA COMMUNIS d'Orbigny.

Plate 20, fig. 6.


Description.—Test very elongate, subcylindrical, circular in transverse section, early portion triserial, later portion uniserial, of rather uniform diameter, sutures more or less indistinct, wall smooth; aperture terminal.

Length 2 mm., breadth 0.45 mm.  Cat. No. 324624, U.S.N.M.

A single specimen of this species occurred with the preceding, U.S.G.S. No. 6010, in the lower part of the Culebra formation. It is fragmentary but probably represents this species.
Genus VIRGULINA d'Orbigny, 1826.

VIRGULINA SQUAMOSA d'Orbigny.

Plate 21, fig. 6.


Description.—Test elongate, tapering gradually to the apical end and again toward the apertural end, chambers comparatively few, inflated, sutures distinct, wall smooth, aperture a comma-like slit at the base of the last formed chamber.

Length 0.7 mm., breadth 0.25 mm. Cat. No. 324625a, b, c, U.S.N.M.

Specimens of this species occurred in the Gatun formation at the following three stations, U.S.G.S. No. 6033c, marl from second bed from bottom, just below lower clay, Gatun Section, relocated line Panama Railroad; U.S.G.S. No. 6035, in gray-green, fine-grained, sandy shell marl vicinity of Mindi Hill, and U.S.G.S. No. 6036, in dark-colored fine-grained, sandy clay marl, at Monkey Hill, Mount Hope Station.

At none of these stations were more than a few specimens found but all seem referable to this species.

Family LAGENIDAE.

Genus LAGENA Walker and Boys, 1784.

LAGENA STRIATA (d'Orbigny), var. STRUMOSA Reuss.

Plate 21, fig. 7.


Description.—Test clavate or subglobular, the body portion ornamented with numerous longitudinal raised costae, apical end with a single stout spine; neck short and stout, typically with a phialine lip and transverse costae.

Diameter 0.5 mm. Cat. No. 324626, U.S.N.M.

A single specimen of this variety was obtained in material from U.S.G.S. No. 6010, from the lower part of the Gatun formation, dark clay, north of Pedro Miguel Locks. This is the only representative of the genus in the whole series of samples examined. The specimen lacks the neck except the base and the tip of the apical spine.
Genus **NODOSARIA** Lamarck, 1812.

**NODOSARIA COMMUNIS** d'Orbigny.

Plate 21, fig. 8.


**Description.**—Test elongated, slender, gradually tapering, slightly curved, chambers slightly inflated in the middle, sutures distinct, slightly depressed, somewhat oblique; wall smooth.

Length 2 mm. Cat. No. 324627.

A single fragment showing four chambers was obtained in material from U.S.G.S. No. 6036, Gatun formation, from dark-colored fine-grained, sandy clay marl at Monkey Hill, Mount Hope Station. The fragment with its general characters, its smooth surface, slightly inflated chambers and oblique sutures seem to clearly indicate this species.

**NODOSARIA INSECTA** Schwager?

Plate 21, fig. 9.


**Description.**—Test elongate, gradually tapering from the nearly acute slender base to a broad apical end, which is the greatest in diameter of any of the chambers of the test; chambers numerous, inflated, nearly spherical, sutures much depressed; wall smooth, apertures with a slight neck and circular opening.

Length 2.3 mm. Cat. No. 324628a, b, U.S.N.M.

Specimens were found in the lower part of Culebra formation both at U.S.G.S. No. 6010, in dark clay, north of Pedro Miguel Locks, and 6012a, from lower dark clay beneath lower conglomerate, one-fourth mile south of Empire Bridge.

The specimens are very close to the species described by Schwager from the Tertiary of Kar Nicobar. The two forms, megalospheric and microspheric, occur in the Panamanian material, the latter being much more slender at the initial end than in the megalospheric.

**NODOSARIA RAPHANISTRUM** (Linnaeus).

Plate 21, fig. 10.


837°—18—Bull. 103—5
Description.—Test elongate, subcylindrical, slightly tapering, chambers numerous, distinct, apertural end with a short tapering neck; wall ornamented with longitudinal costae continued clear to the aperture, about 12–15 in number.

Length 4 mm. Cat. No. 324629, U.S.N.M.

A single specimen of this species figured here was obtained from U.S.G.S. No. 6010, lower part of the Culebra formation, in dark clay, north of Pedro Miguel Locks. The specimen is not complete at the initial end but the last six chambers including the aperture are very well preserved.

Nodosaria, species?

Plate 21, fig. 11.

A fragment consisting of one complete chamber and the adjacent parts of two others was found in the same material, U.S.G.S. No. 6010, as the above but nearly twice the diameter. The costae are also more numerous. Without further material it is unsafe to try to determine the fragment, but the occurrence of another species at this station should be at least recorded. Cat. No. 624630, U.S.N.M.

Genus Cristellaria Lamarck, 1812.

Cristellaria Rotulata (Lamarck).

Plate 22, fig. 1.

“Cornu Hammonis seu Nautill” Plancus, Conch. Min., 1739, p. 13, pl. 1, fig. III.

Lenticylites rotulata Lamarck, Ann. Mus., vol. 5, 1804, p. 188, No. 3; vol. 8, 1806, pl. 62, fig. 11.


Description.—Test comparatively large, biconvex, close coiled throughout, chambers variable in number in the coil, sutures distinct, periphery not lobulated, usually not keeled; previous apertures of the test usually visible as is often the preceding coil at least in part; wall smooth.

Diameter up to 2 mm. Cat. Nos. 324631a, b, c, d, e, U.S.N.M.

This seems to be the commonest species in the Panamanian material. It differs slightly in form in the various stations but all may be grouped under this species. It occurred in two groups of stations as noted in the chart of distribution. They are as follows: Lower part of the Culebra formation at U.S.G.S. No. 6010, in dark clay, north of Pedro Miguel Locks; No. 6012a, in lower dark clay beneath lower conglomerate, one-fourth mile south of Empire Bridge. Gatun formation at U.S.G.S. No. 6033c, in marl from second bed.
Cristellaria italica (Defrance).

**Description.**—Test with the early portion close coiled, later portion more or less uncoiled, chambers numerous, those of the last-formed portion being triangular in cross section, periphery keeled, and the apertural face broad and flattened, the sides angled and extending on either side to the keel in flat faces, sutures but slightly depressed, wall smooth; apertures peripheral, radiate, usually with no neck.

Diameter 0.75 mm. Cat. No. 324632, U.S.N.M.

Two specimens are evidently of this species in a young stage, the uncoiling not yet having proceeded to a great degree. They are from U.S.G.S. No. 6036, Gatun formation, in dark-colored, fine-grained, sandy clay marl from Monkey Hill, Mount Hope Station.

Cristellaria protuberans, new species.

**Plate 22, fig. 2.**

**Description.**—Test compressed, close coiled, biconvex, seven chambers in each coil, each much inflated in its central portion, space between much compressed, flattened, periphery sharply and broadly keeled; aperture peripheral, radiate.

Diameter 0.80–1.20 mm.

Three specimens of this species occurred at U.S.G.S. No. 6010, lower part of Culebra formation, in dark clay north of Pedro Miguel Locks. It is in some respects similar to species found in the Western Pacific, especially in comparatively deep water off the Philippines.

**Type-specimen.**—Cat. No. 324633, U.S.N.M.

Cristellaria vaughani, new species.

**Plate 22, fig. 3.**

**Description.**—Test much compressed, with a slight tendency to uncoiling in the last-formed chambers, periphery slightly keeled, not lobulated, rounded, about nine chambers in the last-formed whorl.
sutures slightly curved backward, extending in to the umbilicus so that only the last-formed coil is visible from the exterior, surface smooth except for lines of beads along the sutures extending from the umbilicus to the periphery; apertural face truncated or even slightly concave, aperture radiate, peripheral, with a short cylindrical neck.

Diameter 0.75 mm.

The type-sections of this species are from U.S.G.S. No. 6035, Gatun formation, in gray green, fine-grained, sandy shell marl from the vicinity of Mindi Hill. It also occurred at 6036, Gatun formation, in dark-colored, fine-grained, sandy clay marl from Monkey Hill, Mount Hope Station; No. 6019/, fourth limy bed from bottom, section opposite Las Cascadas, Gaillard Cut; and No. 6010, lower part of Culebra formation, in dark clay, north of Pedro Miguel Locks.

This species is somewhat suggestive of some forms of C. wetherelii, but has no longitudinal ribbing. It is perhaps nearest to C. gemmata described by Brady from the Philippines and South Sea Islands, but lacks the typical papillate surface common in that species.

The species is named for Dr. T. Wayland Vaughan, whose collections in the Canal Zone have added much to the available foraminifera from this region.

Type-specimens.—Cat. No. 324634, U.S.N.M.

Genus UVIGERINA d'Orbigny, 1826.

UVIGERINA CANARIENSIS d'Orbigny.

Plate 22, fig. 5.


Description.—Test elongate, chambers numerous, spirally arranged, triserial, inflated, separated by distinct sutures; wall smooth except for the early chambers which may show traces of spines or longitudinal striae; apertural end usually with a tubular neck and often a phialine lip.

Length 0.75 mm., diameter 0.35 mm. Cat. No. 324635, U.S.N.M.

The only typical material of this species is from U.S.G.S. No. 6035, Gatun formation, in gray-green, fine-grained sandy shell marl from the vicinity of Mindi Hill.
UVIGERINA CANARIENSIS d'Orbigny, variety.

Plate 22, fig. 6.

A larger and much stouter, entirely smooth variety as shown in the above figure was found in material from U.S.G.S. No. 6010, lower part of Culebra formation, in dark clay, north of Pedro Miguel Locks. Cat. No. 324636, U.S.N.M.

UVIGERINA PYGMAEA d'Orbigny.

Plate 22, fig. 4.

"Polymorpha Pineiformia" soldani. Testaceographia, vol. 1, pt. 2, 1791, pl. 130, figs. 88, 89.


Description.—Test subcylindrical, triserially spiral, chambers numerous, inflated, sutures deep; wall ornamented by numerous longitudinal costae, those of each chamber usually independent of those of adjacent chambers; aperture with a short cylindrical neck and phialine lip.

Length 0.75 mm., breadth 0.32 mm. Cat. No. 324637a, b, c, U.S.N.M.

Specimens referable to this species occurred in the Culebra formation at U.S.G.S. No. 6012a, in lower dark clay beneath lower conglomerate, one-fourth mile south of Empire Bridge, Gaillard Cut, and No. 6012d in clay and sandstone just below conglomerate at base of green clay one-half to three-fourths of a mile north of Contractors Hill, Gaillard Cut.

Specimens of a slightly different character were abundant at No. 6035, Gatun formation, in gray-green, fine-grained sandy shell marl, vicinity of Mindi Hill.

UVIGERINA TENUISTRIATA Reuss.

Plate 22, fig. 7.


Description.—Test subcylindrical, chambers spirally arranged, triserial at least in the early portion, later portion sometimes biserial and more slender; chambers inflated, sutures deep, walls ornamented by numerous longitudinal costae, except the last chambers, which tend to become smooth or nearly so; aperture with a short tubular neck and often a phialine lip.
Length 0.85 mm., breadth 0.30 mm. Cat. No. 324638, U.S.N.M.
Specimens referred to this species were very common in material from U.S.G.S. No. 6036, Gatun formation, in dark-colored, fine-grained sandy clay marl, from Monkey Hill, Mount Hope Station. Many of the specimens become almost uniserial in the last-formed portion.

Genus SIPHOGENERINA Schlumberger, 1883.

SIPHOGENERINA RAPHANUS (Parker and Jones) var. TRANSVERSUS, new variety.

Plate 22, fig. 8.

Description.—Test subcylindrical, composed of comparatively few chambers, the earlier ones spirally arranged, later and greater portion of the test uniserial, sutures very prominently indented, between the longitudinal costae, aperture with a short cylindrical neck.

Length, 1.25 mm.; diameter, 0.54 mm. Cat. No. 324646, U.S.N.M.

This variety differs from the typical form in the much greater prominence of the transverse depressions marking the sutures, occasionally as in the figure suggesting the depressions of S. dimorpha. The specimens were frequent in material from U.S.G.S. No. 6010, lower part of the Culebra formation, in dark clay, north of Pedro Miguel Locks.

Family GLOBIGERINIDAE.

Genus GLOBIGERINA d'Orbigny, 1826.

GLOBIGERINA BULLOIDES d'Orbigny.


Description.—Test subglobose, spiral, visible portion composed of but few chambers from below, usually three to five, all visible from the dorsal side, sutures deep, chambers inflated, umbilicate below; surface reticulate; aperture single, from each chamber, of good size opening into the central umbilical cavity on the ventral side.

Diameter, 0.60 mm. Cat. Nos. 324639–45.

Specimens referable to this widely distributed species were obtained from the following stations: In the Culebra formation, U.S.G.S. No. 6009, from black clays and sandy beds at lower end of Pedro Miguel Locks; 6010 in dark clay, north of Pedro Miguel Locks; 6019f, in fourth limy bed from bottom, Las Cascadas section, Gaillard Cut. In the Gatun formation, U.S.G.S. No. 6029b,
in argillaceous and sandy indurated marl, one-fourth to one-half mile north of Camp Cotton on relocated line, Panama Railroad; 6033c in marl from second bed from bottom, just below lower clay, Gatun Section relocated line, Panama Railroad; 6035, in gray green, fine grained, sandy shell marl, near Mindi Hill; and 6036, in dark colored, fine grained, sandy clay marl, Monkey Hill, Mount Hope Station.

The specimens from the last three stations are very well preserved and in fact might almost be recent material, while those of the other stations were fragmentary, often glauconitic. *G. bulloides*, var. *tropiloba* Reuss was occasional in the last three stations where the genus was really very common.

**GLOBIGERINA INFLATA** d'Orbigny.


*Description.*—Test composed of numerous inflated chambers usually arranged in a spiral test with about three volutions, the last-formed one with four chambers, dorsal side of test nearly flat, ventral side extended, especially in the last-formed whorl; ventrally umbilicate; surface finely reticulate; aperture large, opening toward the umbilicus.

Diameter, 0.75 mm. Cat. Nos. 324647, 8, 9, U.S.N.M.

Specimens occurred at U.S.G.S. No. 6010, lower part of the Culebra formation, in dark clay north of Pedro Miguel Locks; and in the Gatun formation at the last two of the stations already referred to, namely, 6035 and 6036.

**GLOBIGERINA DUBIA** Egger.


*Description.*—Test composed of numerous inflated chambers arranged in a nautiloid spiral all visible from above, the last coil only, consisting of 5 to 6 chambers, visible from below, ventral side with a central umbilicus, surface reticulate; apertures opening into the central umbilical cavity.

Diameter 0.75 mm. Cat. Nos. 324650–54.

At the following stations specimens referable to this species were found: Culebra formation, U.S.G.S. No. 6010, in dark clay, north of Pedro Miguel Locks; 6025, in dark, hard, sandy clay about 200
yards south of southern end of switch at Bohio Ridge Station, relocated line, Panama Railroad. Gatun formation, U.S.G.S. No. 6033c, in marl from second bed from bottom, just below lower clay, Gatun Section, relocated line, Panama Railroad; 6035, in gray green, fine grained, sandy shell marl near Mindi Hill and 6036 in dark colored, fine grained, sandy clay marl, Monkey Hill, Mount Hope Station.

As in the case of the preceding species the specimens from the last three stations were very finely preserved while those of the others were glauconitic.

GLOBIGERINA CONGLOBATA H. B. Brady.


_Description._—Test subglobular, early chambers arranged in a compact spiral, the last three chambers in the complete adult test forming nearly the whole of the visible portion of the test, wall coarsely reticulate; main aperture at the inner margin of the chamber with several rounded secondary apertures along the margins of the chamber where it is attached to adjacent ones.

Diameter up to 1 mm. Cat. Nos. 324655–6.

Specimens of _G. conglobata_ were found in small numbers in the Gatun formation at stations 6035 and 6036. They were typical but perhaps hardly as well developed as in some Recent material. Its occurrence here is rather interesting as it is almost unknown in the fossil condition.

GLOBIGERINA SACCUFIGERA H. B. Brady.

_Globigerina helicina_ Carpenter (not _G. helicina_ d'Orbigny). _Intr. Foram._ 1862, pl. 12, fig. 11.


_Description._—Test composed of numerous chambers, in its early stages very similar to _G. bulloides_ but later developing a more oblong form, the chambers extended, somewhat compressed and with accessory apertural openings, the final chamber often flattened and irregularly formed toward the outer end; wall strongly reticulated in all but the final chamber which is much smoother than the others; aperture large, arched, with other accessory openings in the chambers of adult specimens.

Diameter up to 1 mm. Cat. Nos. 324657–8, U.S.N.M.
Specimens were not uncommon in material from the Gatun formation at stations 6035 and 6036. As in the case of *G. conglobata* the specimens were hardly as well developed as they are in recent specimens, but nevertheless had the characteristic marks of the species. As in *G. conglobata* the records of this species are almost entirely limited to Recent material, its occurrence as a fossil being practically unknown.

**GLOBIGERINA AEOQUILATERALIS** H. B. Brady.

*Cassidulina globulosa* (part) Egger, Neues Jahrb. für Min., 1857, p. 296, pl. 11, fig. 4.


**Description.**—Test composed of numerous inflated chambers, arranged in a planospiral manner, at least the last formed coil, chambers increasing rapidly in size as added, usually 5 to 6 in the last formed volutio; sutures depressed, periphery lobulated; surface reticulate; aperture large, at the base of the inner margin of the chamber.

Diameter up to 1 mm. Cat. Nos. 324659–61, U.S.N.M.

In the material from the Gatun formation at three stations, Nos. 6033c, 6035, 6036, this species was not uncommon. The only character in which there seems to be a difference from the Recent material is in the early chambers which occasionally show at one side as a flat spiral while the later chambers are bilateral. The species is not a common one as a fossil.

**Genus ORBULINA** d’Orbigny, 1839.

**ORBULINA UNIVERSA** d’Orbigny.


**Description.**—Test in adult form typically consisting of a single, spherical visible chamber, which may or may not have contained within the early Globigerine stages; wall strongly reticulate, a single large circular aperture and smaller openings at the base of each reticulation.

Diameter up to 1 mm. Cat. Nos. 324662–3, U.S.N.M.

Specimens were not uncommon in the Gatun formation at the three stations, Nos. 6033c, 6035, and 6036. Occasional specimens show the double form as figured by Brady. The specimens otherwise are like the common run of Recent material.
Family ROTALIIDAE.

Genus DISCORBIS Lamarck, 1804.

DISCORBIS OBTUSA (d'Orbigny).

Plate 23, figs. 1a–c.


Description.—Test biconvex, dorsal side more so than the ventral side, peripheral margin rounded; chambers comparatively few, about five in the last formed whorl; sutures curved, depressed; wall perforate; aperture an elongate narrow slit extending from the umbilicus nearly to the periphery.

Diameter 0.60 mm. Cat. No. 324664, U.S.N.M.
The only station from which this species was obtained is U.S.G.S. No. 5850, from Pleistocene marl near Mount Hope, a quarter mile from the present sea beach and 6 to 8 feet above high tide.

Genus TRUNCATULINA d'Orbigny, 1826.

TRUNCATULINA AMERICANA, new species.

Plate 23, figs. 2a–c.

Description.—Test nearly plano-convex; ventral side strongly convex, periphery keeled, dorsal side nearly flat; chambers numerous, up to nine in the last formed coil; sutures curved, prominent, slightly limbate, umbilicate below; surface smooth, aperture nearly peripheral.

Diameter 0.65 mm.

Type-specimen.—(Cat. No. 324665, U.S.N.M.) from the upper part of the Culebra formation, at U.S.G.S. No. 6019f, fourth limy bed from bottom, Las Cascades section, Gaillard Cut.

TRUNCATULINA PYGMEA Hantken.

Plate 23, figs. 3a–c.

Description.—Test nearly equally biconvex, peripheral margin bluntly rounded; chambers numerous, the sutures oblique, distinct, often limbate; aperture a narrow slit extending from near the periphery nearly to the umbilicus.

Diameter 0.65 mm. Cat. No. 324666–7, U.S.N.M.

The only station at which this species occurred is in the upper part of the Culebra formation, U.S.G.S. No. 6019d, upper part of second hard, limy, sandstone bed, Las Cascadas section, Gaillard Cut. It is rather larger than the usual run of *T. pygmaea* but is evidently this species.

Specimens from the Gatun formation, U.S.G.S. No. 6036, while having fewer chambers and somewhat larger size are questionably referred here. One specimen is figured on plate 24, figure 2.

**TRUNCATULINA UNGERIANA** (d'Orbigny).

Plate 24, fig. 1.


Description.—Test biconvex, dorsal side less convex than the ventral; peripheral margin subacute, slightly carinate, chambers numerous, 10 to 12 in the last formed whorl, sutures distinct, slightly limbate on the dorsal side; aperture a narrow arched opening running ventrally from the peripheral margin.

Diameter 0.50 mm. Cat. Nos. 324668–9, U.S.N.M.

Specimens referable to this species but not entirely typical were obtained in material from lower part of the Culebra formation, as follows: U.S.G.S. No. 6009, from black clays and sandy beds at lower end of Pedro Miguel Locks; and 6012a, from lower dark clay beneath lower conglomerate, one-fourth mile south of Empire Bridge, west side Gaillard Cut, below Culebra.

**TRUNCATULINA WUELLERSTORFI** (Schwager).

Plate 24, fig. 3.


Description.—Test plano-convex, dorsal side nearly flat, ventral side slightly convex; chambers numerous, elongate, curved; sutures
strongly curved, somewhat limbate, periphery bluntly rounded, slightly lobulated, especially near the apertural end of the last formed coil; wall coarsely punctate; aperture peripheral, a short curved opening.

Diameter of larger specimens slightly more than 1 mm.

Numerous very typical specimens of this species occurred in material from the lower part of the Culebra formation. U.S.G.S. No. 6010, from dark clay, north of Pedro Miguel Locks. Less typical specimens occurred in the upper part of the Culebra formation at U.S.G.S. 6012d, from clay and sandstone just below conglomerate at base of green clay, west side of Gaillard Cut, below Culebra; and 6019f, from fourth limy bed from bottom, Las Cascadas section, Gaillard Cut.

Cat. Nos. 324670-2, U.S.N.M.

TRUNCATULINA CULEBRENSIS, new species.

Plate 24, figs. 4a, b.

Description.—Test biconvex, much compressed, peripheral margin rounded; chambers numerous, as many as thirteen in the last formed coil, long and narrow, gently curved, sutures broad, limbate, smooth, the areas between very coarsely punctate; apertural face of chamber somewhat depressed, flattened, the carinate borders extending out beyond at either side; aperture a narrow slit situated at the base of the chamber on the periphery.

Diameter up to 1.5 mm.

The only occurrence of this species was in the upper part of the Culebra formation, U.S.G.S. No. 6012c, from top part of limy sandstone below upper conglomerate near foot of stairs, west side Gaillard Cut.

This, a large and striking species, in some of its characters suggesting T. wuellerstorfi but, as will be seen by a comparison of the figures of the two, really very different.

Type-specimen.—Cat. No. 324673, U.S.N.M.

Genus PULVINULINA Parker and Jones, 1862.

PULVINULINA SAGRA (d’Orbigny).

Plate 24. figs. 6a, b.


Description.—Test ovate, biconvex, the ventral side more convex than the dorsal, peripheral margin subacute, carinate; chambers comparatively few in number increasing rapidly in size in the last formed
ones, the last formed chamber on the ventral side making up a large part of the area of the test, sutures distinct, curved, slightly depressed, more so on the ventral side; wall smooth except for the usual fine punctations; aperture ventral near the umbilicus.

Length 0.60 mm., breadth 0.40 mm. Cat. No. 324674.

The only record for this species from Panama is from the Gatun formation, U.S.G.S. No. 6035, in gray green, fine grained, sandy shell marl, near Mindi Hill. This species, described by d'Orbigny from Cuba, seems to be a common species in the American Miocene.

**PULVINULINA CONCENTRICA** Parker and Jones.

Plate 25, fig. 1.


**Description.**—Test biconvex, oval; peripheral margin rounded; chambers comparatively few, usually seven in the last formed coil, sutures covered by clear shell material joining with the carinal border and often covering a large portion of the test, both above and below, especially toward the center; wall smooth, finely punctate; aperture a narrow slit on the peripheral portion of the ventral side.

Diameter 1.2 mm. Cat. No. 324675, U.S.N.M.

The only specimen of this species is from the Gatun formation, U.S.G.S. No. 6035, in gray green, fine grained, sandy shell marl near Mindi Hill. The specimen as will be seen from the figure is very typical.

**PULVINULINA MENARDII** (d'Orbigny).

Plate 25, figs. 2, 3.


**Description.**—Test plano-convex, ventral side convex, dorsal side nearly flat; compressed, umbilicate; peripheral margin thin, slightly lobulated, carinate; chambers five or six in the last formed coil; sutures distinct, limbate and broad on the dorsal side, curved, on the ventral side more depressed, not limbate, nearly straight; wall smooth, finely punctate; aperture extending peripherally from the umbilicus, usually with an overhanging lip.

Diameter up to 1 mm. Cat. Nos. 324676–8, U.S.N.M.

Specimens apparently belonging to this species so widely distributed in the present oceans were obtained in the Gatun formation at U.S.G.S. No. 6035 in gray green, fine grained, sandy shell marl,
vicinity of Mindi Hill; and 6036 in dark colored, fine grained, sandy clay marl from Monkey Hill, near Mount Hope Station. A figure of one of these is shown in plate 25, figure 3. From 6033c, Gatun formation, in marl from second bed from bottom, just below lower clay, Gatun section, relocated line of the Panama Railroad, are even more typical specimens, one of which is here figured on plate 25, figure 2.

Genus SIPHONINA Reuss, 1849.

SIPHONINA RETICULATA (Czjzek).

Plate 24, fig. 5.


Siphonina reticulata Brown, Lethaea Geognostica, ed. 3, vol. 3, 1853-56, p. 227, pl. 35 (7). figs. 23a-r.—Cushman, Bull. 71, U. S. Nat. Mus., pt. 5, 1915, p. 43, fig. 48; pl. 16, fig. 4; pl. 28, fig. 3.


Description.—Test biconvex, ventral side slightly more so than the dorsal, peripheral margin acute, carinate; chambers numerous rather indistinct, sutures slightly depressed, curved; wall rather coarsely perforate; aperture peripheral with a short, broad neck and somewhat flaring phialine lip.

Diameter 0.65 mm. Cat. No. 324679, U.S.N.M.

The only station at which this species occurred is in the Gatun formation, U.S.G.S. No. 6036, in dark colored, fine grained, sandy clay marl of Monkey Hill, Mount Hope Station.

Although the specimen is not perfectly preserved the tubuli of the peripheral margin are lacking as is the case in some large recent specimens.

Family NUMMULITIDAE.

Genus NONIONINA d'Orbigny, 1826.

NONIONINA DEPRESSULA (Walker and Jacob).

Plate 25, figs. 5a, b.

Nautilus depressulus Walker and Jacob, Adam's Essays, Kamnacher's ed., 1798, p. 641, pl. 14, fig. 35.


Description.—Test more or less rounded in side view, slightly elongate, about ten chambers in the last formed coil, apertural view narrow, periphery broadly rounded, sides nearly parallel, about two and a half times as high as broad, umbilicus slightly depressed,
usually filled with secondary shell material and a slight extension peripherally along the sutures which are slightly depressed; aperture a narrow curved slit.

Diameter 0.60 mm. Cat. Nos. 324680-1, U.S.N.M.

Distribution.—Specimens of this species occurred in the Gatun formation at U.S.G.S. No. 6033c, in marl from second bed from bottom, just below lower clay, Gatun Section, relocated line of the Panama Railroad; and 6035, in gray green, fine grained, sandy shell marl, vicinity of Mindi Hill. The specimens are rather typical, perhaps varying in the direction of increased length from most recent specimens.

NONIONINA SCAPA (Fitchel and Moll).

Plate 25, figs. 6a, b.


*Polystomella crispa* var. (*Nonionina*) scapha Parker and Jones, Philos. Trans., vol. 155, 1865, p. 404, pl. 14, figs. 37, 38; pl. 17, figs. 55, 56.

Description.—Test in side view longer than wide, about ten chambers in the last formed coil, rapidly increasing in length as added, sutures evenly curved, slightly depressed, periphery broadly rounded, in apertural view the face of the last formed chamber making up a large part of the visible surface, wall smooth, finely punctate, somewhat umbilicate; aperture an arched slit at the base of the chamber.

Length 0.60 mm. Cat. No. 324682, U.S.N.M.

Specimens of this species were collected in the Gatun formation at a single station, U.S.G.S. No. 6033c, in marl from second bed from bottom, just below lower clay, Gatun section, relocated line of the Panama Railroad.

The specimen figured in apertural view was placed to show the aperture rather than the full size of the apertural face which is really
larger than appears in this view, the earlier portion of the coil being narrow.

**NONIONINA PANAMENSIS**, new species.

Plate 26, figs. 1a, b.

*Description.*—Test in side view subcircular, last formed chamber composed of about nine chambers, in front view bilaterally symmetrical, rapidly increasing in breadth as chambers are added, apertural face of chamber broadly rounded, early portion slightly keeled; sutures rather strongly curved, slightly limbate, slightly depressed; wall smooth, distinctly punctate; aperture a narrow curved slit at the base of the apertural face of the chamber.

Diameter 0.65 mm.

Specimens of this species were obtained from the lower part of the Culebra formation, U.S.G.S. No. 6010, north of Pedro Miguel Locks, in dark clay.

*Type-specimen.*—Cat. No. 324683, U.S.N.M.

**NONIONINA ANOMALINA**, new species.

Plate 26. figs. 2a, b.

*Description.*—Test in side view nearly circular, deeply umbilicate, peripheral margin broadly rounded, bilaterally symmetrical, about seven chambers in the last formed coil, sutures little if at all depressed, indistinct, last formed chambers extending but part way across the test, tending toward alternating arrangement; aperture a narrow slit at the base of the chamber.

Diameter 1.25 mm.

*Type-specimen.*—(Cat. No. 324684, U.S.N.M.) from the lower part of the Culebra formation, in dark clay, north of Pedro Miguel Locks (U.S.G.S. No. 6010).

The last two chambers suggest *Cassidulina*, but the similarity does not continue further.

**Genus POLYSTOMELLA** Lamarck, 1822.

**POLYSTOMELLA STRIATO-PUNCTATA** (Fichtel and Moll).

Plate 26. figs. 3a, b; 4a, b.

*Nautilus striato-punctatus* Fichtel and Moll, Test. Micr., 1803, p. 61, pl. 9, figs. a–c.


*Description.*—Test bilaterally symmetrical, subcircular in side view, umbilicate, peripheral margin broadly rounded, eight to ten chambers
in the last formed coil; sutures slightly curved, depressed; wall smooth, distinctly punctate; septal lines with regularly arranged, narrow bridging; aperture a narrow semicircular opening at the base of the apertural face of the chamber, showing occasionally traces of division into a series of smaller openings.

Diameter 0.50 to 0.65 mm. Cat Nos. 324685–7, U.S.N.M.

Specimens were obtained in the Culebra formation, U.S.G.S. No. 6020a, opposite Las Cascadas, in lowest fossiliferous bed, third bed below lowest limestone. These were very largely glauconitic, and of the form figured in 4a, b. The species was also found in the Gatun formation, U.S.G.S. No. 6029a, one-fourth to one-half mile north of Camp Cotton, relocated line of the Panama Railroad, in the softer sandy marls at the base of the section. The form figured in 3a, b, is from a Pleistocene deposit at U.S.G.S. No. 5850, loose shells and marl from near Mount Hope, one-fourth mile from present beach, 6 to 8 feet above high tide.

POLYSTOMELLA SAGRA d'Orbigny.

Plate 28, figs. 5a, b.


Description.—Test bilaterally symmetrical, subcircular in side view; peripheral margin rounded, ten or more chambers in the last formed coil; sutures distinct, curved, slightly depressed in the last formed portion, not at all depressed in the early part of the coil; early half of the coil with definite raised, longitudinal ribs, corresponding to the bridging over the sutures, persisting longest on the peripheral portion of the test, later portion smooth; bridging of earliest portion of coil regular, short, in the last formed sutures increasing considerably in length; apertural face smooth, punctate; roughly triangular in outline, the angles rounded; aperture a very narrow slit at the base of the apertural face of the chamber.

Diameter 0.65 mm. Cat. No. 324688, U.S.N.M.

The only station at which this species was obtained is a Pleistocene deposit at U.S.G.S. No. 5850, loose shells and marl from near Mount Hope, one-fourth mile from present beach and 6 to 8 feet above high tide.

A comparison of this figure with the original given by d'Orbigny in his Cuban monograph will show the very striking similarity between the Cuba and Panama specimens, and I have no hesitation in referring this material to d'Orbigny's species.
POLYSTOMELLA MACELLA (Fichtel and Moll).

Plate 27, figs. 1a, b.

*Nautilus macellus*, var. *a*, Fichtel and Moll, Test. Micr., 1803, p. 66, pl. 10, figs. c-g.


Description.—Test compressed, bilaterally symmetrical, peripheral margin acute, somewhat carinate, not lobulated, sixteen to twenty chambers in the last formed coil; reticulated bridgings occupying a greater area than the intermediate portions; umbilical region slightly depressed, with a few large pores; aperture a curved or V-shaped slit at the base of the apertural face, either simple or divided into secondary openings.

Diameter, 0.75 mm. Cat. Nos. 324689-90, U.S.N.M.

Specimens were obtained from two stations in the Emperador limestone, as follows: U.S.G.S. 6015, from cream-colored coral limestone, old quarry one-quarter mile north of west from Empire; and 6016, one-third mile north of west of the same place.

**POLYSTOMELLA CRISPA** (Linnaeus).

Plate 27, figs. 2a, b.

"*Cornu Hammonis orbiculatum*" Plancus, Couch. Min., 1739, p. 10, pl. 1, fig. 2.


Description.—Test bilaterally symmetrical, much compressed, peripheral margin obtusely angled; umbilical region not depressed; chambers numerous, eighteen to twenty chambers in the last formed coil, sutures indistinct, bridging wider than the intermediate clear space; margin not lobulated; umbilical region umbonate, filled with clear shell material, often with a few pores; aperture a narrow slit at the base of the apertural face of the chamber, usually showing more or less division into secondary openings.

Diameter, up to 1.25 mm. Cat. No. 324691, U.S.N.M.

Specimens referable to this species were obtained from the Gatun formation at U.S.G.S. No. 6029b, one-fourth to one-half mile north of Camp Cotton on relocated line of the Panama Railroad, indurated argillaceous and sandy marl.
POLYSTOMELLA CRATICULATA (Fichtel and Moll).

Plate 27, figs. 3a, b.


**Description.**—Test bilaterally symmetrical, somewhat compressed; peripheral margin broadly rounded; not lobulated, chambers very numerous, forty or more in the last formed coil, narrow; umbilical region filled with clear shell material with numerous pores; bridged area about equal to that between; aperture a series of openings at the base of the apertural face.

Diameter, 1 mm. Cat. No. 324692, U.S.N.M.

This species was found in considerable numbers in the Culebra formation at U.S.G.S. No. 6025, in foraminiferal marl and coarse sandstone about 200 yards south of the southern end of the switch at Bohio Ridge station, relocated line, Panama Railroad.

The specimens have not as subglobose a form as many recent specimens, but in other respects the characters are very similar.

**POLYSTOMELLA, species?**

Numerous stations have a species of *Polystomella* which is very much like *P. sagra* and yet is not so definitely characterized as are the specimens of that species from station 6025.

The stations at which this form of *Polystomella* occurs are in the lower part of the Culebra formation at U.S.G.S. No. 6009, black clays, six or seven hundred feet south of Miraflores Locks. In Las Cascadas section, Gaillard Cut, 6019b, from the 4 feet of dark stratified tuff and clay overlying the lower limestone bed; 6019f, from fourth limy bed from bottom; 6020a, from the lowest fossiliferous bed. In the Emperador limestone at 6015 and 6016 from cream-colored coral limestone, old quarry, one-quarter mile north of west from Empire. In the Gatun formation at 6020a, from lowest horizon, one-fourth to one-half mile north of Camp Cotton.

Cat. Nos. 324693–8, U.S.N.M.

**Genus AMPHISTEGINA d’Orbigny, 1826.**

**AMPHISTEGINA LESSONII** d’Orbigny.


**Description.**—Test lenticular, usually more convex on one side than the other; composed of about twenty-five chambers in the last formed
coil, wall smooth except near the aperture on the ventral side where there is usually a papillose area of greater or less extent; periphery usually somewhat rounded; sutures on the dorsal side with a single simple angle; below usually divided into two deep lobes by deep constrictions.

Diameter, 1–2.5 mm. Cat. Nos. 324699–08, U.S.N.M.

This species is common in the lower horizons of the area occurring at the following stations: Culebra formation, 6009, 6012a, d, 6019c, d. 6027; Emperador limestone, 6015, 6016; Gatun formation, 6029a, b, c.

At some of these stations specimens are rather frequent. In the matrix this species may often be indistinguishable in a superficial examination from worn centers of Orbitoids or Nummulites. It is a common Tertiary species.

Family MILIOLIDAE.

Genus QUINQUELOCULINA d'Orbigny, 1826.

QUINQUELOCULINA SEMINULUM (Linnaeus).

Plate 27, figs. 4a, b; plate 28; plate 29, figs. la–c.

Serpula seminulum Linnaeus, Syst. Nat., ed. 10. 1758, p. 786; ed. 13 (Gmelin), 1758, pp. 37, 39.


Description.—Test oval in front view; thickest in the middle, visible exterior composed of five chambers, three visible from one side and four from the other, sutures slightly depressed, distinct; wall smooth, periphery rounded, aperture somewhat contracted, usually with a single simple tooth.

Length about 1 mm. Cat. Nos. 324709–13, U.S.N.M.

Very typical specimens were obtained from U.S.G.S. No. 5850, among loose shells and marl from near Mount Hope, from ditch through swampy ground, one-fourth mile from present sea beach and 6 to 8 feet above high tide (Pleistocene). Specimens very similar but slightly more rotund were obtained from the Gatun formation, No. 6036, in dark colored, fine grained, sandy clay marl, at Monkey Hill, Mount Hope Station.

Varietal forms here figured and which may be referred to Q. seminulum were obtained from the Culebra formation at No. 6010, from dark clay, north of Pedro Miguel Locks; 6019a, a single specimen from lower limestone of Las Cascadas section; 6025, a single glauconitic specimen from foraminiferal marl about 200 yards south of
southern end of switch at Bohio Ridge Station, relocated line of the Panama Railroad. Another much flattened glauconitic specimen from this last station is also referred here.

**QUINQUELOCULINA CONTORTA** d’Orbigny.

Plate 29, figs. 2a–c.


*Description.*—Test about twice as long as broad, chambers rather narrow and elongate, in end view polygonal, peripheral margin broadly curved, sides nearly at right angles to the peripheral face with a sharp angle at the junction; sutures deep, apical end and initial end of final chamber truncated; aperture rounded with a single tooth; wall smooth.

Length 0.65 mm. Cat. No. 324714, U.S.N.M.

The only material of this species was obtained from U.S.G.S. 5850, among loose shells and marl, from near Mount Hope, from ditch through swampy ground, about one-fourth mile from present sea beach and 6 to 8 feet above high tide (Pleistocene).

**QUINQUELOCULINA AUBERIANA** d’Orbigny.

Plate 29, figs. 3a–c.


*Description.*—Test slightly longer than broad, periphery of the chambers angled with a concave area at each side of the angle, sutures somewhat depressed, distinct; wall smooth; aperture with a single, usually simple, occasionally slightly bifid tooth.

Length about 1 mm. Cat. No. 324715, U.S.N.M.

Two specimens of this species were obtained in material from U.S.G.S. 5850, among loose shells and marl, from near Mount Hope, from ditch through swampy ground, about one-fourth mile from present sea beach and 6 to 8 feet above high tide (Pleistocene). This is a common species of the shallow-water littoral of tropical seas.

**QUINQUELOCULINA UNDOSA** Karrer.

Plate 30, figs. 1a–c.


*Description.*—Test elongate, two or two and a half times as long as wide; chambers sub-polygonal, the angles more or less irregular giv-
ing an undulate appearance to the chambers, apertural end typically with a slightly projecting neck, aperture with a single tooth; wall smooth.

Length 1.25 mm. Cat. Nos. 324716-17, U.S.N.M.

Specimens referable to this species were obtained in the Emperador limestone, at U.S.G.S. 6016, from old quarry, one-third mile north of west of Empire; and in the Culebra formation, at 6025. in foraminiferal marl about 200 yards south of the southern end of the switch at Bohio Ridge Station, relocated line, Panama Railroad.

The specimens are not so contorted as in some recent ones but show characteristic undulations of the chamber borders.

**QUINQUELOCULINA BICORNIS** (Walker and Jacob).

Plate 30, figs. 2a–c; 3a, b.

"Serpula bicornis ventricosa," Walker and Boys, Test. Min., 1784, p. 1, pl. 1, fig. 2.


*Serpula bicornis* Walker and Jacob, Adams's Essays, Kannacher's ed., 1798, p. 633, pl. 14, fig. 2.


Description.—Test in side view about twice as long as wide; sutures rather deep, distinct, chambers more or less keeled, wall ornamented with numerous rather fine longitudinal raised costae; aperture slightly exserted, rounded, with a single tooth.

Length 0.75 mm. Cat. Nos. 324718–9, U.S.N.M.

Specimens were obtained in a Pleistocene deposit at U.S.G.S. 5850, among loose shells and marl, from near Mount Hope, from ditch through swampy ground about one-fourth mile from present sea beach, and 6 to 8 feet above high tide.

From the Culebra formation, U.S.G.S. 6025, in foraminiferous marl about 200 yards south of southern end of switch at Bohio Ridge Station, relocated line, Panama Railroad, were obtained, rather poorly preserved and somewhat glauconitic specimens, but showing traces of a longitudinal series of raised ridges. They are questionably referred here and one is figured, on plate 30, figure 3.

**QUINQUELOCULINA PANAMENSIS**, new species.

Plate 31, figs. 1a–c.

Description.—Test nearly as wide as long, the last formed chamber tending to become loose coiled, growing away from the preceding ones on the apertural half of the inner margin, apertural end free.
peripheral margin broadly rounded, sutures much depressed; wall smooth; aperture circular.

Length 0.85 mm.

This species was obtained from the Gatun formation, U.S.G.S. 6036, in dark colored, fine grained, sandy clay marl, from Monkey Hill, Mount Hope Station.

It is unusual in the breaking away of the last formed chamber from the original close coiled method of growth.

_Type-specimen._—Cat. No. 324720, U.S.N.M.

Genus **SIGMOILINA** Schlumberger, 1887.

**SIGMOILINA TENUIS** (Czjzek).

Plate 31, figs. 4a-c.

*Quinqueloculina tenuis* Czjzek, Haidinger's Nat. Abhandl., vol. 2, 1847, p. 149, pl. 13, figs. 31–34.


_Description._—Test about twice as long as wide, narrow, compressed, visible chambers 5 or 6 on either side, chambers, narrow, rounded, sutures depressed, distinct; wall smooth, aperture exserted, rounded.

Length 0.65 mm. Cat. Nos. 324721–3, U.S.N.M.

Specimens of this species were obtained in the Gatun formation at the following three stations: U.S.G.S. 6033c, in marl from second bed from bottom, just below lower clay, Gatun section, relocated line of the Panama Railroad; 6035, in gray green, fine grained, sandy shell marl, vicinity of Mindi Hill; and 6036, in dark colored, fine grained, sandy clay marl, from Monkey Hill, Mount Hope Station.

These three stations have several species in common as will be seen by a glance at the accompanying chart of distribution.

**SIGMOILINA ASPERULA** (Karrer).

Plate 31, figs. 3 a, b.


_Description._—Test but slightly longer than wide, very much compressed, sutures somewhat indistinct, several chambers visible from each of the flattened sides; wall covered with fine arenaceous particles; aperture exserted, nearly circular.

Length, 0.8 mm. Cat. Nos. 324724–5, U.S.N.M.
Specimens were not uncommon in the Gatun formation at two stations, U.S.G.S. 6035, in gray green, fine grained, sandy shell marl, vicinity of Mindi Hill, and 6036, in dark colored, fine grained, sandy clay marl, from Monkey Hill, Mount Hope Station.

Genus TRILOCULINA d’Orbigny, 1826.

TRILOCULINA TRIGONULA (Lamarck).

Plate 32, fig. 1.


*Description.*—Test in apertural view triangular, angles rounded, chambers rapidly increasing in size as added, but three visible in adult test; outer wall broadly rounded, in front view oval, sutures distinct, aperture not produced, lip and tooth indistinct.

Length, 0.75 mm. Cat. No. 324726, U.S.N.M.

A single specimen referable to this species occurred at U.S.G.S. 5850, in Pleistocene marly material from near Mount Hope, one-fourth mile from present sea beach and about 6 to 8 feet above high tide.

This is a common species in shallow water of recent oceans.

TRILOCULINA TRICARINATA d’Orbigny.

Plate 32, fig. 2.


*Description.*—Test differing from *T. trigonula* largely in the angles, which are acute, the sides concave, at least toward the borders, center of the side either flat or slightly convex, in end view rather sharply triangular, in front view oval; neck slightly produced, aperture rounded, tooth wanting in this specimen.

Length, 0.60-0.70 mm.

Four specimens were collected in the Culebra formation at U.S.G.S. No. 6025, foraminiferal marl about 200 yards south of southern end of switch at Bohio Ridge Station, relocated line, Panama Railroad.

Two of the four specimens had the neck somewhat elongated, the others were more nearly normal in this respect. The specimens were
somewhat altered and showed traces of apparently a glauconitic interior.

**TRILOCULINA BULBOSA, new species.**

Plate 32, fig. 3.

*Description.*—Test from exterior composed of three visible chambers, the last formed one making the largest part of the test. The next to the last about half the size of the last and the first formed one very small in comparison, test in end view nearly biloculine, with the last formed chamber nearly as wide as the whole test in its greatest width, in front view breadth and height about equal, chambers very rotund, sutures deep, aperture without a neck, rounded, tooth indistinct or wanting.

Length, about 0.65 mm.

*Type-specimen.*—(Cat. No. 324728, U.S.N.M.) from the Gatun formation, U.S.G.S. Station 6029a, lowest horizon, one-fourth to one-half mile north of Camp Cotton on relocated line Panama Railroad. Another specimen was obtained, also in the Gatun formation, at No. 6030, from fossiliferous marl, from cut on north side of swamp 1½ miles north of Monte Lirio, relocated line of the Panama Railroad.

In each case a single somewhat glauconitic specimen was obtained. The species has the last two chambers developed greatly, the third one very small, the whole test appearing almost biloculine. The specimens from the two stations were practically identical.

**TRILOCULINA PROJECTA, new species.**

Plate 33, fig. 1.

*Description.*—Test in end view composed of three radially projecting portions, the intervening portions deeply concave, in side view about as long as wide, sutures somewhat indistinct, periphery broadly rounded; wall covered with a thick encrustation of sand grains giving the whole exterior a decidedly arenaceous appearance; aperture with a slightly projecting neck and phialine lip; apertural opening circular, in the specimen figured without a distinct tooth.

Length 0.75 mm.

*Type-specimen.*—(Cat. No. 324729, U.S.N.M.) From gray green, fine grained, sandy shell marl from vicinity of Mindi Hill, U.S.G.S. No. 6035, Gatun formation.

This is an interesting modification of this genus, comparable in the structure of the test to *Quinqueloculina agglutinans* d’Orbigny and others of the same character.
Genus **BILOCULINA** d'Orbigny, 1826.

**BILOCULINA BULLOIDES** d'Orbigny.

Plate 33, fig. 2.


**Description.**—Test with but two visible chambers in the adult, in end view, each semicircular, in front view elliptical, very rotund, inflated, suture distinct; aperture usually nearly circular, somewhat produced.

Length 0.60 mm. Cat. No. 324730, U.S.N.M.

The only specimen of this species is from the Gatun formation, U.S.G.S. 6036, from dark colored, fine grained, sandy clay marl from Monkey Hill, Mount Hope Station.

Genus **SPIROLOCULINA** d'Orbigny, 1826.

**SPIROLOCULINA EXCAVATA** d'Orbigny.

Plate 31, fig. 2.


**Description.**—Test planospiral, chambers much elongated, thickest at the basal end, apertural end slightly produced, central portions much excavated, due to the gradual increase in the width of the chambers as added; periphery somewhat convex, angles rounded; sutures distinct except toward the center; apertural end produced, aperture rounded; tooth wanting in our specimen.

Length 1.4 mm. Cat. No. 324731, U.S.N.M.

Specimens were obtained at Station No. 5850, in marl of Pleistocene, Mount Hope, Canal Zone, by D. F. MacDonald.

Genus **ORBICULINA** Lamarck, 1816.

**ORBICULINA ADUNCA** (Fichtel and Moll).

Plate 33, fig. 3.


**Description.**—Test planospiral, chambers very long, divided into simple chamberlets, sides with alar projections extending nearly to the umbilicus, sutures distinct; apertures numerous, peripheral.
Diameter 1.6 mm. Cat. No. 324732, U.S.N.M.
A few specimens were obtained from U.S.G.S. 5850, from Pleistocene marl near Mount Hope, about one-fourth mile from present sea beach and about 6 to 8 feet above high tide.

EXPLANATION OF PLATES.

PLATE 19.

Fig. 1. Textularia abbreviata d'Orbigny. × 50. a, apertural view; b, front view.
2. Textularia sagitula Defrance. × 30. a, apertural view; b, front view.
3. Textularia aggregatans d'Orbigny. × 50. a, apertural view; b, front view.
4. Textularia laminata, new species. × 30. a, apertural view; b, front view.
5. Textularia subagglutinans, new species. × 35. a, apertural view; b, front view.
6. Textularia carinata d'Orbigny. × 50. a, apertural view; b, front view.

PLATE 20.

Fig. 1. Textularia panamensis, new species. × 65. a, aperture view; b, front view.
2. Chrysalidina pulchella, new species. × 110. a, apertural view; b, viewed from flat side; c, viewed from angle.
3. Gaudryina triangularis Cushman. × 35. a, apertural view; b, front view.
4. Gaudryina flintii Cushman. × 50.
5. Clavulina parisiensis d'Orbigny. × 35.
6. Clavulina communis d'Orbigny. × 35.

PLATE 21.

Fig. 1. Bolivina, species. × 65.
5. Bigenerina nodosaria d'Orbigny. × 27. a, apertural view; b, front view.
7. Lagena striata (d'Orbigny), var. strumosa Reuss. × 65.
8. Nodosaria communis d'Orbigny. × 65.

PLATE 22.

Fig. 1. Cristellaria rotulata (Lamarck). × 35.
2. Cristellaria protuberans, new species. × 65.
3. Cristellaria vaughani, new species. × 65.
4. Uvigerina pygmaea d'Orbigny. × 65.
5. Uvigerina canariensis d'Orbigny. × 65.
6. Uvigerina canariensis d'Orbigny var. × 65.
7. Uvigerina tenuistrigata Reuss. × 65.
8. Siphogenerina raphanus (Parker and Jones) var. transversus, new variety. × 35.
Plate 23.

Fig. 1. Discorbis obtusa (d'Orbigny).  a, dorsal view; b, ventral view; c, peripheral view.  X 65.

2. Truncatulina americana, new species.  a, dorsal view; b, ventral view; c, peripheral view.  X 65.

3. Truncatulina pygmea Hantken.  a, dorsal view; b, ventral view; c, peripheral view.  X 65.

Plate 24.

Fig. 1. Truncatulina ungeriana (d'Orbigny.)  X 65.


3. Truncatulina vuellerstorff (Schwager).  X 50.

4. Truncatulina culebrensis, new species.  X 33.  a, dorsal view; b, peripheral view.


6. Pulvinulina sagra (d'Orbigny).  X 65.  a, dorsal view; b, ventral view.

Plate 25.

Fig. 1. Pulvinulina concentrica Parker and Jones.  X 35.


5. Nonionina depressula (Walker and Jacob).  X 65.  a, side view; b, apertural view.

6. Nonionina scapha (Fichtel and Moll).  X 65.  a, side view; b, apertural view.

Plate 26.

Fig. 1. Nonionina panamensis, new species.  X 65.  a, side view; b, apertural view.

2. Nonionina anomalina, new species.  X 65.  a, side view; b, apertural view.

3. Polystomella striato-punctata (Fichtel and Moll).  X 65.  a, side view; b, apertural view.

4. Polystomella striato-punctata (Fichtel and Moll).  X 65.  a, side view; b, apertural view.

5. Polystomella sagra d'Orbigny.  X 65.  a, side view; b, apertural view.

Plate 27.

Fig. 1. Polystomella macella (Fichtel and Moll).  X 65.  a, side view; b, apertural view.

2. Polystomella crispa (Linnaeus).  X 35.  a, side view; b, apertural view.

3. Polystomella craticulata (Fichtel and Moll).  X 50.  a, side view; b, apertural view.

4. Quinqueloculina seminulum (Linnaeus).  X 65.  a, rear view; b, apertural view.
Plate 28.

Fig. 1. *Quinqueloculina seminulum* (Linnaeus). X 65. a, front view; b, rear view; c, apertural view.

2. *Quinqueloculina seminulum* (Linnaeus). X 130. a, front view; b, rear view; c, apertural view.

3. *Quinqueloculina seminulum* (Linnaeus) var. X 65. a, front view; b, rear view; c, apertural view.

Plate 29.

Fig. 1. *Quinqueloculina seminulum* (Linnaeus) var. X 80. a, front view; b, rear view; c, apertural view.

2. *Quinqueloculina contorta* d'Orbigny. X 65. a, front view; b, rear view; c, apertural view.

3. *Quinqueloculina auberiana* d'Orbigny. X 65. a, front view; b, rear view; c, apertural view.

Plate 30.

Fig. 1. *Quinqueloculina undosa* Karrer. X 50. a, front view; b, rear view; c, apertural view.

2. *Quinqueloculina bicornis* (Walker and Jacob). X 65. a, front view; b, rear view; c, apertural view.

3. *Quinqueloculina bicornis* (Walker and Jacob)? X 50. a, front view; b, rear view.

Plate 31.

Fig. 1. *Quinqueloculina panamensis*, new species. X 65. a, front view; b, rear view; c, apertural view.

2. *Spiroloculina excavata* d'Orbigny. X 40. a, front view; b, apertural view.

3. *Sigmoilina asperula* (Karrer). X 65. a, front view; b, apertural view.

4. *Sigmoilina tenius* (Czjzek). X 65. a, front view; b, rear view; c, apertural view.

Plate 32.

Fig. 1. *Triloculina trigonula* (Lamarck). X 65. a, front view; b, side view; c, apertural view.

2. *Triloculina tricarinata* d'Orbigny. X 65. a, rear view; b, side view; c, apertural view.

3. *Triloculina bulbosa*, new species. X 65. a, rear view; b, side view; c, apertural view.

Plate 33.

Fig. 1. *Triloculina projecta*, new species. X 65. a, front view; b, rear view; c, apertural view.

2. *Biloculina bulloides* d'Orbigny. X 65. a, front view; b, side view; c, apertural view.

Smaller Fossil Foraminifera from Panama.

For explanation of plate see page 85.
Smaller Fossil Foraminifera from Panama.

For explanation of plate see page 85.
Smaller Fossil Foraminifera from Panama.

For explanation of plate see page 85.
Smaller Fossil Foraminifera from Panama.

For explanation of plate see page 85.
Smaller Fossil Foraminifera from Panama.

For explanation of plate see page 86.
Small Fossil Foraminifera from Panama.

For explanation of plate see page 86.
SMALLER FOSSIL FORAMINIFERA FROM PANAMA.

FOR EXPLANATION OF PLATE SEE PAGE 86.
Smaller Fossil Foraminifera from Panama.

For explanation of plate see page 88.
SMALLER FOSSIL FORAMINIFERA FROM PANAMA.

FOR EXPLANATION OF PLATE SEE PAGE 86.
Smaller Fossil Foraminifera from Panama.

For explanation of plate see page 87.
Small Fossil Foraminifera from Panama.

For explanation of plate see page 87.
SMALLER FOSSIL FORAMINIFERA FROM PANAMA.

For explanation of plate see page 87.
Smaller Fossil Foraminifera from Panama.

For explanation of plate see page 87.
Smaller Fossil Foraminifera from Panama.

For explanation of plate see page 87.
SMALLER FOSSIL FORAMINIFERA FROM PANAMA.

FOR EXPLANATION OF PLATE SEE PAGE 87.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Textual Reference</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>abbreviata, Textularia</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>adunca, Orbiculina</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>aevoletals, Bolivina</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>aquilateralis, Globigerina</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>agglutinans, Textularia</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>americana, Truncatulina</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Amphistegina</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>lessoni</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>anomalina, Nonionina</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>asperula, Sigmoilina</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>auberiana, Quinqueloculina</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>bicornis, Quinqueloculina</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Bigenerina</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>nodosaria</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Biloculina</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>bulboides</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Bolivina</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>aenariensis</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>cf. B. punctata</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>robusta</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>bulbosa, Triloculina</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>bulboides, Biloculina</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>bulboides, Globigerina</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>canariensis, Uvigerina</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>carinata, Textularia</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>Chrysalidina</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>pulchella</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>Clavulina</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>communis</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>parisiensis</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>communis, Clavulina</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>communis, Nodosaria</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>concentrica, Pulvinulina</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>conglobata, Globigerina</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>contorta, Quinqueloculina</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>craticulata, Polystomella</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>crispa, Polystomella</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>Cristellaria</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>italica</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>protuberans</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>rotulata</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>vaughani</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>culebrencis, Truncatulina</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>depressula, Nonionina</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Discorbis</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>obtusa</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>dubia, Globigerina</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>excavata, Spiroloculina</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>flintif, Gaudryina</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Gaudryina</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>flintif</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>triangularis</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Globigerina</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>aequilaterals</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>bulboides</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>conglobata</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>Globigerina dubia</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>infleta</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>sacculifera</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>infleta, Globigerina</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Insecta, Nodosaria</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>italica, Cristellaria</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>Lagena</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>striata, var. strumosa</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>laminata, Textularia</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>lessoni, Amphistegina</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>macella, Polystomella</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>menardii, Pulvinulina</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>Nodosaria</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>communis</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>insecta</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>raphanistrum</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>nodosaria, Bigenerina</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Nonionina</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>anomalina</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>depressula</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>panamensis</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>scapha</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>obtusa, Discorbis</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>Orbiculina</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>adunca</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Orbulina</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>panamensis, Nonionina</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Quinqueloculina</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Textularia</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>parisienis, Clavulina</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>Polystomella</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>craticulata</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>crispa</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>macella</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>sagra</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>striato-punctata</td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>projecta, Triloculina</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>protuberans, Cristellaria</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>pulchella, Chrysalidina</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>Pulvinulina</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>concentrica</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>menardii</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>sagra</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>pygmea, Truncatulina</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>pygmaea, Uvigerina</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>Quinqueloculina</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>auberiana</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>bicornis</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>contorta</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>panamensis</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>seminulum</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>undosa</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>raphanistrum, Nodosaria</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>raphanus, var. transversus, Siphogerina</td>
<td></td>
<td>64</td>
</tr>
</tbody>
</table>
INDEX

<table>
<thead>
<tr>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>reticulata, Siphonina</td>
<td>72</td>
</tr>
<tr>
<td>robusta, Bolivina</td>
<td>55</td>
</tr>
<tr>
<td>rotulata, Cristellaria</td>
<td>60</td>
</tr>
<tr>
<td>sacculifera, Globigerina</td>
<td>66</td>
</tr>
<tr>
<td>sagittula, Textularia</td>
<td>51</td>
</tr>
<tr>
<td>sagra, Polysomella</td>
<td>75</td>
</tr>
<tr>
<td>Pulvinullina</td>
<td>70</td>
</tr>
<tr>
<td>scapha, Nonlonina</td>
<td>73</td>
</tr>
<tr>
<td>seminulum, Quinqueloculina</td>
<td>78</td>
</tr>
<tr>
<td>Sigmollina</td>
<td>81</td>
</tr>
<tr>
<td>asperula</td>
<td>81</td>
</tr>
<tr>
<td>tenuis</td>
<td>81</td>
</tr>
<tr>
<td>Siphogenerina</td>
<td>64</td>
</tr>
<tr>
<td>raphanus, var. transversus</td>
<td>64</td>
</tr>
<tr>
<td>Siphonina</td>
<td>72</td>
</tr>
<tr>
<td>reticulata</td>
<td>72</td>
</tr>
<tr>
<td>Spiroloculina</td>
<td>84</td>
</tr>
<tr>
<td>excavata</td>
<td>84</td>
</tr>
<tr>
<td>squamosa, Virgulina</td>
<td>55</td>
</tr>
<tr>
<td>striata, var. strumosa, Lagena</td>
<td>58</td>
</tr>
<tr>
<td>striato-punctata, Polysomella</td>
<td>74</td>
</tr>
<tr>
<td>strumosa, Lagena striata, var</td>
<td>74</td>
</tr>
<tr>
<td>subaggulatinans, Textularia</td>
<td>54</td>
</tr>
<tr>
<td>tenuis, Sigmollina</td>
<td>81</td>
</tr>
<tr>
<td>tenulstriata, Uvigerina</td>
<td>63</td>
</tr>
<tr>
<td>Textularia</td>
<td>51</td>
</tr>
<tr>
<td>abbreviata</td>
<td>51</td>
</tr>
<tr>
<td>agglutinans</td>
<td>52</td>
</tr>
<tr>
<td>carinata</td>
<td>53</td>
</tr>
<tr>
<td>laminata</td>
<td>52</td>
</tr>
<tr>
<td>Textularia panamensis</td>
<td>53</td>
</tr>
<tr>
<td>sagittula</td>
<td>51</td>
</tr>
<tr>
<td>subaggulatinans</td>
<td>52</td>
</tr>
<tr>
<td>transversus, Siphogenerina raphanu, var.</td>
<td>64</td>
</tr>
<tr>
<td>triangularis, Gaudryina</td>
<td>56</td>
</tr>
<tr>
<td>tricarinata, Triloculina</td>
<td>82</td>
</tr>
<tr>
<td>trigonula, Triloculina</td>
<td>82</td>
</tr>
<tr>
<td>Triloculina</td>
<td>82</td>
</tr>
<tr>
<td>buliosa</td>
<td>83</td>
</tr>
<tr>
<td>projecta</td>
<td>83</td>
</tr>
<tr>
<td>tricarinata</td>
<td>82</td>
</tr>
<tr>
<td>trigonula</td>
<td>82</td>
</tr>
<tr>
<td>Truncatulina</td>
<td>65</td>
</tr>
<tr>
<td>americana</td>
<td>68</td>
</tr>
<tr>
<td>culebrensis</td>
<td>70</td>
</tr>
<tr>
<td>pygmea</td>
<td>68</td>
</tr>
<tr>
<td>ungeriana</td>
<td>69</td>
</tr>
<tr>
<td>wuellerstorfi</td>
<td>69</td>
</tr>
<tr>
<td>undosa, Quinqueloculina</td>
<td>79</td>
</tr>
<tr>
<td>ungeriana, Truncatulina</td>
<td>69</td>
</tr>
<tr>
<td>universa, Orbulina</td>
<td>67</td>
</tr>
<tr>
<td>Uvigerina</td>
<td>62</td>
</tr>
<tr>
<td>canariensis</td>
<td>62</td>
</tr>
<tr>
<td>pygmea</td>
<td>63</td>
</tr>
<tr>
<td>tenuistrata</td>
<td>63</td>
</tr>
<tr>
<td>vaughani, Cristellaria</td>
<td>61</td>
</tr>
<tr>
<td>Virgulina</td>
<td>58</td>
</tr>
<tr>
<td>squamosa</td>
<td>58</td>
</tr>
<tr>
<td>wuellerstorfi, Truncatulina</td>
<td>69</td>
</tr>
</tbody>
</table>
THE LARGER FOSSIL FORAMINIFERA OF THE PANAMA CANAL ZONE.

By Joseph Augustine Cushman,
Of the United States Geological Survey.

INTRODUCTION.

The foraminifera, especially the larger forms of the orbitoids, have been little used in America as critical index fossils, except in the Vicksburg group; but in Europe, Asia, and the East Indies they have long been used to distinguish horizons. In many geologic papers one finds *Orbitoides* mentioned, probably *Orbitoides mantelli* Morton, and occasionally *O. dispansus, O. forbesi*, etc. From a critical study of the group it soon becomes evident that such identifications as have been made of American orbitoids, except those of Lemoine and Douvillé, have been largely superficial, and are therefore of little value. Since the earlier work of Gümbel the orbitoid foraminifera have with further study been divided largely into the four genera *Orbitoides*, *Orthophragmina*, *Lepidocyclina*, and *Mio-gypsina*, in general respectively characterizing Cretaceous, Eocene, Oligocene, and Miocene formations, but with important exceptions. The American forms, with the exception of the work of Lemoine and Douvillé, have not been properly referred to their respective genera, although our American *Orbitoides mantelli*, described by Morton as *Nummulites mantelli* in 1833, is the type-species of *Lepidocyclina*. In their work on *Lepidocyclina* Lemoine and Douvillé⁴ describe two new American species, *L. canellei* and *L. chaperi*, from the Panama Canal Zone, figuring also for the first time the critical chambers of *L. mantelli* (Morton). These are all the American species that are given, although they call attention to the apparently superficial character of the references to *Orbitoides* in American geologic papers. Schlumberger, in his classic works on the genera *Orbitoides* and *Orthophragmina*, did not have American material. The American

---

field is therefore practically unworked, and the description of our species with accurate stratigraphic information is of prime importance, as they have been proved elsewhere to be of great use as index fossils.

The collections now in my hands represent the Canal Zone, the West Indies, and Coastal Plain Province of the eastern and southern United States. Excellent material was collected in the Panama Canal Zone by T. Wayland Vaughan and D. F. MacDonald, and is here presented as a beginning in the determination and figuring of the American species. This will be followed by papers on the West Indian and Coastal Plain species which now, owing to the careful collecting by Doctor Vaughan and his associates, are represented by excellent suites of specimens covering broad ranges, both geographically and stratigraphically. As these are gradually worked up there will be a mass of data which should be of excellent service in the correlation of horizons where these groups are represented, even in the absence of Mollusca and other groups of fossils.

The systematic descriptions of the species of *Lepidocyclina*, *Nummulites*, and *Orbitolites* follow, together with that of a genus and species believed to be new.

**LIST OF SPECIES AND THEIR GEOLOGIC OCCURRENCE.**

*Lepidocyclina canellei* Lemoine and Douvillé. Oligocene, Culebra formation, stations 6019a, Gaillard Cut; 6023, Rio Frijol; 6027, Bohio (old station); 6891; Bailamons; 6892, 450 feet south of switch at Mamei. Also Oligocene of Trinidad.

*Lepidocyclina chaperi* Lemoine and Douvillé. Oligocene, Culebra formation, stations 6019f, Las Cascadas; 6025, Bohio Ridge switch.

*Lepidocyclina vaughani*, new species. Oligocene, Emperador limestone, stations 6021 and 6673, near Caimito Junction; 6255, half mile south of Miraflores Station.


*Lepidocyclina panamensis*, new species. Oligocene?, stations 6512, river bed, David; Oligocene, 6586e and 6587, near mouth of Tonosi River; probably at 6010, near Miraflores Locks, and 6012a and 6012e in Gaillard Cut, in the Culebra formation; doubtfully in the Emperador limestone, at station 6015, Empire.

*Lepidocyclina duplicata*, new species. Oligocene, stations 6523, 2 miles north of David; and 6586e, near mouth of Tonosi River.

Orthophragmina minima, new species. Oligocene ?, station 6512, river bed, David.

Nummulites panamensis, new species. Oligocene, Culebra formation, stations 6024a, Rio Agua Salud; 6025, Bohio Ridge switch; doubtfully at 6026, 2 miles south of Monte Lirio.

Nummulites davidensis, new species. Oligocene?, stations 6512, river bed, David; 6526, Chiriqui.

Nummulites davidensis, new species. Oligocene?; stations 6024a, 6025, Eio Agua Salud; 6026, Bohio Ridge switch; doubtfully at 6026, 2 miles south of Monte Lirio.

Orhitolites americana, new species. Oligocene, Culebra formation, Gaillard Cut at stations 6013, 6019b, and 6020a.

DESCRIPTIONS OF SPECIES.

Family NUMMULITIDAE.

Genus LEPIDOCYCLINA.

LEPIDOCYCLINA CANELLEI Lemoine and Douville.

Plate 34, figs. 1–6.

Lepidocyclina canellei Lemoine and Douville, Mém. Soc. Géol. France, Paléontologie. Mém. 32, p. 20, pl. 1, fig. 1; pl. 3, fig. 5, 1904.

Test comparatively small, diameter of largest specimens slightly less than four millimeters, thickness a little more than one-fourth the diameter; circular in outline, central portion somewhat raised and evenly rounded, near the periphery flattened or even slightly concave; surface in well preserved specimens finely granular or even finely papillate, but not strongly so, often appearing smooth to the unaided eye. In worn specimens the surface appears as a series of regular hexagonal, honeycomb-like reticulations due to the edges of the lateral chambers.

In vertical section the lateral chambers are seen to be arranged in vertical columns, one directly above the other, from the equatorial chambers to the surface, about twelve chambers in each vertical column in the central region, the lateral walls hardly thicker than the upper or lower surfaces. Chambers of adjacent columns arranged alternately, no distinct columns present. Equatorial chambers gradually increasing in size toward the periphery, single throughout, extending peripherally beyond the lateral chambers and in surface view in well-preserved specimens appearing as a hexagonal reticulation. Embryonic chambers nearly equal in size, nearly semicircular in section, their common wall straight.

Horizontal section showing the equatorial chambers regularly hexagonal, those toward the periphery largest. Embryonic chambers similar to those shown in the vertical view.

Occurrence.—Lemoine and Douville described and figured this species from Panama, from Peñablanca, also noting it from Mar-
tinique and Angola. The species from Panama was recorded by Dall and by Bagg as *Orbitoides forbesi* Carpenter.\(^1\)

Cat. No. 135216, U.S.N.M., is *Lepidocyclina canellei* Lemoine and Douvillé. Figures 1, 4–6, on plate 34 are from this material, collected by Hill at Bohio, Panama, where it is very abundant. This is the same locality as station 6027 of Vaughan and MacDonald, orbitoidal marl, a quarter of a mile northwest of Bohio railroad station. In this material *L. canellei* is very abundant and makes up a considerable proportion of the marl. Parts of five specimens, close to one another, are visible in a small part of a section from this station.

Specimens in the collection of the United States National Museum, Catalogue No. 107158, from the Oligocene of Trinidad ("Leda bed," Naparima) collected by Guppy, are also very evidently *Lepidocyclina canellei*.

Specimens of *L. canellei* were also very abundant at station 6891, foraminiferal limestone from Bailamonas, Canal Zone, collected by D. F. MacDonald.

There is a limestone from station 6892, 450 feet south of switch at Mamei, Canal Zone, also collected by MacDonald, which contains numerous specimens of a *Lepidocyclina* in general shape in section resembling *L. canellei*, but the material is very cherty and the finer structure is not well preserved.

A few small weathered specimens from 6019a, Gaillard Cut, opposite Las Cascadas, seem to belong to this species also; and specimens were also obtained at station 6023, along the relocated line of the Panama Railroad, at Rio Frijol. The geologic occurrence is in the Culebra formation.

Cat. Nos. 324733–5, U.S.N.M.

**LEPIDOCYCLINA CHAPERI** Lemoine and Douvillé.

Plate 35. figs. 1–3; plate 36.


Test of medium size, diameter from 8 to 20 millimeters, circular in outline, somewhat saddle-shaped, central portion slightly thickened, thence gradually and evenly thinning toward the periphery; surface where well preserved slightly papillate, usually roughened by erosion, toward the periphery often somewhat reticulately depressed above the equatorial chambers.

Vertical section usually curved, lateral chambers numerous, breadth much greater than height, columns separated by distinct pillars, comparatively few except in the central region where there

are a few larger than the others; embryonic chambers of the double type, the two chambers nearly equal in size and separated by a straight common wall.

Horizontal section shows similar conditions of the embryonic chambers and distinctly hexagonal equatorial chambers.

**Occurrence.**—Lemoine and Douvillé described this species from Panama (Haut-chagres, San Juan). The figured specimens are from United States Geological Survey station 6025, Culebra formation, from marl, south end of Bohio Ridge switch, relocated line, Panama Railroad, collected by Vaughan and MacDonald.

Specimens from station 6019–f, Culebra formation, on the west side of Gaillard Cut near Las Cascadas, seem to represent the micro-spheric form of this species. The sections are shown in plate 35, figure 3, and plate 36.

A specimen from station 6526, Chiriqui. Canal Zone, shows a section which from its general proportions strongly suggests *L. chaperi*.

Cat. Nos. 324736–8, U.S.N.M.

**LEPIDOCYCLINA VAUGHANI, new species.**

Plate 37, figs. 1–5; plate 38.

Test of medium size, 10 millimeters or more in diameter, flat, surface somewhat umbonate in the central portion, gradually sloping to the peripheral portion, the outer half of which is nearly flat. Wall smooth except for fine papillae.

Horizontal section shows the peculiarity of the chambers, many of which, especially those of the outer peripheral portion are rhomboid, those of the inner portion being more typical and hexagonal. These are shown especially well on the sections of the larger specimens, those of the smaller specimens showing only the regular hexagonal character of the earlier chambers.

No very good vertical sections were obtained in the thin sections but several accidental sections show the characters well. The embryonic chambers are rather large, of the usual American type, of two nearly equal chambers, lateral chambers in vertical columns with a very few, rather well developed pillars.

**Occurrence.**—Type-specimen from station 6021, from the Emperor Limestone in cuttings of the Panama Railroad near Caimito Junction, Panama, United States National Museum Catalogue No. 324739, collected by T. W. Vaughan and D. F. MacDonald. Specimens were abundant in this light gray to cream-colored sandy limestone. Specimens were also abundant in the collection from the same locality collected later by MacDonald under station No. 6673. Specimens which are apparently the same species are abundant in a fos-
siliferous limy sandstone collected by MacDonald at station No. 6255 from half a mile south of Miraflores Station on the wagon road to Panama.

LEPIDOCYCLINA MACDONALDI, new species.

Plate 40, figs. 1–6.

Test circular, rather small, about 5 to 7 millimeters in diameter, thickest in the central region, thence gradually sloping to the periphery which for a short distance in from the edge is nearly flat; wall rather smooth except the central portion of the umbonal region, which has a few pustule-like raised spots at the surface end of the vertical pillars.

Vertical section shows the test widest in the middle, gently sloping to near the periphery where the edges are nearly parallel for a short distance to the peripheral edge or even slightly increasing in thickness. Lateral chambers in the central portion in definite vertical columns, occasionally slightly overlapping. Equatorial chambers not increasing very rapidly in height in megalospheric specimens, those at the periphery hardly more than double the height of those near the center of the test; embryonic chambers in the megalospheric form, large, usually of two nearly equal chambers, but in oblique cutting these may appear somewhat unequal, plate 40, figures 2 and 3.

Horizontal sections show chambers somewhat similar to L. vaughani but with the inner half of two walls at nearly right angles, the outer wall broadly rounded. The oblique section (pl. 40, fig. 6) shows the pillars.

Occurrence.—Type-specimens from station 6523, from orbitoidal limestone, 2 miles north of David, Panama, collected by D. F. MacDonald, U. S. National Museum Catalogue No. 324740. Specimens were abundant at this station, occurring with L. panamensis and L. duplicata. The species were also collected by MacDonald at station 6512, in the river bed at David.

LEPIDOCYCLINA PANAMENSIS, new species.

Plate 39, figs. 1–6; plate 42.

Test circular, small, central portion very strongly umbonate, thick, rapidly decreasing in thickness peripherally, the peripheral portion thin and flattened, the raised central portion only one-third to one-fifth the entire diameter, which ranges from three to six millimeters; occasional specimens, perhaps representing the microspheric form, up to 10 or 12 millimeters in diameter; surface smooth except for the unbonal portion which has a few large pustule-like projections marking the ends of the internal pillars.
The vertical section shows very peculiar embryonic chambers in that they do not exhibit the usual characters of American species, but have a broad and much flattened central chamber two to four times as broad as high with a compressed, partially encircling chamber, which in section is usually cut on the opposite sides of the central chamber. In some cases there seems to be an irregular mass of three or four more or less nearly spherical chambers. In the former case these central chambers in section are nearly as wide as the whole umbonal portion of the test. Lateral chambers, usually about twice as wide as high, the outer wall often somewhat arched toward the exterior of the test, arranged in vertical columns. Pillars not distinct except in the central portion where there are a few strong ones increasing rather rapidly in diameter toward the periphery, usually about 9 or 10 chambers in a vertical column in the center of the umbilical region. The peripheral region has only a thin coating of lateral chambers, the last formed layer present only on the outer half of the periphery and often none at all present on the last quarter of the test toward the periphery, the surface being made up by upper and lower walls of the equatorial chambers. Equatorial chambers numerous, comparatively broad, the peripheral wall convex outwardly toward the periphery, the chambers at least as wide as high.

In horizontal section the equatorial chambers are usually somewhat irregularly hexagonal near the center, toward the periphery more or less rhomboid with the outer peripheral wall curved.

As far as described material is concerned this is an unusual form for American species of *Lepidocyclina*, especially in its embryonic chambers.

*Occurrence.*—Type-specimen, vertical sections, U. S. National Museum Catalogue No. 324741. The species is fairly abundant at stations 6586e and 6587 from near the mouth of Tonosi River, Panama, D. F. MacDonald, collector. It was also collected by MacDonald at station 6512, river bed, David.

At stations 6010, 600 or 700 feet south of the Miraflores Locks, and 6012a and 6012c, south of Empire Bridge, in the Culebra formation, specimens of small orbitoids occur, but they are not sufficiently well preserved for positive identification. Although those from the latter station seem somewhat like *L. panamensis* in their thin borders and raised center with papillae, they can not be specifically identified with certainty. At other stations poorly preserved orbitoid foraminifera occur, but their specific identity can not be accurately determined. Specimens doubtfully referable to *L. panamensis* were obtained in the Emperador limestone, at station 6015, Empire.
MULTICYLINA, new subgenus.

Subgenus differing from typical *Lepidocyclina* in the equatorial chambers which instead of being in a single series become complex toward the periphery and may consist of several series.

*Type of the subgenus.*—*Lepidocyclina duplicata* Cushman.

**LEPIDOCYLINA DUPLICATA,** new species.

Plate 41, figs. 2-4.

Test of medium size, 10 to 14 millimeters in diameter, very much thickened in the umbonal region, usually the thickness about one-half the diameter; without the flattened periphery the central portion is subspherical, thinning rapidly toward the periphery, then thickening again at the margin, which is often doubly plicate in the best preserved specimens. Surface of the umbonal portion studded with numerous fine papillae marking the surface terminations of the pillars, peripheral portion nearly smooth.

Vertical section showing the embryonic chambers as very small, apparently microspheric in the specimens sectioned, appearing spiral as is usual in the microspheric form. Lateral chambers numerous, flattened or lenticular, the numerous pillars as wide as or wider than the intermediate columns of chambers, especially in the central portion, rapidly increasing in size toward the surface. Equatorial chambers very small near the center, gradually increasing in size toward the periphery where they become multiple instead of single as is usually the case, and make three or four vertical series, each with numerous fine apertural pores on the outer convex wall.

Horizontal section shows the increase in size of the equatorial chambers which toward the center seem hexagonal and toward the periphery almost rhomboid with the outer half convex.

Of somewhat similar character as far as the duplication of equatorial chambers is the species described by Martin from Java, *L. multipartita* (Martin), and the form described by Jones and Parker from Christmas Island, *L. insulac natalis*, var. *inequalis* (Jones and Parker).

*Occurrence.*—Type-specimen, U. S. National Museum, Catalogue No. 324742. Specimens were very abundant, weathered out of an orbitoid limestone, at Station 6523, 2 miles north of David, Panama, D. F. MacDonald, collector. They also occur with other species of *Lepidocyclina* at Station 6586e from near the mouth of Tonosi River, D. F. MacDonald, collector.
HETEROSTEGINOIDES, new genus.

Test generally lenticular, somewhat excentric, one side extended peripherally more than the other, chambers rather coarsely perforate, embryonic chambers, often two, of nearly equal size, thick walled, chambers added as in Heterostegina, in a revolving series extending from the umbalon region on both sides to the periphery, chambers hemispherical, the outer side strongly convex and all coarsely perforate, the equatorial chambers larger than the lateral ones and nearly spherical.

Type of the genus.—Heterosteginoides panamensis, new species.

HETEROSTEGINOIDES PANAMENSIS, new species.

Plate 43, figs. 1–8.

Test biconvex, somewhat more strongly convex on one side than on the other, revolving edge indistinct, surface unevenly rugose, or irregularly pustulate, thickest in the umbalon region. Vertical section showing the embryonic chambers as an equal pair of nearly spherical, thick-walled chambers, equatorial chambers also nearly spherical, lateral chambers hemispherical with the curved side outermost, irregularly piled above the equatorial chambers. Horizontal section showing the central chambers with the equatorial chambers arranged in an irregular semi-spiral manner about them.

Test small, between 1 and 2 millimeters in diameter. Cat. Nos. 324743–4, U.S.N.M.

Occurrence.—This species was abundant in the Culebra formation at station 6025, from marl, south end of Bohio Ridge switch, relocated line, Panama Railroad, collected by Vaughan and MacDonald. There are also numerous specimens at station 6011, Culebra formation, along east side of Gaillard Cut, collected by Vaughan and MacDonald. It was also collected in the Culebra formation at station 6024–a, Rio Agua Salud, and is doubtfully present in the Emperador limestone at stations 6015 and 6016, in Empire.

This species, which in external appearance somewhat resembles a small orbitoid or nummulite, may be distinguished from most species of either group by its comparatively coarse pustulate exterior. In section it can easily be recognized by its peculiar structure.

Genus ORTHOPHRAGMINA.

ORTHOPHRAGMINA MINIMA, new species.

Plate 41, fig. 1.

Test circular, very small, slightly more than 2 millimeters in diameter, thickness somewhat less than half the diameter, central portion very strongly umbonate, evenly rounded to a point about
two-thirds of the distance from the center to the periphery, from which point to the periphery the surface is nearly flat; surface of the test comparatively smooth.

Horizontal section through the equatorial chambers shows very fine rectangular chambers and the embryonic chambers nearly equal in size.

Vertical section (fig. 1) shows well the contour of the test in this section, the strongly curved central umbonate portion making up two-thirds or more of the width and the peripheral flange with its nearly parallel sides. The chambers are very small, except the embryonic central chambers, which are nearly equal and have a straight division line between them. The lateral chambers are in vertical columns, but the test is without pillars. In the central region there may be more than 20 chambers in a vertical column, and even on the peripheral flange there are usually three or four in a column on each side of the equatorial chambers.


The species is abundant at United States Geological Survey station 6512 in the white limestone, in the river bed above the ice plant near David, Panama, collected by D. F. MacDonald.

This is a very small species yet it has an abundance of very fine chambers. There is an exceptional development of lateral chambers in the region of the periphery.

Genus NUMMULITES.
NUMMULITES PANAMENSIS, new species.
Plate 43, figs. 9, 10.

Test small, about 1½ millimeters in diameter, much compressed, chambers very numerous, about 22 in the last formed coil, each in section two to three times as high as long, test of about four whorls, walls comparatively thick, whole test lenticular, peripheral margin broadly rounded, central portion nearly flat.

Occurrence.—Specimens occur with some frequency in the Culebra formation at station 6025, in marl, south end of Bohio Ridge switch, relocated line, Panama Railroad, collected by Vaughan and MacDonald. Type-specimen, U. S. National Museum Catalogue No. 324746. The species was also collected in the Culebra formation at station 6024—a, Rio Agua Salud, and doubtfully at station 6026, 2 miles south of Monte Lirio, on the relocated line of the Panama Railroad.

NUMMULITES DAVIDENSIS, new species.
Plate 43, fig. 11.

Test comparatively small, about 3½ millimeters in diameter, somewhat compressed, chambers about twice as high as long in median
sections, test of three or four whorls, walls of medium thickness, the upright wall rather strongly recurved backward in the central portion, 15 or 16 chambers in the last formed whorl.

Occurrence.—Specimens were not common at station 6512 from white limestone in river bed above ice plant near David, Panama, collected by D. F. MacDonald.

Type-specimen.—Cat. No. 324751, U.S.N.M.

In material from station 6526 from Chiriqui, Canal Zone, collected by MacDonald, numerous specimens occur which in section seem identical with this species.

Family MILIOLIDAE.

Genus ORBITOLITES.

ORBITOLITES AMERICANA, new species.

Plate 43, figs. 12-14; plate 44, figs. 1, 2; plate 45.

Test flat, of medium size, larger specimens about 10 millimeters in diameter, chambers with the outer wall strongly convex, the inner wall running backward and bluntly pointed, side walls parallel, chambers in two or more tiers; tests mostly microspheric, one (pl. 43, fig. 14) apparently megalospheric, and one (pl. 44, fig. 2) seemingly originating from a fragment of an older test. Numerous specimens, especially plate 45, figure 1, show evidence of breakage and repair. The apertures between the chambers are not evident, as the material largely consists of internal casts of the chambers. Some of the specimens suggest the genus *Presorites* of the Cretaceous described by Douvillé, but this is probably due to the condition of fossilization.

Occurrence.—Specimens which seem referable to this species are from the following stations at Panama, collected by Vaughan and MacDonald: Culebra formation, 6013, east side of Gaillard Cut; 6019b, 6019-e-f, west side of Gaillard Cut near Las Cascadas; and 6020a-c of the same section. Also collected in the Emperador limestone at station 6015, in Empire.

Type-specimen.—Cat. No. 324748, U.S.N.M., from station 6020a.

EXPLANATION OF PLATES.

PLATE 34.

*Lepidocyclina canellei* Lemoine and Douvillé.

Fig. 1. View of exterior of specimen × 10, a portion of a second specimen showing above the first, from Bohio, Panama. (U.S.N.M. Cat. No. 135216.)
2. Horizontal section $\times 10$, showing embryonic chambers and hexagonal equatorial chambers, from west side of Gaillard Cut near Las Cascadas (U.S.G.S. station 6019a).

3. Horizontal section showing hexagonal equatorial chambers and irregularities in the annuli due to repairs of breakage. $a \times 10$; $b \times 20$. Same locality as No. 2 above.

4. Slightly oblique section $\times 20$, showing narrow zone of equatorial chambers and two broader zones of lateral chambers, the latter with a very evident lack of pillars. Same locality as No. 1 above.

5. Vertical section at one side of embryonic chambers showing general characters of equatorial and lateral chambers $\times 20$. Same locality as No. 1 above.

6. Vertical section through the embryonic chambers showing the two nearly equal chambers with the straight wall dividing the two, $\times 20$. Same locality as No. 1 above.

**Plate 35.**

*Lepidocyclina chaperi* Lemoine and Douvillé.

**Fig. 1.** Exterior view of specimen $\times 5$. Specimen broken. From upper part of Culebra formation, from Panama Railroad, southern switch, Bohio Ridge, in light-colored limy sandstone (U.S.G.S. station 6025).

2. Exterior view of small, more complete specimen from same locality as the preceding, $\times 5$.

3. Horizontal section showing early chambers of the microspheric form of the species, $\times 20$. From west side of Gaillard Cut near Las Cascadas (U.S.G.S. station 6019f).

**Plate 36.**

*Lepidocyclina chaperi* Lemoine and Douvillé.

Horizontal section $\times 10$, showing early central chambers and hexagonal chambers of the equatorial region (U.S.G.S. station 6019f).

**Plate 37.**

*Lepidocyclina vaughani*, new species.

**Fig. 1.** View of exterior of specimen $\times 5$, with flat periphery and umbonate center, from limy sandstone half a mile south of Miraflores Station, on wagon road to Panama (station 6255).

2. Horizontal section of young specimen with regularly hexagonal equatorial chambers $\times 20$ (same locality as No. 1).

3. Oblique section $\times 20$, with narrow zone of regularly hexagonal equatorial chambers and broader zones of lateral chambers and a straight division wall (same locality as No. 1).

4. Specimen showing zone of equatorial chambers about peripheral portion, lateral chambers covering them in the center $\times 10$. From limestone in cut of relocated line of Panama Railroad opposite San Pablo and about 4 miles north of Gamboa bridge (station 6673).

5. Portion of vertical section (slightly oblique) through the embryonic chambers, $\times 20$ (same locality as No. 1).
Plate 38.

_Lepidocyclina vaughani_, new species.

Specimen × 20, showing peripheral zone cut through the equatorial chambers and central portion covered by lateral chambers. From limestone in cut of relocated line of Panama Railroad opposite San Pablo and about 4 miles north of Gamboa bridge (station 6673).

Plate 39.

_Lepidocyclina panamensis_, new species.

Fig. 1. Very young specimen in vertical section consisting of embryonic chambers and one or two following chambers, × 20.

2-4. Vertical sections with broad embryonic chambers and showing the relation of equatorial and lateral chambers, vertical columns of lateral chambers with intermediate pillars, × 20.

5. Oblique section with zone of hexagonal equatorial chambers, × 20.

6. Section of rock with six specimens lying closely adjacent, four of these cut through the embryonic chambers, × 20.

All specimens from near the mouth of Tonosi River, Panama (station 6586e).

Plate 40.

_Lepidocyclina macdonaldi_, new species.

Fig. 1. Exterior view of specimen, × 10, showing pillars appearing at the surface as raised area.

2-5. Vertical sections (slightly oblique) through the embryonic chambers, which when cut in plane at right angles to division wall show nearly equal chambers with the division wall straight or very slightly curved. Pillars evident, especially in Nos. 2 and 5, × 20.

6. Oblique section, × 20, showing zone of "lozenge-shaped" equatorial chambers with lateral chambers on each side. The upper series showing the cut sections of pillars.

All specimens from limestone 2 miles north of David, Panama (station 6523).

Plate 41.

_Orthophragmina minima_, new species.

Fig. 1. Vertical section, × 20, showing general outline and numerous very fine chambers. From white limestone in river bed above ice plant, David, Panama (U.S.G.S. station 6512).

_Lepidocyclina duplicata_, new species.

2. Exterior view of type, × 5, showing raised center and depressed area inside the raised periphery.

3. Portions of vertical section showing great increase in width of equatorial zone, multiplication of chambers toward the periphery, heavy pillars and wide lateral chambers. × 20.
4. Portion of oblique section showing narrow zone of "lozenge-shaped" equatorial chambers, perforations of peripheral wall of outer equatorial chambers and perforated pillars among the lateral chambers. × 20.

All specimens of *L. duplicata* from limestone, 2 miles north of David, Panama (station 6523).

**Plate 42.**

Section of limestone from station 6523, 2 miles north of David, showing numerous specimens of *Lepidocyclina*, × 20. Left center, *L. panamensis* with broad embryonic chambers; lower middle *L. macdonaldi* with subspherical embryonic chambers; at right a portion of *L. duplicata*.

**Plate 43.**

*Heterosteginoides panamensis*, new genus and new species.

Fig. 1, 2. External view of specimens, × 10, from limy sandstone, east side of Gaillard Cut (station 6011).

3-6. Vertical portions, × 20, showing irregular piling of lateral chambers; fig. 6 with two embryonic chambers with thick walls. Specimens from limy sandstone near southern switch, Bohio Ridge (station 6025).

7, 8. Horizontal sections, × 20, from same locality at Bohio.

*Nummulites panamensis*, new species.

9. Horizontal section, × 20, from limy sandstone near southern switch, Bohio Ridge (station 6025).

10. Vertical section from same rock specimen, × 10.

*Nummulites davidensis*, new species.

11. Horizontal section, × 20, from white limestone in river bed above ice plant, David, Panama (station 6512).

*Orbitolites americana*, new species.

12-14. Horizontal sections, × 10, specimens from west side of Gaillard Cut near Las Cascadas (station 6020a).

**Plate 44.**

*Orbitolites americana*, new species.

Fig. 1. Horizontal section of large specimen, × 10, from Gaillard Cut, near Las Cascadas (station 6019-b).

2. Horizontal section, broken, showing two layers of chambers and inside cast of outer surface, × 20 (station 6020a).

**Plate 45.**

*Orbitolites americana*, new species.

Specimen in horizontal section, × 20, showing several areas of breakage and subsequent repair, shown by the angular reentrants of the annuli in various places. From Gaillard Cut, near Las Cascadas (station 6020a).
LARGER FOSSIL FORAMINIFERA FROM PANAMA.

For explanation of plate see pages 99-100.
LARGER FOSSIL FORAMINIFERA FROM PANAMA.

For explanation of plate see page 196.
LARGER FOSSIL FORAMINIFERA FROM PANAMA.

FOR EXPLANATION OF PLATE SEE PAGE 100.
LARGER FOSSIL FORAMINIFERA FROM PANAMA.

For explanation of plate see page 100.
LARGER FOSSIL FORAMINIFERA FROM PANAMA.

FOR EXPLANATION OF PLATE SEE PAGE 101.
LARGER FOSSIL FORAMINIFERA FROM PANAMA.

For explanation of plate see page 101
LARGER FOSSIL FORAMINIFERA FROM PANAMA.

For explanation of plate see page 101.
Larger Fossil Foraminifera from Panama.

For explanation of plate see pages 101, 102.
LARGER FOSSIL FORAMINIFERA FROM PANAMA.

For explanation of plate see page 107.
LARGER FOSSIL FORAMINIFERA FROM PANAMA.

For explanation of plate see page 102.
LARGER FOSSIL FORAMINIFERA FROM PANAMA.

For explanation of plate see page 102.
LARGER FOSSIL FORAMINIFERA FROM PANAMA.

FOR EXPLANATION OF PLATE SEE PAGE 102.
### INDEX.

<table>
<thead>
<tr>
<th>Americana, Orbitolites</th>
<th>Page</th>
<th>Macdonaldi, Lepidocyclina</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canellei, Lepidocyclina</td>
<td>99</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Chaperi, Lepidocyclina</td>
<td>91</td>
<td>Minima, Orthophragmina</td>
<td>97</td>
</tr>
<tr>
<td>Davidens, Nummulites</td>
<td>92</td>
<td>Multicyclina</td>
<td>96</td>
</tr>
<tr>
<td>Duplicata, Lepidocyclina</td>
<td>98</td>
<td>Nummulites</td>
<td>98</td>
</tr>
<tr>
<td>Heterosteginoïdes</td>
<td>97</td>
<td>Davidens</td>
<td>98</td>
</tr>
<tr>
<td>Panamensis</td>
<td>97</td>
<td>Panamensis</td>
<td>98</td>
</tr>
<tr>
<td>Lepidocyclina</td>
<td>97</td>
<td>Orbitolites</td>
<td>99</td>
</tr>
<tr>
<td>Canellei</td>
<td>91</td>
<td>Americana</td>
<td>99</td>
</tr>
<tr>
<td>Chaperi</td>
<td>92</td>
<td>Orthophragmina</td>
<td>97</td>
</tr>
<tr>
<td>Duplicata</td>
<td>96</td>
<td>Minima</td>
<td>99</td>
</tr>
<tr>
<td>Macdonaldi</td>
<td>94</td>
<td>Panamensis, Heterosteginoïdes</td>
<td>97</td>
</tr>
<tr>
<td>Panamensis</td>
<td>94</td>
<td>Panamensis, Lepidocyclina</td>
<td>94</td>
</tr>
<tr>
<td>Vaughani</td>
<td>93</td>
<td>Panamensis, Nummulites</td>
<td>98</td>
</tr>
</tbody>
</table>

I
FOSSIL ECHINI OF THE PANAMA CANAL ZONE AND COSTA RICA.

By Robert Tracy Jackson,  
Of Peterborough, New Hampshire.

INTRODUCTION.

The following is essentially a reprint of my paper bearing the same title published in the Proceedings of the United States National Museum, volume 53, pages 489-501, plates 62-68, September 24, 1917:

The fossil echini of the Panama Canal Zone were submitted to me for study and description by Dr. T. Wayland Vaughan as part of the studies he is making in that region in connection with his investigations of the geology of the Costal Plain of the United States and of the West Indies. The material contains some very interesting species, particularly in the genus Encope, of which there are three new forms. Some of the material is well preserved, and parts are fragmentary. A number of specimens too poorly preserved, or too fragmentary for specific determination, indicate that a more extensive echinoid fauna may be found by further search.

I wish to express my heartiest thanks to my friend, Dr. Hubert Lyman Clark, of the Museum of Comparative Zoölogy, who, with his great knowledge of Clypeastroids and Spatangoids, helped me materially in preparing this report.

LIST OF SPECIES AND THEIR GEOLOGIC OCCURRENCE.

* Clypeaster lanceolatus* Cotteau. Upper Oligocene, Emperador limestone, Gaillard Cut, stations 5866b, 6671.

* Clypeaster gatunii* Jackson. Miocene, Gaion formation, station 5662, near Gatun Dam site; and at station 6287, north of Ancon Hill, about 4 miles south of Diablo ridge.

* Encope annectans* Jackson. Miocene, Gatun formation, station 5846, Spillway, Gatun Dam.

* Encope platytata* Jackson. Miocene, Gatun formation, station 6029a, one-quarter to one-half mile from Camp Cotton, toward Monte Lirio.

---

1 This formation is more appropriately referable to the lower Miocene, i. e., Burdigalian, than to the upper Oligocene.—T. W. V.
Encope megatrema Jackson. Miocene,¹ Gatun formation, station 6030, about one and one-half miles from Camp Cotton, toward Monte Lirio.

Echinolampas semiornis Guppy. Upper Oligocene, Emperador limestone, Gaillard Cut, stations 5866b and 6019g.


Schizaster cristatus Jackson. Miocene(?),¹ Brazil, Costa Rica, station 5505.

Schizaster panamensis Jackson. Miocene,¹ Gatun formation, near Gatun, at stations 6008 and 7294.

DESCRIPTION OF SPECIES.

CLYPEASTER LANCEOLATUS Cotteau.

Plate 46, figs. 1, 2.


This species is one of the few in the series from the Panama Canal Zone that seems referable to an already published species. There are seven specimens, all in good condition of preservation and representing two localities which, however, from the character of the material may be nearly associated. I give measurements of the largest specimen of the set. Length, 95 mm.; width, 77 mm.; height, 21 mm. Test elongate, wider behind than in front, moderately elevated, deeply concave in ventral view. Ambulacral petals elevated, distally acuminate, nearly closed and pinched up as if squeezed between the thumb and finger. Anterior petal III equal in length to petals I and V and a few millimeters longer than are the anterior pair II and IV. The anterior petal III is more widely separated from petals II and IV than are those latter from I and V. Interporiferous areas of petals are elevated, wide, being about equal to both poriferous areas. Interambulacra are narrow, extremely so near the apical disk. Tubercles are small and of about the same size dorsally and ventrally. Apical disk is central, mouth central, deeply sunken, periproct ventral, about four mm. from the posterior border of the test. The original material described by Cotteau is from the "Miocene" of Matanzas, Cuba, where he says it is very rare. It is apparently more or less common in the Canal Zone, as there are seven specimens from that region.

¹ This formation is more appropriately referable to the lower Miocene, i. e., Burdigalian, than to the Upper Oligocene.—T. W. V.

Clypeaster gatuni Jackson.

Plate 47, fig. 1; plate 48, fig. 1.

Clypeaster gatuni Jackson, Proc. U. S. Nat. Mus., vol. 53. 1917, p. 491, pl. 63, fig. 1; pl. 64, fig. 1.

This species is represented by a fine, large specimen in perfect condition of preservation. Two additional specimens much worn and incomplete are also referred to it.

The type measures 146 mm. in length, 122 mm. in width, and 35 mm. in height. The test is elongate, moderately pentagonal in outline, with slight incurving of the borders in interambulacral areas 1, 2, 3, and 4. Its greatest width is across ambulae II and IV. Ventrally the test is deeply concave, being flat only on the border. The ambulacral petal III is equal in length to petals I and V and a few millimeters longer than are petals II and IV. The petals are equidistant, highly elevated, and open at their distal ends. Ventrally, five deep ambulacral grooves extend to the mouth. Interambulacra are broad on the border of the test, narrowing up dorsally and very narrow near the apical disk. Each of the interambulacra between the petals are strongly elevated as if pinched up. The apical disk is slightly anterior to the middle of the test and is very small. The mouth is central, deeply sunken. The periproct is ventral, slightly elliptical, its posterior border 5 mm. from the posterior limits of the test. Tubercles are small, covering the dorsal surface of the test, ventrally the same, but slightly larger.

Clypeaster gatuni approaches nearest, perhaps, to C. bowersi Weaver, but differs in the shape of the test, the deeply concave base, the shape and proportionate size of the petals and interambulacra dorsally, and the fact that the periproct is ventral instead of terminal.

Locality and geologic occurrence.—Gatun formation, Miocene. Panama Canal Zone, near Gatun Dam site, D. F. MacDonald, collector, 1911, holotype, U. S. National Museum, station No. 5662, one specimen.


Holotype.—Cat. No. 324453, U.S.N.M.

This species is present on both the Atlantic and Pacific sides of the Isthmus.
Encope annectans Jackson.

Plate 49, figs. 1, 2; plate 50, fig. 1.

Encope annectans Jackson. Proc. U. S. Nat. Mus., vol. 53, 1917, p. 491, text fig. 1; pl. 65, figs. 1, 2; pl. 66, fig. 1.

This interesting species is represented by three specimens which include two tests free from matrix and more or less complete, and a sandstone mould of the exterior of the ventral side of a specimen which is the largest of the three.

Fig. 1.—Encope annectans. Drawing of the type-specimen, natural size. Restored parts are indicated by dotted lines.

In shape, the specimens are thin, flattened, and nearly circular in outline, excepting for the reëntrant marginal ambulacral notches. The edges are thin, exceptionally so for the genus, and the whole test superficially is scutelliform. In the anterior ambulacrum III there is a shallow rounded notch, and in the lateral ambulaera are deeper and narrower notches, the deepest being in the posterior pair of ambulaera, IV and V. The apical disk is central. The peristome is small and also central. Continuing posteriorly from the peristome on the ventral side is a quite deep groove, and on the dorsal side is a shorter and shallower groove. These grooves do not form a hole through the test, but represent the incipient beginnings of the
lunule which is characteristic in *Encope* of the posterior interambulacrum 5. This is most interesting and is discussed later at length.

The type-specimen measures 86 mm. in length, 89 mm. in width, and 8 mm. in height. The highest point is distinctly anterior to the middle of the test. The specimen represented by a mould of the ventral side is somewhat larger than the type. It measures about 93 mm. in length by about 96 mm. in width.

In the type, the ambulacral petals are broad, about equal in length in the several areas, the posterior pair extending back to a line with the anterior limit of the lunule in interambulacrum 5. Ventrally, the ambulacral furrows are deep, slightly curved outward from the median line of each ambulacrum, forking near the border of the test, each furrow giving off a forked branch at nearly a right angle to the main furrow. The apical disk is central, but details are obscured owing to local imperfections in both specimens showing the dorsal side. Interambulacral areas are narrow in the petaloid areas, wide near the margin of the test. The whole dorsal surface of the test is covered with small tubercles; on the ventral side of the test the tubercles are somewhat larger, but they are reduced in size or wanting along the lines of the ambulacral furrows. The mouth is small and central in position. The periproct is small, oval in outline, and situated at nearly one-third the distance from the mouth to posterior border of the test.

The lunule of interambulacrum 5 is the remarkable and most interesting feature of this species. Ventrally, it consists of an impressed area 15 mm. long by 2 mm. wide, extending to and being confluent with the opening of the periproct. Dorsally, the lunule also consists of an impressed area lying above the middle of the ventral lunular depression and measuring 10 mm. in length by 2 mm. in width. This is the only species in the genus recorded in which the lunule fails to make an opening through the test. Structurally, it is most interesting, as it closely resembles the condition in a young specimen of *Mellita sexiesperforata* (Leske) from the west coast of Florida, 30 fathoms. No. 2900, Museum of Comparative Zoology. This young *Mellita*, which measures 9 mm. in length, has no notches or lunules as yet developed in the ambulacral areas, but in interambulacrum 5, as viewed ventrally, there is a distinct impressed area marking the initial beginnings of a lunule as in our specimen of adult *Encope annectans*. It should be stated that this specimen of *Mellita* is probably exceptional in holding this youthful character so late, as in a small series of younger specimens of *M. sexiesperforata* measuring from 4 to 7 mm. in length, all have a perforate lunule in interambulacrum 5. This latter set is from Salt Key, Bahamas, No. 2439, Museum of Comparative Zoology. As pointed out by Mr. Agassiz (Revision of the Echini, pp. 320–324) in *Mellita sexiesperforata*, the
ambulacral and interambulacral lunules develop by resorption through the test, whereas in the other species of Melitita, as far as known, the ambulacral lunules are developed by the inclusion of marginal notches and the interambulacral lunule alone is formed by invagination through the test.

Encope annectans is primitive like the other fossil species of Encope in that the ambulacral notches are not inclosed to form lunules but are still shallow and open. It is undoubtedly the most primitive of the genus in that the lunule in interambulacrum 5 is still imperforate. It makes an approach to the Recent Encope michelini Agassiz of the Gulf of Mexico and E. grandis Agassiz of the Gulf of California which are the only living species characterized by open marginal notches. On the other hand, E. annectans resembles Encope micropora Agassiz of the West Coast in the form of the test and the position of the interambulacral lunule.

Locality and geologic occurrence.—Gatun formation, Miocene, Panama Canal Zone, Spillway at Gatun Dam site, D. F. MacDonald, collector, U. S. National Museum station No. 5846, three specimens.

Type.—Cat. No. 324454, U.S.N.M. Paratype.—Cat. No. 324466, U.S.N.M.

**Encope platytata** Jackson.

Plate 51, figs. 1, 2.


There is only a single specimen representing this species, and while it is imperfect, it yet has the essential parts preserved that are necessary for a description. As in the last described species, *E. annectans*, this species, *E. platytata*, is thin, flattened, and if complete, apparently would be nearly circular in outline excepting for the ambulacral notches. If complete, the specimen would measure as estimated about 100 mm. in length and 100 mm. in width. The greatest height of the test is in the apical region, where it measures 10 mm. As the ventral side of the test is somewhat concave instead of being flat, the thickness of the test at the center, as measured by calipers, is somewhat less than the height and measures only 8 mm.

The anterior ambulacral notch of area III is very shallow and rounded. The notches of the lateral anterior ambulaera II and IV are also rounded but deeper than the notch of area III. Presumably the notches of the posterior ambulaera I and V, if preserved, would be similar but somewhat deeper, as this is the usual character in associated species. The lunule in interambulacrum 5 is small, but passes directly through the test instead of being imperforate as in *Encope annectans*. This lunule is only preserved for the anterior part of its extent as shown in the figures. The mouth is small and
central in position, the periproct is elongate oval, its anterior border is 13 mm. posterior to the border of the mouth opening. Posteriorly the periproct is confluent with the infolded depression of the interambulacral lunule.

The ambulacral petals are rather narrow in this specimen, measuring 13 mm. in width. The odd anterior ambulacral petal is longer than the others, and measures 36 mm. in length, whereas the posterior petals of the trivium measure 28 mm. in length. The petals of the bivium, or I and V, are longer than the posterior pair of the trivium, but as they are incomplete posteriorly, a measurement cannot be given. On the ventral side, the ambulacral furrows are strongly marked and each gives off a few weakly impressed branches.

The apical disk is quite well preserved, shows clearly the ocular pores and four of the five genital pores, which are a characteristic feature of *Encope*. The only genital pore wanting is that occurring in area 1, which is destroyed by a local fracture of the test. Minute tubercles cover the dorsal side of the test. Ventrally the tubercles are larger except near the ambulacral furrows where they are minute.
Encope platytata is a near ally of Encope tenuis Kew\(^1\) of the Miocene of California, but differs from that species in that the greatest height of the test is central, and the periproct is confluent with the lunule.

**Locality and geologic occurrence.**—Gatun formation, Miocene, Panama Canal Zone, from lowest horizon in big cut, one-fourth to one-half mile beyond Camp Cotton toward Monte Lirio, D. F. MacDonald and T. W. Vaughan, collectors, 1911, U. S. National Museum station No. 6029\(a\), one specimen.

**Type.**—Cat. No. 324455, U.S.N.M.

**Encope Megatrema** Jackson.

Plate 52, fig. 1.


This species is represented by one fairly good test with its counterpart, and in addition some 12 fragments which yield helpful facts on close study. From the incompleteness, measurements and some details will have to be given in general terms or omitted. As a whole, the test is low, elongated, thin on the borders and with shallow ambulacral notches and an enormous lunule in interambulacrum 5.

From the best specimen, which is figured, the length probably was about 120 mm. and the width about 106 mm.; thickness of the test at its center is 10 mm. Ambulacral notches are shallow and quite wide in areas II and V, indicating that this is the character in the two posterior ambulacra I and V and also in the paired anterior ambulacra II and IV. This evidence is supported by several of the fragments which show shallow lobes like the type, but it can not be definitely stated which areas they represent. The notch of the anterior odd ambulacrum III is not known, but it was probably shallower than the others, as is characteristic of species of the genus. The most striking feature of this species is the lunule in interambulacrum 5, which is enormous. It is situated about midway between the apical disk and posterior limits of the test, and is roughly triangular in shape, the apex of the triangle pointing anteriorly. It measures at the surface of the opening 27 mm. in length and 27 mm. in width at the widest part posteriorly. The walls of the lunule slope outward from the center, as seen looking from above, as is well shown in two of the fragmentary specimens. From this sloping character of the walls, it results that the width of the lunule would be greater by about 6 to 10 millimeters on the ventral side than it is on the dorsal. The height of the wall of the lunule is 12 mm., which is doubtless the highest point of the test. The lunule in this species is, relatively to the size of the specimens, the largest known in any species of the

genus, fossil or living. It is striking that this great size of the lunule, a progressive character, should be associated with small and shallow ambulacral notches which, for the genus, is a relatively primitive character.

The ambulacral petals are beautifully distinct and well preserved for part of their extent in the type and one other specimen. The posterior pair, I and V, are long and narrow with a relatively wide poriferous area and narrow median interporiferous area. The width of the petal of ambulacrum V is 11 mm. and its length is 50 mm. It extends posteriorly in a wide curve around the lunule of interambulacrum 5 and reaches a line coincident with the posterior end of the
Echinosolamps semiorbis Guppy.


This species is abundant in the Oligocene Tertiary of the West Indies, material from Anguilla having been described by Guppy, and Cotteau erroneously records it from St. Bartholomew. Dr. T. Wayland Vaughan in 1914 collected abundant, fine specimens in the Island of Anguilla.

From the Panama Canal Zone a number of specimens were collected from a hard gray limestone. The specimens are for the most part uncompressed and in very good condition of preservation. One

of the largest specimens measures 107 mm. in length, 103 mm. in width, and 53 mm. in height.


SCHIZASTER ARMIGER W. B. Clark.


In this species the test is rather large, cordiform; upper surface slopes at first rapidly, then more slowly from the anterior margin to the apical system beyond which an elevated sharp ridge continues to the truncated posterior margin. Length, 59 mm.; width, 50 mm.; height, 25 mm. The ambulacra are broad and the odd anterior ambulacral petal III is situated in a deep groove that indents the anterior margin. The two lateral anterior ambulacra II and IV are in deep, broad grooves, with petals 18 mm. long. The posterior ambulacra I and V, similar but shorter, are 9 mm. long. Peripetalous fasciole is broad and distinct. Interambulacra gibbous, the posterior No. 5 being built up into an elevated keel. The peristome is indistinct in our specimen, but as shown in W. B. Clark's excellent figures, is wide and near the anterior margin. The periproct is high on the truncated posterior end.

The type material described by Clark is ascribed to the upper (Jackson) Eocene of Choctaw County, Alabama.

Locality and geologic occurrence.—Miocene(?),1 Bonilla, Costa Rica, Hill collection, U. S. Nat. Mus. Cat. No. 135214, one specimen.

SCHIZASTER CRISTATUS Jackson.

Plate 52, figs. 2–4.


The material of this species consists of two internal moulds; as the plates are entirely wanting, of course external characters can not be given. The more perfect of the two specimens measures 40 mm. in length, 36 mm. in width, and 22 mm. in height. Test is moderate

1 According to Hill and Dall the rocks exposed at this locality are of the same age as those at Gatun, Canal Zone. For a further discussion see the last chapter (by Vaughan) in this volume.
sized, cordiform, sloping gradually from the anterior border up to the median crest, the widest portion being through the middle of the test. The most striking feature of this species is the median keel-like crest that rises sharply from the summit of interambulacrum 5 at the posterior border of the test.

The petal of ambulacrum III is sunken in a deep, wide groove, extending to the anterior border of the test and measuring 23 mm. in length. The petals of the lateral anterior ambulacra II and IV are in deep grooves measuring 13 mm. in length and having about 22 plates in each half ambulacrum, as is indicated by the casts of the pores. The petals of the posterior ambulacra I and V are widely divergent from the anterior pair, nearly parallel and directed backward in deep, sunken grooves. The grooves are 7 mm. long, and there are about 14 plates in each half ambulacrum at this point, as indicated by casts of the pores. The periproct is situated on the posterior face and coincides with the base of the crest in interambulacrum 5. The peristome is wide and situated far forward, the tip which almost closes the mouth being 10 mm. from the anterior border of the test.


Type.—Cat. No. 324460, U.S.N.M.

SCHIZASTER PANAMENSIS Jackson.

Plate 50, figs. 2–3.


The material consists of an internal mould free from matrix, and three specimens more or less complete, embedded in porous, dark-colored volcanic tuff which also bears some fragments of lignite. The specimen, free from matrix, is the most completely preserved, although somewhat compressed dorso-ventrally, and is selected as the type. The specimen measures 48 mm. in length, 40 mm. in width, and 25 mm. in height. The petals of the ambulacra are situated in broad, deep furrows. The anterior petal III extends to the anterior limit of the test and measures 23 mm. in length. The paired anterior ambulacra II and IV are in grooves 13 mm. long and diverge widely from the anterior petal. The posterior petals I and V are shorter than the anterior pair, measuring 5 mm. in length, and are directed almost straight backward. The position of the periproct is not clearly indicated on the mould, but apparently it is near the upper part of the posterior face. The peristome is wide and rounded, and is situated 16 mm. from the anterior border of the test. The peri-
petalous fascicle is quite wide and is fairly well shown in areas II and IV on the type-specimen and still better in one of the fragments, which is a counterpart of the dorsal side of the same.

One of the specimens, which is an external mould, shows the impress of the outline of the plates of part of a test, and gives measurements of considerable interest. It measures about 50 mm. in length, about 45 mm. in width, and about 38 mm. in height. From incompleteness of the specimen no exact measurements can be given, yet those available indicate a very high test.


**DESCRIPTION OF PLATES.**

**PLATE 46.**

*Fig. 1. Clypeaster lanceolatus* Cotteau, dorsal view, natural size. The dark spot in interambulacrum 5 is a yellow label that took black in the photograph. U. S. Nat. Mus., Cat. No. 324451, Station 5866b.

2. Another specimen of the same, ventral view, natural size, U. S. Nat. Mus. Cat. No. 324451, Station 5866b.

**PLATE 47.**

*Fig. 1. Clypeaster gatuni* Jackson, dorsal view. Holotype, slightly reduced, U. S. Nat. Mus. Cat. No. 324453, Station 5662.

**PLATE 48.**

*Fig. 1. Clypeaster gatuni* Jackson, ventral view; same specimen as Plate 47. Holotype, slightly reduced, U. S. Nat. Mus. Cat. No. 324452, Station 5662.

**PLATE 49.**

*Fig. 1. Encope annectans* Jackson, dorsal view, natural size. Holotype, U. S. Nat. Mus. Cat. No. 324454, Station 5846.

2. The same, ventral view.

**PLATE 50.**

*Fig. 1. Encope annectans* Jackson, another specimen, external mould of ventral side seen from above. Natural size, Paratype, U. S. Nat. Mus. Cat. No. 324466, Station 5846.


3. The same, ventral view. The dark spot in interambulacrum 5 is a yellow ticket that took black in the photograph.
Plate 51.

Fig. 1. Encope platytata Jackson, dorsal view, natural size. Holotype, U. S. Nat. Mus. Cat. No. 324455, Station 6029a.

2. The same, ventral view. The dark spot in interambulacrum 4 of fig. 1 and in interambulacrum 2 of fig. 2 are yellow tickets that took black in the photographs.

Plate 52.

Fig. 1. Encope megatrema Jackson, dorsal view, natural size. Holotype, natural size, U. S. Nat. Mus. Cat. No. 324456, Station 6030.


3. The same, ventral view.

4. The same, side view.
Dorsal (1) and ventral views (2) of Clypeaster lanceolatus.
Dorsal View of Clypeaster gatuni.

For explanation of plate see page 115.
Ventral View of Clypeaster Gatuni.

For explanation of plate see page 115.
DORSAL (1) AND VENTRAL VIEWS (2) OF ENCOPE ANNECTANS.

For explanation of plate see page 116.
1. Mould of ventral side of Encope annectans seen from above. (2) Dorsal, and (3) ventral views of Schizaster panamensis.

For explanation of plate see page 115.
Fig. 1. Dorsal View (1). Fig. 2. Ventral View (2) of Encope platytata.

For explanation of plate see page 116.
1. **Dorsal View of Encope megatrema.** Dorsal (2), Ventral (3), and Side (4) Views of Schizaster cristatus.

For explanation of plate see page 116.
# INDEX

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>annectans, Encope</td>
<td>103, 106</td>
</tr>
<tr>
<td>armiger, Schizaster</td>
<td>104, 113</td>
</tr>
<tr>
<td>bowersi, Clypeaster</td>
<td>105</td>
</tr>
<tr>
<td>Clypeaster bowersi</td>
<td>105</td>
</tr>
<tr>
<td>gatuni</td>
<td>103, 105</td>
</tr>
<tr>
<td>lanceolatus</td>
<td>103, 104</td>
</tr>
<tr>
<td>cristatus, Schizaster</td>
<td>104, 113</td>
</tr>
<tr>
<td>Echinolamps semiobis</td>
<td>104, 112</td>
</tr>
<tr>
<td>Encope anneclans</td>
<td>103, 106</td>
</tr>
<tr>
<td>grandis</td>
<td>108</td>
</tr>
<tr>
<td>megatrema</td>
<td>104, 110</td>
</tr>
<tr>
<td>michelini</td>
<td>108</td>
</tr>
<tr>
<td>micropora</td>
<td>108</td>
</tr>
<tr>
<td>platytata</td>
<td>103, 108</td>
</tr>
<tr>
<td>tenisis</td>
<td>110</td>
</tr>
<tr>
<td>gatuni, Clypeaster</td>
<td>103, 105</td>
</tr>
<tr>
<td>grandis, Encope</td>
<td>108</td>
</tr>
<tr>
<td>lanceolatus, Clypeaster</td>
<td>103, 104</td>
</tr>
<tr>
<td>megatrema, Encope</td>
<td>104, 110</td>
</tr>
<tr>
<td>Mellita sexiesperforata</td>
<td>107</td>
</tr>
<tr>
<td>michelini, Encope</td>
<td>108</td>
</tr>
<tr>
<td>micropora, Encope</td>
<td>108</td>
</tr>
<tr>
<td>panamensis, Schizaster</td>
<td>104, 114</td>
</tr>
<tr>
<td>platytata, Encope</td>
<td>103, 108</td>
</tr>
<tr>
<td>Schizaster armiger</td>
<td>104, 113</td>
</tr>
<tr>
<td>cristatus</td>
<td>104, 113</td>
</tr>
<tr>
<td>panamensis</td>
<td>104, 114</td>
</tr>
<tr>
<td>semiorbis, Echinolamps</td>
<td>104, 112</td>
</tr>
<tr>
<td>sexiesperforata, Mellita</td>
<td>107</td>
</tr>
<tr>
<td>tenisis, Encope</td>
<td>110</td>
</tr>
</tbody>
</table>
BRYOZOA OF THE CANAL ZONE AND RELATED AREAS.

By Ferdinand Canu
Of Versailles, France

And

Ray S. Bassler
Of Washington, District of Columbia.

The following pages contain the descriptions of the few bryozoa that have so far been found in the rocks of the Canal Zone and related areas. These bryozoa consist of two species from the Emperor limestone of the Canal Zone collected by Messrs. T. Wayland Vaughan and D. F. MacDonald and three species from the Miocene of Costa Rica collected by D. F. MacDonald. The list of species described is as follows:

*Ogivalina mutabilis*, new species, Emperor limestone, Panama Canal Zone.

*Holoporella albirostris* (Smitt), Emperor limestone, Panama Canal Zone.

*Cupularia umbellata* Defrance, Miocene, Costa Rica.

*Cupularia canariensis* Busk, Miocene, Costa Rica.

*Stichoporina tuberosa*, new species, Miocene, Costa Rica.

**Order CHEILOSTOMATA.**

**Group MEMBRANIPORAE.**

Genus *Ogivalina* Canu and Bassler.

*Ogivalina mutabilis*, new species.

Plate 53, fig. 1.

The zoarium is incrusting. The zoöcia are elongated, oval, distinct, separated by a deep furrow; the mural rim is thin, smooth, rounded; there is often a small gymnocyst. The opesium is very large, irregular, more often oval. Theovicell is endozooecial, small,
little convex. Sometimes there is a small interzooecial fusiform avicularium (?).

Measurements.—Opesium
\[
\begin{align*}
  h_0 &= 0.60-0.70 \text{ mm} \\
  l_0 &= 0.30-0.45 \text{ mm}
\end{align*}
\]

Zooecium
\[
\begin{align*}
  l_z &= 0.75-0.95 \text{ mm} \\
  z &= 0.50-0.70 \text{ mm}
\end{align*}
\]

The great irregularity of form and zooecial dimensions of this species justifies its name. There are some variations which recall those of *Membranipora irregularis* Manzoni, 1875 which possesses a mural rim enlarged at the base and also some large interzooecial avicularia.

The present species differs from the splendid *Ogivalina eximipora* Canu and Bassler from the Middle Jacksonian of North and South Carolina in its smaller dimensions, in the absence of cryptocyst, and in the presence of a gymnocyct. The avicularium (?) is identical in form and position.

Occurrence.—Emperador limestone, old quarry, one-third mile north of west of Empire, Panama Canal Zone. D. F. MacDonald and T. Wayland Vaughan, collectors, 1914, Station No. 6016.


Holotype.—Cat. No. 65039, U.S.N.M.

Family OPESIULIDAE Jullien.

Genus CUPULARIA Lamouroux.

CUPULARIA UMBELLATA Defrance, 1823.

Plate 53, figs. 2-4.

1908. *Cupularia umbellata* Canu, Iconographie des Bryozoaires fossiles de l'Argentine, Annales del Museo Nacional de Buenos Aires, vol. 17, p. 275, pl. 5, figs. 4, 5. (See for complete bibliography.)


---

1 Bricozoi del pliocene antico di Castrocaro, Bologna, 1875, p. 10, pl. 1, figs. 5, 8.
The fossils which are identified as above are rather well preserved and their determination is easy. The pores of the hydrostatic zoecia are not radicular. We are ignorant as to why Norman, who is a great lover of archaic names, has not preserved the name of Defrance. The figures published by this author and by d'Orbigny are excellent and leave no doubt as to the identity of the two species.

Occurrence.—Miocene, Banana River, Costa Rica. D. F. Mac- Donald, collector, 1911. Bowden marl, Bowden, Jamaica.

This species is almost always associated with C. canariensis Busk. Like the latter, it commences in the Alum Bluff formation and continues in the higher Miocene and Pliocene deposits of the United States.

Geological distribution.—Aquitanian of Italy (Seguenza, Neviani), of Bordeaux (Canu). Burdigalian of Italy (Seguenza, Canu), of Bordeaux (Canu). Helvetian of Italy (Seguenza), of Touraine (Canu), of Bordeaux (Canu), of Maryland (Ulrich), of Egypt (Canu). Tortonian of Provence (Canu), of Italy (Seguenza). Plaisancian of England (Busk), of Italy (Manzoni). Astian of Italy (Neviani, Canu), of Provence (Canu). Sicilian of Italy (Neviani). Quaternary of Italy (Seguenza), of England (Canu).

Habitat.—Mediterranean. Atlantic to the Canary Islands, and Florida. It is common in the Gulf of Gascony in the Miocene; it has now disappeared from it.

It has been dredged at a depth of 11 to 48 meters in America and from 81 to 113 meters in Madeira.

CUPULARIA CANARIENSIS Busk.

Plate 53, figs. 5–7.

1908. Cupularia canariensis Canu, Iconographie des Bryozoaires fossiles de l'Argentine, Anales del Musee Nacional de Buenos Aires, vol. 17 (ser. 3, vol. 10), pt. 1. p. 275, pl. 5, figs. 8, 9, 10. (See for complete bibliography.)


The beautiful figure published by Busk in 1859, has led all paleontologists to use the specific term canariensis, especially since the same author distinguished this species from Cupularia guineensis Busk, 1854. For a half century, it was therefore employed by Busk, Waters, Manzoni, Van den Brock, Neviani, Seguenza, De Angelis, and Canu.

Now it appears established that Busk's two species are identical (Norman, Osburn). We do not believe it necessary to change the
names of these species as the latter authors have done since the author of each is the same. A simple question of date ought not alter all the literature of this species which although it has never been entirely published is nevertheless quite important.

Our American specimens are well preserved.

**Occurrence.**—Miocene, Banana River, Costa Rica. D. F. MacDonald, collector, 1911. Bowden marl at Bowden, Jamaica.

The earliest occurrence of this species in the United States is in the Alum Bluff formation, but it is found also at many other horizons of the Miocene and Pliocene.

**Geological distribution.**—Burdigalian of Bordeaux (Collection Canu). Helvetian of France (Canu) of Spain (De Angelis). Tortonian of Austria-Hungary (Reuss), of Italy (Seguenza). Plaisian of Italy (Manzoni), of England (Busk), of Spain (De Angelis), of Algeria (Canu). Astian of Italy (Neviani, Canu). Sicilian of Rhodes (Manzoni), of Italy (Neviani). Quaternary of Italy (Neviani), of Argentina (Canu). Miocene of Australia? (Waters).

**Family CELLEPORIDAE Busk.**

**Genus HOLOPORELLA Waters.**

**HOLOPORELLA ALBIROSTRIS** (Smitt).

Plate 53, fig. 8.


1889. *Celleepora alhirostris* Jelly, A Synonymic Catalogue of the Recent Marine Bryozoa, p. 45. (See for complete bibliography.)


Of the two specimens of this species which have been collected at Panama and at Anguilla one corresponds to Smitt’s figure 237 and the other to figure 238.

**Occurrence.**—Rare in the Emperador limestone at the old quarry one-third mile north of west of Empire, Panama Canal Zone, D. F. MacDonald and T. Wayland Vaughan, collectors, 1911 (Station No. 6106). Also rare along the southwest side of Crocus Bay, Anguilla, Leeward Islands, Dr. T. Wayland Vaughan, collector. 1914, Loc. No. 6894.

**Geological distribution.**—Miocene of Australia and New Zealand (Waters). Habitat. Atlantic off Florida. Pacific off Australia. Specimens have been dredged off Australia to a depth of 121 meters. Smitt in Florida has discovered them between 40 and 56 meters, but Osburn states that it abounds at a depth of 24 meters.
Family CONESCHARELLINIDAE Levinsen.

Genus STUCHOPORINA Stoliczka.

STUCHOPORINA TUBEROSA, new species.

Plate 53, figs. 9-12.

The zoarium is free, conical, hollow with very thick walls. The peristome is salient, ornamented with small tuberosities; it bears one or two small elliptical avicularia with bar or denticles. The ovice is large, somewhat salient, convex; it is hyperstomial and always closed by the operculum. On the lower face, there are large pores surrounded by very small ones.

Measurements.—Apertura \( \frac{ha}{la} = 0.15 \text{ mm.} \)

\( \frac{la}{0.09 \text{ mm.}} \)

This is a very elegant species characterized by its peristomial tuberosities. The ancestrula is visible only in the interior of the zoarium; it is covered exteriorly by the first zooecia. All the zooecia are separated from each other by small canals which appear to end in the large, inferior pores.

This species must not be confounded with *Mamillopora cupula* Smitt, 1872. It differs from it in its ovice which is not bilobate and in its ovarian zooecia which are not larger than the others.

Occurrence.—Miocene, Banana River, Costa Rica, D. F. McDonald, collector, 1911.

Cotypes.—Cat. No. 65040, U.S.N.M.

EXPLANATION OF PLATE 53.

*Oligovita mutabilis*, new species.

Fig. 1. The type-specimen, \( \times 20 \), with large irregular opesia, small ovice, small gymnoecyst and one zooecium with a fusiform avicularium.

Emperador limestone, Crocus Bay Hill, Anguilla.

*Cupularia umbellata* Defrance.

Fig. 2. Two zoaria, natural size.

3. Celluliferous convex surface, \( \times 20 \).

4. Concave surface, \( \times 20 \).

Miocene, Banana River, Costa Rica.

*Cupularia canariensis* Busk.

Fig. 5. Two zoaria, natural size.

6. Celluliferous convex surface, \( \times 20 \).

7. Concave surface, \( \times 20 \).

Miocene, Banana River, Costa Rica.
Holoporella albirostris (Smitt).

Fig. 8. Several zoöcia much enlarged (after Smitt). Recent, Gulf of Mexico.

Stichoporina tuberosa, new species.

Fig. 9. Two zoaria, natural size.
10, 11. Two views × 20, of the convex, celluliferous side.
Miocene, Banana River, Costa Rica.
Bryozoa of the Panama Canal Zone and Related Areas.

For explanation of plate see pages 121, 122.
INDEX.

[Synonyms are in italics.]

<table>
<thead>
<tr>
<th>Synonym</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>albirostris</em>, <em>Cellepora</em></td>
<td>120</td>
</tr>
<tr>
<td><em>Discopora</em></td>
<td>120</td>
</tr>
<tr>
<td><em>albirostris</em>, <em>Holoporella</em></td>
<td>117, 120, 122</td>
</tr>
<tr>
<td><em>canariensis</em>, <em>Cupularia</em></td>
<td>117, 119, 121</td>
</tr>
<tr>
<td><em>Cellepora albirostris</em></td>
<td>120</td>
</tr>
<tr>
<td><em>Cupularia canariensis</em></td>
<td>117, 119, 121</td>
</tr>
<tr>
<td><em>Cupularia guineensis</em></td>
<td>119</td>
</tr>
<tr>
<td><em>lowei</em>, <em>Cupularia</em></td>
<td>118</td>
</tr>
<tr>
<td><em>Cupularia umbellata</em></td>
<td>117, 118, 121</td>
</tr>
<tr>
<td><em>Discopora albirostris</em></td>
<td>120</td>
</tr>
<tr>
<td><em>guineensis</em>, <em>Cupularia</em></td>
<td>119</td>
</tr>
<tr>
<td><em>Holoporella albirostris</em></td>
<td>117, 120, 122</td>
</tr>
<tr>
<td><em>lowei</em>, <em>Cupularia</em></td>
<td>118</td>
</tr>
<tr>
<td><em>mutabilis</em>, <em>Ogivalina</em></td>
<td>117, 121</td>
</tr>
<tr>
<td><em>Ogivalina mutabilis</em></td>
<td>117, 121</td>
</tr>
<tr>
<td><em>Stichoporina tuberosa</em></td>
<td>117, 121, 122</td>
</tr>
<tr>
<td><em>tuberosa</em>, <em>Stichoporina</em></td>
<td>117, 121, 122</td>
</tr>
<tr>
<td><em>umbellata</em>, <em>Cupularia</em></td>
<td>117, 118, 121</td>
</tr>
</tbody>
</table>
DECAPOD CRUSTACEANS FROM THE PANAMA REGION.

By Mary J. Rathbun,
Associate in Zoology, United States National Museum.

INTRODUCTION.

Fifty-eight species of Decapods are enumerated from the collections examined by the author. Three species described by other authors are inserted in systematic order, thus making the list complete to date for the Panama region. All the available material in the United States National Museum from Panama and Costa Rica is included; it ranges in age from the Oligocene (Culebra formation) to the Pleistocene.

In the list of stations and the table of distribution the data relating to Cirripedia from Dr. H. A. Pilsbry's report are included for convenience of reference.

The literature on Panama Tertiary Decapods is so scanty that it is not surprising that nearly all of the forms now examined prove to be new. Six species previously described from living forms are here recorded from the Pleistocene (4 species) or the Pliocene (2 species). Thirty-nine species are described as new, three are types of new genera, and one of these is the type of a new family, the Ga-tuniidae. This is an extremely large and massive crab and combines the characters of the well-known Recent families, the Cancridae and the Portunidae. The most remarkable occurrence is that of a member of the Hexapodinae, that subfamily of the Goneplacidae in which the legs of the last pair are wanting. This is a small group of Recent crabs containing 5 genera and 8 species and is strictly Indo-Pacific. The species from the Oligocene of Panama is the first one observed in a fossil state. Many other genera dealt with in this report have never before been found fossil. Such are Pachycheles, Petrolisthes, Axius, Hepatus, Mursia, Leucosilia, Euphylax, Heteractaea, Eurytium, Euryplax, and Cardisoma.

As in all large collections of fossil crustaceans there are a number of fragments whose position is problematic. Some of these can be determined as to genera, others as to family only.

Calappa zurcheri is not represented in the United States Geological Survey collections.


The hermit-crab (Petrochirus) noted and figured by Toula (p. 511, pl. 30, fig. 13) I have ventured to describe as a new species, combining as it does the characters of the two nearly related Recent species which inhabit opposite sides of the continent. The "Krabbenscheren" of Toula (p. 512, pl. 30, fig. 14) are described below as a species of Callianassa, C. toula.


The author is indebted to Dr. H. A. Pilsbry for the loan of the specimens of Callianassa in the collection of the Philadelphia Academy of Natural Sciences which were described by Brown and Pilsbry. They have been critically compared with those collected by the United States Geological Survey.

LIST OF STATIONS FROM WHICH MATERIAL HAS BEEN EXAMINED, ARRANGED FROM THE EARLIEST TO THE LATEST, WITH THE SPECIES FOUND AT EACH.


1 The station numbers refer to the station book of Cenozoic Invertebrate fossils of the United States National Museum.


† Gatunia proavita Rathbun.


Station 5659.—Panama Canal Zone. Near Gatun Dam. Gatun formation. Miocene series. Collector, one of the workmen; shipped by D. F. MacDonald; 1911. Gatunia proavita Rathbun.


Station 5882k.—Costa Rica. Banana River; tenth fossiliferous zone below the uppermost one of the section. Probably equivalent to Gatun formation. Miocene series. Collector, D. F. MacDonald; 1911. Euphyllax fortis Rathbun.

Station 5882j.—Costa Rica. Banana River; ninth fossiliferous zone below the uppermost one of the section. Probably equivalent to Gatun formation. Miocene series. Collector, D. F. MacDonald; 1911. Euphyllax callinectias Rathbun.
Station 5882f.—Costa Rica. Banana River; eighth fossiliferous zone below the uppermost one of the section. Probably equivalent to Gatun formation. Miocene series. Collector, D. F. MacDonald; 1911. Callianectes declivis Rathbun.

Station 5882h.—Costa Rica. Banana River; seventh fossiliferous zone below the uppermost one of the section. Probably equivalent to Gatun formation. Miocene series. Collector, D. F. MacDonald; 1911. Leucosilia bananensis Rathbun.

Station 5882g.—Costa Rica. Banana River; sixth fossiliferous zone below the uppermost one of the section. Probably equivalent to Gatun formation. Miocene series. Collector, D. F. MacDonald; 1911. Leucosilia bananensis Rathbun.

Station 5882f.—Costa Rica. Banana River; fifth fossiliferous zone below the uppermost one of the section. Probably equivalent to Gatun formation. Miocene series. Collector, D. F. MacDonald; 1911. Leucosilia bananensis Rathbun.


Station 5884d.—Costa Rica. Moin Hill; third fossiliferous zone below the uppermost; just above level of the rails in railway cut. Probably equivalent to Gatun formation. Miocene series. Collector, D. F. MacDonald; 1911. Callianassa moinensis Rathbun.

Station 5906a.—Panama Canal Zone. Chagres River, 50 to 75 feet below those of (17c) "5905" in lighter colored limestone according to incomplete evidence. Pliocene series. Collector, D. F. MacDonald; May, 1911. Balanus glyptopoma Pilsbry.

Station 5903.—Panama Canal Zone. From across Chagres River and probably 220 to 225 feet above level of river, top of hill opposite Alhajuela. Gray trufaceous limestone. Pliocene series. Collector, D. F. MacDonald; May, 1911. Balanus glyptopoma Pilsbry.


Station 5867.—Panama Canal Zone. From dark mud formation, about 10 feet above present sea level, near lower end of Gatun Locks. Pleistocene series. Collector, D. F. MacDonald; April, 1911. Balanus eburneus Gould.


In the following table the Cirripedia (see pp. 185–188) are included with the Decapoda. The letter “n” after a name in the first column indicates a new species or a new genus. The numerical headings refer to the same stations as in the above list but are arranged serially instead of chronologically.
## Distribution of Panama Crustaceans

<table>
<thead>
<tr>
<th>Distribution of Panama Crustaceans</th>
</tr>
</thead>
<tbody>
<tr>
<td>4500</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Balanus stimulea Gould...</td>
</tr>
<tr>
<td>Mysis americana Philby...</td>
</tr>
<tr>
<td>M. longa Philby...</td>
</tr>
<tr>
<td>Neprops costatus n.</td>
</tr>
<tr>
<td>Pachycheles latissimus n.</td>
</tr>
<tr>
<td>Azius reticulatus n.</td>
</tr>
<tr>
<td>Calliostoma ovalis n.</td>
</tr>
<tr>
<td>lacunosa n.</td>
</tr>
<tr>
<td>elongata n.</td>
</tr>
<tr>
<td>scotti Brown and Philby</td>
</tr>
<tr>
<td>eratosthenes n.</td>
</tr>
<tr>
<td>mainensis n.</td>
</tr>
<tr>
<td>spinulosa n.</td>
</tr>
<tr>
<td>teinobat n.</td>
</tr>
<tr>
<td>quadraata n.</td>
</tr>
<tr>
<td>toulii n.</td>
</tr>
<tr>
<td>abbreunata n.</td>
</tr>
<tr>
<td>hilli n.</td>
</tr>
<tr>
<td>vaughami n.</td>
</tr>
<tr>
<td>stellata n.</td>
</tr>
<tr>
<td>magna n.</td>
</tr>
<tr>
<td>crassa n.</td>
</tr>
<tr>
<td>sp...</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>Petrochirus boulteri n.</td>
</tr>
<tr>
<td>Goniodromitidae armata n.</td>
</tr>
<tr>
<td>Hepatus chilensis Miller Edwards</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>W. C. C.</td>
</tr>
<tr>
<td>H. P.</td>
</tr>
<tr>
<td>J. B. S. &amp; B.</td>
</tr>
<tr>
<td>C. R. &amp; J. P.</td>
</tr>
<tr>
<td>1903 S.</td>
</tr>
<tr>
<td>1904 6.</td>
</tr>
<tr>
<td>1906 6.</td>
</tr>
<tr>
<td>1908 6.</td>
</tr>
<tr>
<td>1909 6.</td>
</tr>
<tr>
<td>1910 6.</td>
</tr>
<tr>
<td>1911 6.</td>
</tr>
<tr>
<td>1912 6.</td>
</tr>
<tr>
<td>1913 6.</td>
</tr>
<tr>
<td>1914 6.</td>
</tr>
<tr>
<td>1915 6.</td>
</tr>
</tbody>
</table>

**Distribution of Panama Crustaceans (continued)**
DESCRIPTIONS OF SPECIES.

Subclass MALACOSTRACA.

Order DECAPODA.

Suborder NATANTIA.

Family, genus, and species indeterminable.

Plate 57, fig. 1.

Locality.—Panama Canal Zone. Top part of limy sandstone below upper conglomerate, near foot of stairs, Gaillard Cut. Upper part of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6012c. Cat. No. 324267, U.S.N.M.

Material.—One specimen showing three segments from the pleon of a shrimp. Pleon compressed laterally. Each of the two overlapping segments has the posterior angle produced backward in a rounded lobe of moderate size.

Family PALAEMONIDAE.

MACROBRACHIUM, species.

Plate 57, figs. 4 and 5.

Locality.—Panama Canal Zone. Las Cascadas section, Gaillard Cut. From fifth or topmost limestone. Emperador limestone. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6019g. Cat. No. 324256, U.S.N.M.

Material.—One propodus of left cheliped, minus finger. Slightly compressed, subcylindrical. Some of the outer crust is lacking, but in general, the segment widens rapidly for the proximal two-fifths, then widens gradually at the middle, but not at all in the distal two-fifths. There is no shallow sinus in the lower margin behind the finger, as in *M. jamaicense*, *M. acanthurus panamense* and others; neither is the palm like that of *M. mexicanum*, which is not at all convex below, and has subparallel margins.

The specimen resembles *Macrobrachium* more than it does any marine genus now existing in Panamanian waters.

Measurements.—Length of palm, 13 mm.; width, 4.3 mm.; thickness, 3.7 mm.

MACROBRACHIUM?, species.

Plate 57, fig. 9.

Locality.—Panama Canal Zone. From near Mount Hope in ditch through swampy ground. About one-quarter mile from present sea beach, 6 to 8 feet above high tide. Pleistocene series. D. F. MacDonald, collector. April, 1911. Station 5850. Cat. No. 324248, U.S.N.M.

Material.—One segment (perhaps the carpus) of the second or large pair of chelipeds, probably the left one. Subcylindrical, enlarging gradually to the distal end, slightly curved, a longitudinal row of 5 low conical spines irregularly spaced.

Measurements.—Length, 9.5 mm.; diameter, 1.7 mm.

Suborder REPTANTIA.

Tribe ASTACURA.

Family HOMARIDAE.

NEPHROPS COSTATUS, new species.

Plate 57, figs. 13–17.

Type-locality.—Panama Canal Zone. From near Mount Hope in ditch through swampy ground. About one-quarter mile from present sea beach, 6 to 8 feet above high tide. Pleistocene series. D. F. MacDonald, collector. April, 1911. Station 5850.

Types.—Cat. No. 324246, U.S.N.M.

Material.—Three dactyls of left cheliped, one of which is fairly complete and is taken as the holotype; the other specimens show only the distal half or two-thirds. A fourth specimen (distal half only) represents a fixed finger perhaps and if so belongs on the left side.

Holotype.—Length 9.5 mm. In dorsal view the inner or right margin is sinuous, the tip curved strongly inward; viewed from the inside, both edges are sinuous, curving downward toward the tip. Upper and lower surfaces a little flattened. Five longitudinal costae, 2 dorsal, 2 ventral, 1 inner; each costa marked by a line of fine granules, with a row of punctae adjacent. On the proximal half
there is some intercostal granulation. Prehensile edge armed with fine teeth and divided into 3 sinuses separated by 2 large teeth; the distal of these has its distal edge normal and its proximal edge oblique to the margin of the dactylus; the top of the other large tooth is broken off; the terminal bay has a somewhat enlarged, but still small, tooth at its middle.

Paratypes.—(a) Distal half of dactylus, but with small tip lacking, same width as holotype; terminal sinus same length but more curved, so that the distal border of the boundary tooth is shorter; middle sinus half as long, non-dentate, next boundary tooth broader than in holotype.

(b) Dactylus with proximal end lacking, same width as holotype, costae more rounded, terminal sinus a little shorter, boundary tooth with end missing, enlarged middle tooth better developed than in holotype, pointing obliquely distad; middle sinus longer, boundary tooth broken.

(c) Propodal (?) finger broader than the others, showing one sinus nearly equal to 2 sinuses of the holotype and limited by a large tooth with nearly equal sides.

I have placed this species in *Nephrops* on account of the ribbed fingers irregularly toothed. The variations in the dactyl may represent either individual or sexual variation.

**Nephrops**, species.

Plate 57, figs. 25 and 26.

**Locality.**—Panama Canal Zone. From near Mount Hope in ditch through swampy ground. About one-quarter mile from present sea beach, 6 to 8 feet above high tide. Pleistocene series. D. F. MacDonald, collector. April, 1911. Station 5850. Cat. No. 324249, U.S.N.M.

**Material.**—Dactylus of right cheliped, 12 mm. long; distal half moderately curved toward the propodal finger, but the whole finger strongly curved downward; 6 strong, longitudinal costae, 3 dorsal, 1 marginal, 2 ventral; about 9 lines of punctae; the prehensile teeth, 36 in all, are larger and more projecting in that two-fifths of the margin just posterior to the middle.

After the above description was written the proximal half of the specimen was accidentally crushed and destroyed.

Although the dactylus is much more curved than in any species of *Nephrops*, yet its ornamentation is so similar to that of the preceding species, *N. costatus*, that it is referred to the same genus.
Tribe ANOMURA.

Superfamily GALATHEIDEA.

Family PORCELLANIDAE.

PACHYCHELES LATUS, new species.

Plate 57, figs. 21-23.

Type-locality.—Costa Rica; Port Limon. Pliocene series. Dr. L. A. Wailes, collector. Station 4269. Holotype, left manus with propodal finger; inner proximal corner of manus broken off. Paratype, left manus, with both fingers; proximal portion of manus broken off.

Type.—Cat. No. 324264, U.S.N.M.

Measurements.—Width of palm, 4.6 mm.; length of same to sinus, 5.1 mm.; length to end of finger, 6.7 mm.; greatest thickness, 2.3 mm.

Holotype.—Outer and inner margins thick and strongly curved in dorsal view; upper surface covered with granules crowded together and of varying size; the granules are continued on the outer surface and a little way on the under surface; they are then replaced by squamiform granules and short rugae which are continued over the inner surface. There are no marginal lines indicated. At the distal end, the width from the articulating condyle to the inner angle is nearly as great as to the outer margin. The fixed finger is short and stout, width subequal to length; a bit of the tip is, however, missing; a low tooth occupies the greater part of the basal half of the prehensile edge.

Paratype.—Smaller than the holotype and much worn so that the granulation is not well marked. Tooth at base of immovable finger minute. Movable finger very short and broad, granulate, with a basal prehensile tooth, its surface granulate.

In general shape and granulation, this form resembles the manus of the Recent P. grossimanus (Guérin) from Peru and Chile, but in the latter the outer margin is paved with larger granules forming a definite edge, and the propodal finger is longer and more curved.

PETROLISTHES AVITUS, new species.

Plate 57, figs. 18-20.

Type-locality.—Costa Rica; Port Limon. Pliocene series. Dr. L. A. Wailes, collector. Station 4269.

Type.—Cat. No. 324266, U.S.N.M.

Holotype.—Palm of left cheliped, showing the greater part of the upper and lower surfaces including the inner margin and the distal
articulating edge of the lower surface. Outer edge, proximal end, and finger missing. Upper surface covered with coarse granulated striae of very different lengths, varying from 1 to 10 or 12 granules, and arranged obliquely longitudinally. Lower surface covered with curved, wavy and punctate striae starting almost at right angles with the inner margin, curving slightly forward and then abruptly backward; so that the greater part is more longitudinal than transverse; the striae are somewhat subdivided and followed outwardly by shorter striae; at the inner end they terminate abruptly, so that from above they have the appearance of 13 truncated shallow teeth. Length 5.2 mm.

This manus resembles that of two common recent species, *P. armatus* (Gibbes), and *P. galathinus* (Bosc), both found on the Atlantic as well as on the Pacific side of the continent. The upper surface of the palm is similar in *P. armatus*, that is, it is ornamented with short, irregular striae, which are, however, parallel to the inner margin, while in the fossil form they diverge proximally from the margin. The lower surface of *P. armatus*, on the other hand, resembles more closely that of *P. galathinus*, but in the latter, the striae trend more strongly forward on leaving the inner margin, and that margin itself is not formed of such strongly marked teeth.

**Superfamily THALASSINIDEA.**

**Family AXIIDAE.**

**AXIUS RETICULATUS, new species.**

Plate 57, figs. 2 and 3.

*Type-locality.*—Panama Canal Zone. Las Cascadas section, Gaillard Cut. From lowest fossiliferous bed. Third bed below lowest limestone beds separated by rows of nodules. Lower part of upper half of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6020a.

*Holotype.*—Cat. No. 324260, U.S.N.M. Left propodus of first pereiopod, embedded in a nodule and showing the finger and the greater part of the palm, except the proximal end and the distal upper corner. An impression of the same is shown in another piece of the nodule. The segment as uncovered is 14.3 mm. long, greatest height 5 mm., length of finger 7 mm. The palm is greatly swollen and at the top rounds over into a broad upper surface about 2.4 mm. in width. The shell is considerably cracked and in life may not have been as thick as it appears. The lower margin is sinuous, forming a bay at about the distal third of the palm; so far as the edge is preserved it is formed of small bead granules. The outer and upper surface is ornamented with granules irregular in size and disposi-

---

2 Porcellana galathina Bosc, Hist. Nat. Crust., vol. 1, 1802, p. 233, pl. 6, fig. 2.
tion, larger and thicker on the distal part midway between upper and lower margins, elsewhere smaller and to a large extent forming a reticulate pattern; proximally on the upper part of the outer surface the raised reticulate lines are smooth, or non-granulate.

The outer surface of the finger is rather regularly tapering, the lower margin directed slightly upward, the superior margin nearly straight; surface smooth; finger thick, the upper surface oblique or beveled; traces of fine teeth are visible on the prehensile edge.

**Axius**, species.

*Plate 57, fig. 10.*

**Locality.**—Panama Canal Zone. From near Mount Hope, in ditch through swampy ground. About one-quarter mile from present sea beach, 6 to 8 feet above high tide. Pleistocene series. D. F. MacDonald, collector. April, 1911. Station 5850. Cat. No. 324250, U.S.N.M.

**Material.**—A single movable spine, 6.7 mm. long, with the tip broken off, resembles the stylocid scaphocerite or movable acicle of the outer antenna of some species of *Axius*. The spine is somewhat 3-angled, the most acute edge being dorsal, the two blunt edges being nearer together and ventral. There are a few punctae: 4 large ones in a row on the ventral surface; 2 large, external, far apart, just below the upper margin; 4 small ones, internal, 3 of which form a triangle near the middle, while the other is nearer the distal end.

**Family CALLIANASSIDAE.**

*KEY TO THE SPECIES OF CALLIANASSA HERE DESCRIBED.*

The material is insufficient to distinguish between the larger and the smaller chela of the same pair, which also may vary in shape and size in the two sexes.

A.1. Manus and carpus meeting in an oblique line.

B.1. Lower margin of manus serrated__________________________ovalis, p. 137

B.2. Lower margin of manus smooth__________________________lacunosa, p. 138

A.2. Manus and carpus meeting in a vertical line.

B.1. Lower margin of manus directed forward and upward, at least in part.

C.1. Palmar portion of manus distinctly longer than high.

D.1. Palm compressed.

E.1. Palm elongate; margins strongly convergent________elagata, p. 139

E.2. Palm less elongate; margins moderately convergent—scotti, p. 140

D.2. Palm swollen____________________________moines, p. 142

C.2. Palmar portion of manus about as long as high, or shorter. Upper margin of manus directed forward and downward toward the lower margin.

D.1. Immovable finger very thin, a cross-section near its base being more than twice as long as wide. A strong tooth in the sinus between the fingers or on the base of the immovable finger________spinulosa, p. 143

D.2. Immovable finger thicker, a cross section near its base being less than twice as long as wide. A tooth in the sinus between the fingers but near the base of the dactylus________________________tenus, p. 144
A'. Manus and carpus meeting in a vertical line—Continued.
B'. Lower margin of manus directed straight forward or nearly so; that is, at right angles to its proximal margin.
C'. Upper margin of manus subparallel to lower margin. No tooth in sinus between fingers. Carpus much higher than long.
D'. Lower margin serrulate \( \textit{quadraita}, \) p. 145
D'. Lower margin granulate \( \textit{toula}, \) p. 146
C'. Upper margin of manus directed forward and downward toward lower margin.
D'. A large tooth in sinus between fingers and situated on base of immovable finger \( \textit{abbreviata}, \) p. 147
D'. A small tooth in sinus between fingers, and situated near movable finger. Carpus very little, if at all, higher than long \( \textit{hilli}, \) p. 148
D'. No tooth in sinus between fingers. Fingers long and strong. 
\( \textit{vaughani}, \) p. 148

B'. Lower margin of manus unknown. A stridulating ridge near the horizontal upper margin \( \textit{stridens}, \) p. 151
A'. Meeting of manus and carpus unknown.
B'. Immovable finger slender. Distal articulating edge of manus crenulate and very oblique \( \textit{crassimana}, \) p. 141
B'. Only the dactylus known.
C'. Dactylus of large size. Cross section at base subcylindrical. Prehensile edge thin \( \textit{magna}, \) p. 151
C'. Dactylus half as long as preceding, more compressed. Prehensile edge thicker \( \textit{crassa}, \) p. 152

The 2 Callianassas to which specific names are not given are excluded from the above key.

\textbf{CALLIANASSA OVALIS, \textit{new species}}.

Plate 59, figs. 1-4.

\textit{Type-locality}.—Panama Canal Zone. Las Cascadas section, Gallard Cut. From lowest fossiliferous bed, third bed below lowest limestone beds separated by rows of nodules. Lower part of upper half of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6020A. Holotype and one paratype. Cat. No. 324269, U.S.N.M.

\textit{Holotype}.—A left chela with wrist and arm attached, and enclosed in a nodule which is split in two. The specimen had been crushed, and the half nodule containing the impression shows also small pieces of the chelifed itself. Wrist and manus together oblong-oval; line between them oblique; upper and lower margins of manus slightly convex; greatest width about equal to the upper length; from the widest point, the lower margin of the propodus slants upward. Fingers directed straight forward and of subequal length. Immovable finger an isosceles triangle, the base of which is two-thirds as long as either side; end blunt; cutting edge with a shallow triangular tooth at the proximal two-fifths. Movable finger sub-oblong, end broad, cutting edge with a broad, shallow, rounded tooth
near the base. The merus appears to be about twice as long as high and is dilated at the middle.

Measurements.—Length of carpus and propodus, measured from lowest point of articulation with merus to end of propodal finger, 20.5 mm.; proximal width of propodus (approx.), 9.4 mm.; greatest width of same, 10 mm.; distal width of same, 8.7 mm.; superior length of same, 10.2 mm.; inferior length of same, 13.2 mm.; length of propodal finger measured on cutting edge, 5.7 mm.; length of dactylus, 5.7 mm.

Paratype.—(a) Left manus with part of the fixed finger, embedded in a nodule and exposing the outer surface. Larger than holotype. The lower margin of the manus has blunt serrations resembling the stumps of spines; above the margin is a row of five distant punctae; at the distal end there are two rows of granules leading toward the upper part of the fixed finger.

Paratype.—(b) Carpus of left cheliped embedded in a nodule and imprint of same, showing the distal and upper margins and a large part of the outer surface. The distal margin is oblique and concave and has a little rounded lobe at each end; the upper margin is arcuate and has a submarginal groove.

CALLIANASSA LACUNOSA, new species.

Plate 59, figs. 6-11.

Type-locality.—One-quarter mile south of Empire Bridge, Canal Zone, Panama; from lower dark clay beneath lower conglomerate. Lower part of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors, 1911. Station 6012a. Two specimens, each a left propodus of the first cheliped. Cat. No. 324278, U.S.N.M.

Holotype.—The palmar portion of a propodus, the fixed finger broken off near its base; the propodus is incomplete near the dactylus and also at the proximal end; this end is, however, fairly complete on the inner surface, so that the measurements may be stated with approximate accuracy. Length, at the level of the sinus between the fingers, 16 mm.; greatest height, 15.6 mm.; least height, 15.2 mm.; thickness, 6.6 mm. The upper margin is a little arched, the lower nearly straight; they converge a little distally; they are very thin; the top of this thin edge along the upper margin is set with oblong tubercles, dorsal in position; the lower edge is smooth. The outer surface has a row of 6 pits a little above the edge and fairly evenly spaced; they have a raised edge and are distally inclined, indicating that they were sockets for hairs or bristles; 3 similar pits far apart are close up under the upper margin; of the few scattered pits, 3 form a triangle at the distal end, the one near the base of the fixed
finger being the largest; there is also a medium-sized pit a little below the middle, while 3 small ones are visible near the proximal end. A prominent blunt ridge runs from near the top of the fixed finger obliquely backward and upward for a short distance on the palm: near this ridge, but chiefly above it, and partly behind it, there is a patch of low tubercles, mostly oblong but very irregular in shape and size. On the inner surface there is a row of 8 sockets a little distance below the thin, upper, marginal rim: these sockets, while of good size, have very narrow, perpendicular openings. Above the lower margin there is a row of 12 sockets; this row distally approaches close to the edge, while the sockets themselves become larger and farther apart; they are very oblique to the margin and are almost more distal than lateral in their inclination. These 2 rows of sockets on the inner surface are more prominent than any others; below the middle there are 10 or 12 scattered sockets mostly small; near the middle there is a patch of tubercles, somewhat masked by a thin layer of adhering matrix. On the inner surface there is a blunt ridge leading back from the finger similarly placed to that on the outer surface, but lower and wider. The finger is slender, judging from the section at its base.

*Paratype.*—This propodus shows the outline of the proximal end, but the distal end is broken off and not a vestige of the finger remains. The size is less than in the holotype: length, at the level of the sinus between the fingers, 10.3 mm.; greatest height, 11.4 mm.; least height, 10 mm.; thickness, 5.2 mm. The margins are more convergent than in the holotype and the palm is relatively shorter. The upper as well as the lower edge is almost smooth. On the outer surface the sockets in the upper submarginal row are 4, as there is an additional one visible at the proximal end; the sockets of the lower row are fewer and more distant than in the larger specimen, as only 5 can be detected; of the scattered sockets, 3 form a distal triangle, while 10 or 12 small ones are disposed transversely near the proximal end; the protuberances above the oblique ridge leading from the fixed finger consist of a few small granules. On the inner surface, a row of 8 submarginal sockets above, as in the holotype; near the lower margin only 10 sockets can be counted, because the distal corner is broken away; scattered sockets 16 or 18, below the middle; a few granules close to the sinus between the digits.

**Callianassa Elongata**, new species.

*Plate 60, figs. 4-6.*

*Type-locality.*—Panama Canal Zone. Las Cascadas section, Gaillard Cut. From lowest fossiliferous bed, third bed below lowest limestone beds separated by rows of nodules. Lower part of upper-8370°—18—Bull. 103—10

Holotype.—Cat. No. 324271, U.S.N.M. A left manus, with base of immovable finger attached; this shows all of the outer surface, except the margin bordering the dactylus; nearly the whole of the inner surface is concealed by the matrix. The upper margin is nearly straight throughout its length, and is bluntly angled; lower margin very sinuous, the manus being very much deeper in its proximal than its distal half, edge serrulate or spinulous throughout its length; proximal edge vertical, nearly as long as upper margin. On the outer surface there is a group of granules at the distal two-sevenths and just below the middle; there is a curved row of granules near the sinus, which is continued upon the propodal finger near its upper edge; 6 granules in all are visible. Finger very slender, inclined downward. The dactylus must have been very stout, and the adjacent edge of the manus very oblique, but it is now incomplete.

Measurements.—Superior length of manus (approx.), 15.7 mm.; length to sinus, 20.4 mm.; greatest height, 16.2 mm.; proximal height (approx.), 15.1 mm.; distal height, 12.4 mm.

CALLIANASSA SCOTTI Brown and Pilsbry.

Plate 60, figs. 9–12.


Locality.—Panama Canal Zone. From the 4 feet of dark stratified tuff and clay immediately overlying the lower limestone bed. Las Cascadas section. Upper part of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6019b. Cat. No. 324279, U.S.N.M.

Material.—A left manus, removed from the matrix, and incomplete at the proximal end. Outer surface very convex from upper to lower margin; upper margin straight, with a blunt marginal line; lower edge acute and serrulate with fine appressed teeth or spines, inclined upward toward the base of the finger, then downward; three granules or tubercles in a curved row just outside the edge of the sinus between the fingers. The cross section of the finger near its base is very small, in relation to the manus. Inner surface slightly convex, from upper to lower edge, and with a depression on either side of the base of the fixed finger; numerous granules near the distal end, some arranged in a curved band between the two fingers.

Measurements.—Greatest height of manus, 25.2 mm.; least height of same, 23.3 mm.; length of same to digital sinus, 24.6 mm.; thickness
of same, 10.9 mm.; greatest diameter of fixed finger near its base, 6.5 mm.; least diameter of same, 4.2 mm.

Holotype and paratypes.—In the material included by Mr. Brown and Dr. Pilsbry under C. scotti are specimens of three species; two of these species were figured with the original description; the larger species illustrated ¹ by figures 1 and 3, plate 2a, is chosen to bear the name scotti, and the original of figure 1 may be designated as the type-specimen, as it is free from the matrix and shows more of the characteristic granulation than does the original of figure 3, which is furnished with a propodal finger, but is half embedded in a matrix. It also shows, although roughly, a row of 5 pits on the upper margin; this row, however, slopes downward a little distally on to the inner surface. The greatest height of the type is 27 mm., length at level of sinus between fingers, 28 mm.

Still a third specimen, also a left manus, was taken at the same place; the surface is much worn, but the proximal angles are well defined. The type-locality is in the lignitic layers, about 65 feet below the base of the Pecten bed at Tower N., Las Cascadas section, Gaillard Cut; Prof. W. B. Scott, collector, 1911. Type, Cat. No. 2259, Mus. Acad. Nat. Sci., Philadelphia.

The hand mentioned by Brown and Pilsbry,² as collected by W. M. Gabb in Costa Rica, apparently belongs to C. scotti. It shows well the upper marginal row of pits, numbering 7, which drops distally on to the inner surface. The specimen is labeled "Miocene." Cat. No. 2255, Mus. Acad. Nat. Sci., Philadelphia.

CALLIANASSA CRASSIMANA, new species.

Plate 61, figs. 15–17.

Type-locality.—Panama Canal Zone. Las Cascadas section, Gaillard Cut. From lowest fossiliferous bed, third bed below lowest limestone beds separated by rows of nodules. Lower part of upper half of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6020a.

Measurements.—Distal height of palm, 22 mm.; thickness of palm, at least 7.7 mm.; length of crenulated lobe bordering dactylus, 10.2 mm.; upper length of dactylus (tip broken off), 18 mm.; greater diameter at the break near the tip, 1.7 mm.; lesser diameter at same point, 1.3 mm.; greater diameter at a break about middle of finger, 3.8 mm.; lesser diameter at same point, 2.8 mm.

Holotype.—Cat. No. 324273, U.S.N.M. A portion of the distal end of the left manus with the propodal finger attached; embedded in a nodule. This must have been a very large specimen. The oblique

margin of the lobe of the manus which overlapped the dactylus is very oblique and is straight and deeply crenulated with about 16 crenules; the length of the lobe is as great as the distance across the adjoining sinus and the propodal finger. This sinus is very deep and proximally subtruncated. The immovable finger is very narrow in relation to the size of the palm; it is slightly compressed, and bends upward; on the inner surface just within the lower margin there is a row of punctae; on the outer face there are 3 larger spots, 2 near the lower margin and one near the sinus, which may be sockets for setae. A tubercle on the outer surface just behind the sinus. The inner surface of the manus is deeply channeled out near the sinus between the fingers.

The holotype is in two pieces, as the immovable finger is broken in two, the distal portion embedded in that half of the nodule which bears the imprint of the remainder of the holotype.

This species is very near *C. scotti*, but has a larger sinus between the fingers, a longer propodal finger, and a shallower sinus in the lower margin of the manus just behind the finger.

**Callianassa Moinensis**, new species.

Plate 60, figs. 1-3.


_Measurements._—Length (approx.) of manus, to sinus between fingers, 9 mm.; height of same, 7 mm.; thickness of same, 4.7 mm.; length of immovable finger (tip broken off), 8.6 mm.

_Holotype._—Cat. No. 324287, U.S.N.M. Palm much swollen, cross section ovate, lower margin viewed from the side very arcuate, upper margin slightly so. The surface has almost entirely lost the outer white layer, but the next layer is gray and is crossed transversely by many very short rugae, which are strongest on the lowest part of the outer surface. There is a distinct line below dividing the inner from the outer surface and marked by an irregular row of very fine punctae. On the inner surface considerably below the upper margin there is a row of large punctae.

The immovable finger is slender, bent downward and curved inward. It has 7 more or less defined ridges, the bluntest of which is the most inferior; either side of the ridge representing the prehensile edge there is a granular ridge, the outer of which is less elevated; in addition, there are 2 ridges on the outer surface and one on the inner; near each ridge there is a row of fine punctae. Prehensile edge armed with small irregular teeth. There is an unusually deep furrow above the principal ridge on the inner surface.
Paratype (a).—Cat. No. 324287, U.S.N.M. On a small piece of crumbling rock there is an impression of the distal half of a finger, but not the finger of the holotype. The impression has a similar curvature and 3 rows of punctae are present.

Paratype (b).—Cat. No. 324288. U.S.N.M. Moin Hill, Costa Rica; third fossiliferous zone below the uppermost; just below level of rails in railway cut. Probably equivalent to Gatun formation. Oligocene period. D. F. MacDonald, 1911. Station 5884d. A right propodus without finger, similar in size to the holotype and corresponding in its characters.

CALLIANASSA SPINULOSA, new species.

Plate 61, figs. 6-9.


Type-locality.—Panama Canal Zone. Las Cascadas section, Gaillard Cut. From lowest fossiliferous bed, third bed below lowest limestone beds separated by rows of nodules. Lower part of upper half of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6020a.

Holotype.—Cat. No. 324272, U.S.N.M. Left propodus which was encased in a nodule; the manus has been removed except the proximal part of the outer surface; of the propodal finger only the impression remains. Length of manus less than greatest height; the upper and lower margins converge distally, the upper margin convex, the lower sinuous. Outer surface very convex in a vertical direction, having a few scattered granules, also a short vertical line of 3 granules near the upper distal corner, a row of 6 distant granules just above the lower margin, and a sharp granule near the sinus. The lower margin is very thin and serrated; between the serrations are the truncated bases of movable spines; 9 such spines remain. Upper edge bluntly margined. Inner surface convex except near the inferior and distal margins; a row of 3 granules on the middle line, 2 above the base of the propodus, 2 parallel to the lower margin, and many small granules just above that margin. An obliquely longitudinal line of pits below the upper margin.

The propodal finger is very much smaller than the dactylus and thin; a cross section near its base is somewhat diamond-shaped, the impression of the thumb (viewed sideways) is subtriangular, end curved upward; prehensile edge concave; at its base in the sinus between the fingers there is a short but strong curved tooth; on both outer and inner surfaces of the thumb, leading down from the palm, there is an oblique ridge.

Measurements.—Length of propodus to end of finger (approx.), 22.4 mm.; length of manus, measured on the inner side, to sinus, 14.7
mm.; greatest height (proximally), 15.3 mm.; least height (distally), 13.3 mm.

Paratypes.—(a) One left propodus with about half of the fixed finger attached was taken in the lignitic layers, about 65 feet below the base of the Pecten bed at Tower N., Las Cascadas section, Gaillard Cut; central part of Culebra formation, Oligocene series; Prof. W. B. Scott, collector; 1911 (Mus. Acad. Nat. Sci. Philadelphia). The specimen is half embedded in a nodule which conceals the inner surface and the upper part of the outer surface. It is nearly as large as the type. It shows the large tooth at the proximal end of the prehensile edge of the fixed finger, the tubercle on the outer surface near the sinus between the fingers, and roughly, the ornamentation on the lower edge of the palm.

(b) From the same source, a similar left propodus half embedded in a nodule but so as to expose the inner surface and the upper edge; it shows the characteristic row of pits on the inner surface just below the upper edge, the row sloping downward distally.

(c) Also a third specimen, free from the matrix but with the edges broken; it shows the palmar ridge leading to the fixed finger and the basal tooth on the edge of the latter.

CALLIANASSA TENUIS, new species.

Plate 60, figs. 13 and 14.

Type-locality.—Panama Canal Zone. Las Cascadas section, Gaillard Cut. From fifth or topmost limestone. Emperador limestone. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors, 1911. Station 6019q.

Holotype.—Cat. No. 324282, U.S.N.M. Left manus with propodal finger broken off, segment shorter than its greatest height, in general subrectangular, with upper and lower margins converging distally; outer surface very convex from top to bottom; upper and lower edges marginate, the lower one very thin; inner surface convex except near the bottom where it is flat, at the proximal end where there is a furrow parallel with the articulation, and near the distal sinus where there is a depression. The propodal finger is very much smaller than the dactylus, and its cross section is suboval with pointed ends; the sinus is about as wide as the thumb; it bears, close up to the insertion of the dactylus and on the edge of the outer surface, pointing forward, a short, broadly triangular spine. Surfaces much worn, so that it is difficult to tell whether unevennesses are natural or not.

Measurements.—Length of manus, measured to sinus, 11.4 mm.; greatest height, 13 mm.; distal height, 10.3 mm.; thickness, 5.3 mm.
CALLIANASSA QUADRATA, new species.

Plate 62, figs. 4–14.


Represented by 2 specimens of the left manus from which the propodal finger has been broken off. The smaller one is used as the type, as it is the better preserved.

Type-locality.—Panama Canal Zone. Las Cascadas section, Gallard Cut. From lowest fossiliferous bed, third bed below lowest limestone beds separated by rows of nodules. Lower part of upper half of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6020a. Holotype and paratype. Cat. No. 324275, U.S.N.M.

Measurements (in mm.).—

<table>
<thead>
<tr>
<th></th>
<th>Holotype</th>
<th>Paratype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height of manus near middle</td>
<td>13.3</td>
<td>15.3</td>
</tr>
<tr>
<td>Length of manus measured to sinus</td>
<td>12.8</td>
<td>15.7</td>
</tr>
<tr>
<td>Thickness of manus</td>
<td>6.2</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Holotype.—Hand squarish, with the corners rounded off. The upper and lower margins are subparallel, the upper slightly arched, the lower with a shallow distal sinus. Distal margin, at the articulation with the dactylus, nearly vertical. Outer surface slightly convex in a longitudinal direction, strongly convex vertically, furrowed at the distal end across the middle third; inner surface moderately convex except at the distal and lower portions, where it is concave; there is a groove just above the lower margin which widens as it approaches the finger. Lower margin serrulate; upper margin bluntly angled except in the distal third, where it is rounded; just within this margin there is a row of sockets of which 3 can be made out. On the outer surface near the sinus between the fingers there is a tubercle and near the carpus 3 granules far apart in a vertical row; on the inner surface there is a row of granules, running almost longitudinally near the middle and thence downwards toward the sulcus between the fingers; 2 tubercles near the articulation with the dactylus. Propodal finger narrow, much compressed, subtriangular at the base in cross section, with the small end of the triangle down. Base of dactylus very large.

Paratype (a).—Larger than the type; upper margin straighter; the tubercle on the outer surface near the sinus is of good size; on the inner surface near the middle there are numerous granules instead of the single row in the holotype; 2 tubercles near the dactylus.

Doubtful specimen.—A single specimen of a left carpus, from the same locality as the types may belong to the same species. The inner surface is mostly concealed by the matrix. Outer surface
very convex from the upper to the lower margin; convexity akin to that of the manus of this species, which is the reason for placing the carpus here rather than with Callianassa elongata or any other species occurring at the same locality. Carpus about $1\frac{3}{4}$ times as high as its greatest width, which is in the upper part; the angle formed by the superior and the distal margins is a little less than a right angle; superior margin straight; distal angle projecting above the articulation with the manus. The inferior distal angle projects even more below the articulation; the angle is obtuse; from it the margin rounds downward and then upward in a single curve; the lowermost part is finely serrate.

**Measurements.**—Height of carpus, between distal angles, 18.3 mm.; greatest height, 18.8 mm.; greatest width, 12.8 mm.; width on upper margin, 12 mm.; greatest width below the articulation with the merus, 11.8 mm.

Four specimens before me from the collection of the Academy of Natural Sciences of Philadelphia belong to this species: they are one right and three left chelae and form part of the material referred by Brown and Pilsbry to their C. scotti. (Paratype b) One left chela is that figured on plate 22, fig. 2. All are larger than the type material described above, but so far as their characters are preserved they agree in essentials with the type. (Paratype c) The right chela (the largest specimen) its about 23 mm. long by 21.2 mm. wide, and possesses a longer piece of the propodal finger than the other specimens: the exposed cross-section of the finger is oval. (Paratype d) The shortest of the left chelae has a large part of the outer layer preserved on the infero-distal and inferior surface, where it is covered with granules, arranged without regularity except for a row on the outer surface parallel and close to the lower edge. This row is not visible in my figure 14, plate 62. The longest of the left chelae (Paratype e) is about 24 mm. by 19 mm., that is, considerably narrower than (c).

**Callianassa Toulai**, new species.


Founded on two chelae, one with palm 20.6 mm. long, 16.5 mm. wide, the other (without movable finger) with palm 9.4 mm. long, 5.5 mm. wide.

Outer surface of palm arched, inner surface almost flat and with a flat depression close to the lower margin and extending from the fixed finger. The upper and lower margins are sharp, the former bears 3 spinelike projections directed forward, the lowest spine ends

---

in a sharp margin; lower margin very finely and sharply granulate to the finger tip. Outer surface smooth and glossy, thickly covered near the lower margin with fine granules. Inner surface covered with very small, oblong punctae. A stout tooth on the prehensile margin of the immovable finger visible from the outside; another tooth on the movable finger, visible from the inside.

_Type-locality._—Gatun. Miocene series.

**CALLIANASSA ABBREVIATA,** new species.

Plate 63, figs. 1–6.

_Type-locality._—Panama Canal Zone. Las Casadadas section, Gaillard Cut. From lowest fossiliferous bed; third bed below lowest limestone beds separated by rows of nodules. Lower part of upper half of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6020. 4 specimens.

Types,—Cat. No. 324274, U.S.N.M.

Measurements.—Length of manus to sinus, 10.3 mm.; greatest height, 10 mm.; distal height, 8.4 mm.

_Holotype._—Specimen of right manus partially embedded, showing inner surface and half of outer surface; an imprint of the inner surface of the holotype is seen on a separate piece of rock. Length and height subequal; infero-proximal angle a right angle, upper margin convex. Outer surface slightly convex from end to end, more so from top to bottom. Inner surface equally convex in both directions, with a furrow close to the proximal end; an oblique furrow near the lower edge, directed slightly upward distally, and a depression leading to the sinus between the fingers and to the adjacent part of the immovable finger; on the oblique raised line below this depression, there is a row of 4 granules. Upper and lower edges margined; the lower edge shows, in the impression, about 18 dots, but whether these are punctae or spinules on the outer surface can not be told. There is a line of 6 punctae just within the upper margin. A few scattered punctae on inner surface. An oblique cross section of the thumb is small and somewhat diamond-shaped; above this section there is a blunt tooth: sinus between the 2 fingers V-shaped. The impression shows a little more of the length of the thumb than remains in the type, but represents neither the full length nor width.

_Paratype (a)._—Left manus, larger than the holotype, and free from the matrix; immovable finger broken off: edges worn; interdigital tooth present, and near by on the outer surface, a granule.

_Paratype (b)._—A fragment, comprising the distal lower end of the propodus with broken finger attached; interdigital tooth present.
CALLIANASSA HILLI, new species.

Plate 58, figs. 18-20.

Type-locality.—Gatun beds, Panama Canal Zone. Gatun formation. Miocene series. Robert T. Hill, collector; Station 18.

Types.—Cat. No. 135218, U.S.N.M.

Measurements.—Greatest height of carpus of right cheliped, 10.2 mm.; superior length of same, 10.3 mm.

Material.—3 pieces of rock from the same place contain fragments of Callianassa which belonged to at least 2 specimens and probably represent a single species. The largest piece contains 2 fragments, each consisting of a right merus and carpus (the better preserved of these may be considered the holotype); the imprint of a right wrist and hand; the distal half of a right propodus and a portion of the dactylus. The second piece of rock has been broken from the first and contains the continuation of the right propodus, with carpus and merus attached (paratype a), also the first 4 segments of the third right leg. The third piece of rock contains the sixth joint of the tail (paratype b). The following description is compiled from all the specimens:

The merus of the right cheliped has the outer margin prominently carinate with a smooth rounded carina; upper margin granulated. In both instances the merus is so flexed beneath the carpus that the lower margin is not visible. The carpus is about equally long and high; its upper margin is slightly convex to a point near the articulation with the merus; distal margin slightly concave, but nearly vertical; margin from the infero-distal angle to the merus strongly arcuate. Manus about as long as high, moderately convex, outer surface more so than inner; lower margin nearly straight; just above it on inner surface a row of many fine punctae from which setae may have sprung; this row is continued on the propodal finger; the latter is only partly uncovered; it is flat on the inner side, at least half as long as the manus and its lower margin is a straight line continuous with that of the manus.

The right leg of the third pair is very much like the corresponding member in C. stimpsoni Smith, the Callianassa of the Atlantic coast of the United States.

The sixth segment of abdomen or tail is subrhomboidal, with a constriction behind the middle; the segment is much wider in front than behind; the depressed portion at the anterior middle was hidden in life under the fifth segment.

CALLIANASSA VAUGHANI, new species.

Plate 63, figs. 10-13.

Type-locality.—Panama Canal Zone. From 85-foot cut on north side of big swamp on relocated line, Panama Railroad; 1 1/2 to 2 miles

_Holotype._—Portion of the right claw, comprising the distal end of the manus and both fingers; outer surface only. Height of manus at distal end equal to length of dactylus measured on the chord from the tip to the middle of its articulating edge; surface convex from upper to lower edge. Fixed finger wide in its proximal half, then abruptly narrowed; distal half directed slightly upward; length twice as great as basal width. The ends of the fingers are somewhat crushed; the movable finger curves strongly downward and appears to overreach the tip of the immovable finger, being at right angles to it; its lower edge has two teeth, one near the articulation squarish, broader than long, the other smaller, separated by a rounded sinus. At the sinus distal to this tooth is the widest interdigital gape: a little further on the fingers would meet for a ways, if they were closed, while the tips would cross each other. The greatest width of the dactylus is a little more than a third of its greatest length, measured in a straight line.

The oblique edge of the propodus which projects over the dactylus is crenulate. On the manus near the gape of the fingers there are 3 tubercles in a curve parallel with the edge. Behind the crenulation there are 2 scale-like sockets from which setae probably arose, and behind these a vertical thumb-nail impression. Near the supero-distal angle of the manus there is another socket. On the proximal half of the dactylus there are 9 sockets of larger size than those on the manus and irregularly disposed; 2 are on the larger prehensile tooth and one on the smaller.

_Paratype (a)._—Left manus, both sides visible. A smaller specimen than the holotype. Upper and lower margins distally converging. Length a little more than greatest width. Outer surface convex in both directions, but more so from top to bottom. Surface for the most part smooth and shining. The ornamentation is like that of the type, that is, a crenulated edge on the lobe which overlaps the dactylus, a row of tubercles just behind the gape—the lower of the 5 tubercles is broken off—above this 2 sockets, and then a very short thumb-nail impression, followed by a socket near the upper angle. The upper margin is subacute in its proximal half, becoming gradually blunt toward the distal end; on either side is a row of sockets; 3 are visible on the outer surface and 5 on the inner; lower margin sharp, also with a row of sockets on either side; 5 are visible on the outer side and about 10 on the inner side in the distal half; the proximal half is broken. There are a few punctae scattered about the outer surface; while on the inner surface near the depression
leading to the gape there is a double row of granules, 8 of which can be made out. The edge overlapping the dactylus is crenulate on the inner surface.

Paratype (b).—Portion of left propodus showing part of finger and a small part of the manus. Surface shining. Three tubercles near gape, and continuing the same curve along the upper part of the outer surface of the finger, there is a granule followed by 2 sockets.

Measurements.—(Approximate only.) Holotype: Distal height of manus, 19.3 mm.; length of dactylus from tip to proximal end of upper margin, 23.5 mm.; height of dactylus, measured straight up from the edge of the basal tooth, 8.6 mm.; length of immovable finger measured along the prehensile edge, 15 mm.; height of same at base, 7 mm. Paratype (a): Length of manus across middle, 19.5 mm.; proximal height, 16.7 mm.; distal height, 15 mm.; greatest thickness, 6.6 mm. Paratype (b): Height of immovable finger at base, 5.8 mm.

Additional localities.—Panama Canal Zone. Las Cascadas section. From lower part of lime-cemented soft gray to olive-colored limestone with central parting of dark clay. The first hard, limy sandstone bed above the lower limestone just above Station 6019b. Upper part of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6019c. One left propodus with most of the fixed finger attached. The specimen is so bruised and crushed that its identity can not be determined with certainty. Cat. No. 324283, U.S.N.M.

Also, from the same place, a right dactylus from a cheliped of much smaller size. Its identity is uncertain. It lacks the large teeth on the cutting edge, but it may belong to the feebler of the two chelipeds, or to a female. There is evidently a shallow sinus at the base, followed by a low broad tooth. Six sockets for setae can be made out. The thick outer crust has nearly all broken away. Cat. No. 324283, U.S.N.M.

Panama Canal Zone. From lowest horizon in big cut from ¼ to ½ mile beyond Camp Cotton toward Monte Lirio. Lower part of Gatun formation. Miocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6029a. Left manus, about 9.6 mm. long, measured at the level of the articulating condyle of the dactylus; edges mostly broken and obscured. Identification based (1) on the general contour of the surface, (2) the color, a light drab, (3) the margin adjacent to the articulating condyle of the dactylus, and (4) 2 sockets just below the upper margin on the inner surface. Cat. No. 324284, U.S.N.M.
CALLIANASSA STRIDENS, new species.

Plate 61, figs. 12-14.

Type-locality.—Panama Canal Zone. From third hard sandstone bed from bottom. Las Cascadas section. Upper part of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6019c. Cat. No. 324281, U.S.N.M.

Holotype.—Manus of a left cheliped. Only the upper two-thirds is visible, the lower third is embedded in rock. Upper margin horizontal, distal and proximal margins vertical, supero-posterior corner rounded. Upper edge thin, a little sinuous, viewed from the top. On the inner surface a little below the upper edge there is a row of 8 short vertical ridges, which occupies the whole length of the segment. This may have been a stridulating mechanism.

Measurements.—Superior length of manus, 11 mm.; thickness, 3.1 mm.

CALLIANASSA MAGNA, new species.

Plate 62, figs. 1-3.

Type-locality.—Panama Canal Zone. Las Cascadas section, Gail- lard Cut. From lowest fossiliferous bed. Third bed below lowest limestone beds separated by rows of nodules. Lower part of upper half of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6020a. Cat. No. 324270, U.S.N.M.

Measurements.—Greatest length of movable finger (tip broken off), 33 mm.; greatest height, 13.2 mm.; thickness, 0.8 mm.; length of basal sinus, 6 mm.

Holotype.—The only specimen is a movable finger or dactylus of the right cheliped. It is very much worn and a considerable portion of the tip is lacking. The lower border is thin, but the remainder is thick and in cross section subcircular, and tapers gradually toward the distal end. At the proximal end below there is a broad sinus; the thin prehensile edge is slightly concave, viewed from outside, and feebly denticulate, especially when viewed from inside; there is a somewhat larger and better preserved tooth just within the margin at the widest part of the finger. Upper margin in outer view straight in its proximal half, gently curved distally. In dorsal view the finger is much curved and in the middle of its upper surface there is a longitudinal row of four large punctae.

In its general shape, including the basal sinus, this dactylus resembles that of C. pellucida Rathbun, from the Leeward Islands, a description of which is about to be published by the Carnegie Institution, but the prehensile edge is thinner and more laminate and the inner outline more concave in dorsal view instead of almost straight as in that species.
CALLIANASSA CRASSA, new species.

Plate 61, figs. 1-3.


*Types.*—Cat. No. 324276, U.S.N.M.

*Measurements.*—Length of dactylus, 16.3 mm.; height, 6.2 mm.

*Holotype.*—Outer and upper surfaces exposed, outline of tip obscure. Viewed from the outside the upper outline is arcuate and the tip bent down below the prehensile edge, which is nearly horizontal. Viewed from above, the outer line is much curved and the inner line nearly straight. On the prehensile edge there is a shallow basal sinus, followed by a very low, broad tooth; rest of margin faintly sinuous. The surface shows a number of granules, some large, others small: the large ones are about 7 on the outer surface and 5 on the upper surface; of the former, 2 are submarginal, one of them being above the lobe, the other half way to the tip; the other 5 external granules are disposed on the distal half; the 5 superior granules are arranged in 2 rows, one row of 3 toward the inner surface, and the other row of 2 granules toward the outer surface; the proximal of these is double. On the middle of the outer surface there is a patch of about 50 small granules. The chalky-white outer layer of the shell has crumbled away except near the edges, so that one can not tell whether the granules were apparent on that surface. Color of surface now exposed dull light bluish.

*Paratype.*—About two-thirds as large as the holotype, and with both ends of the finger missing. Granules as follows: 3 large above the lower margin, 2 as in the holotype, the other above the basal sinus; on the inner surface are 3 similarly spaced but placed more distad. On the upper surface there is a row of 4 toward the inner surface, and below the second one from the proximal end are 2 near together. The small granules are more separated than on the holotype and are distributed chiefly on the upper half of the outer surface.

CALLIANASSA, species.

Plate 59, fig. 5.


*Material.*—Manus of left cheliped of a small specimen. Outer surface visible. Very convex from top to bottom, a deep groove next to the edge articulating with the carpus; upper and lower margins ill-defined.
CALLIANASSA ? species.

Plate 64, fig. 10.

Locality.—Panama Canal Zone. Las Cascadas section. From lower part of lime-cemented soft gray to olive-colored limestone (with central parting of dark clay). The first hard, limy sandstone bed above the lower limestone just above station 6019b. Upper part of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6019c. Cat. No. 324280, U.S.N.M.

Material.—One small specimen resembling in shape the merus joint of the smaller of the chelipeds of the first pair. If the above guess be correct, this is from the right cheliped. The two oblique grooves near the distal end may have been artificially produced.

Family PAGURIDAE.

PETROCHIRUS BOUVIERI, new species.


Gatun; Miocene (Toula). Not represented in the collection at hand.

There are two recent species of Petrochirus on opposite sides of the continent, namely, P. bahamensis (Herbst) 1 = P. granulatus (Olivier), which extends from Florida to Brazil, and P. californiensis Bouvier 2 taken at La Paz, Mexico, and in Ecuador. One of the principal differences between them lies in the ornamentation of the chelae. The right chela of P. bahamensis is covered chiefly with fan-shaped clusters of granules, all of which trend forward and present a smooth, oval side-face when viewed dorsally; the clusters vary in size, and some are composed of only 2 granules, while others are represented by only one granule; all are fringed anteriorly with hair, which fills the interspaces. The right chela of P. californiensis has similarly clusters and single granules, but the clusters are not fan-shaped but round, or nearly round, and are composed of a large smooth central granule surrounded by small granules tipped with a sharp, horny point; the granules are much more elevated and have a more dorsal inclination than in bahamensis; the single granules are also more numerous than in that species.

The right chela of the fossil specimen figured by Toula resembles that of P. californiensis.

The left chela of P. bahamensis is covered with fan-shaped clusters of granules like those on its right chela, but the clusters are more

crowded, and single granules are fewer. The left chela of *P. californiensis* is covered with clusters like those on its right chela but more crowded, and the granules of which they are composed are of a smaller average size.

The left chela of the fossil agrees more nearly with that of *P. bahamensis*.

We therefore have a Tertiary species combining the characters of two Recent species, at least as far as the chelae are concerned, possessing the right chela of one and the left chela of the other.

**Tribe BRACHYURA.**

**Subtribe DROMIACEA.**

**Family DROMIIDAE.**

**Genus GONIOCHELE** Bell.

**GONIOCHELE? ARMATA,** new species.

Plate 57. figs. 11 and 12.


*Measurements.*—Length of movable finger (tip broken off), 19 mm.; width at about the middle, 6 mm.; greatest thickness, 4.5 mm.

*Holotype.*—The shape is elongate-triangular viewed from outside, the prehensile edge being nearly straight and the upper edge slightly arched; outer surface convex in both directions. The prehensile edge has a sinus at its base, defined distally by a broad tooth which is at present truncate, but may have been prolonged in two small teeth; beyond are four teeth separated by rounded sinuses and with their tips missing; the first two are spiniform, the last two broad and thin. The upper margin bears 5 low, spaced teeth, while just within and alternating there is a line of 3 teeth. On the outer surface are 2 rows of tubercles not far from the margins, 4 in the lower and 3 in the upper row; the proximal tubercle in the upper row is bifid. On the inner surface are 5 tubercles besides those above mentioned. 2 in a longitudinal row in the middle, 2 on the distal half a little above the prehensile edge, and 1 small one toward the top and behind the middle.
I have placed this specimen in *Goniochele*\(^1\) on account of the dactylus being armed on both edges, as in *G. angulata* Bell,\(^2\) the type of the genus, and because the general shape of the segment is similar. In Bell’s species the dorsal surface is smooth.

**Subtribe OXYSTOMATA.**

**Family CALAPPIDAE.**

**HEPATUS CHILIENSIS** Milne Edwards.

**Plate 66, fig. 4.**


**Locality.**—Panama Canal Zone. From near Mount Hope in ditch through swampy ground. About one-quarter mile from present sea beach, 6 to 8 feet above high tide. Pleistocene series. D. F. MacDonald, collector. April, 1911. Station 5850. Cat. No. 324235, U.S.N.M.

**Material.**—Dactylus of right chela, 5.3 mm. long. This little specimen shows all the essential characters of recent individuals of this species: 8 shallow rounded teeth on the lower margin; a row of 5 tubercles on the proximal part of the upper margin and a row of 4 tubercles just below and on the outer surface; still further down, 2 more tubercles; a stridulating ridge on the inner surface just below the upper edge is formed of upwards of 45 fine parallel striae and occupies the greater part of the length of the finger.

**Distribution of Recent material.**—Ranges at the present time from Ecuador to Chile.

**HEPATUS, species.**

**Plate 66, fig. 12.**

**Locality.**—Panama Canal Zone. From lower part of lime-cemented soft gray to olive-colored sandstone (with central parting of dark clay). The first hard limy sandstone bed above the lower lime-stone just above fossil lot No. 6019b. Upper part of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors, 1911. Station 6019c. Cat. No. 324239, U.S.N.M.

**Material.**—One dactylus of left chela, much worn and incomplete at both extremities; the proximal half of the upper margin is also wanting. The curves in side view are much like those of *H. chilienis* Milne Edwards.\(^3\) Both inner and outer surfaces are

---


\(^2\) Idem, pl. 4, fig. 6.

\(^3\) *Hist. Nat. Crust.*, vol. 2, 1837, p. 117.
convex from top to bottom. The prehensile edge has traces of 2 small teeth, one near the base and one at about the distal third. There are also various depressed granules or pits, namely, a row of 5 small ones on the upper margin; opposite the distal one of these there is a larger one on the inner surface; and 3 or 4 on the outer surface. These are all sunken so that they do not project above the present surface, which is not the true outer surface.

This finger is not quite so flat inside as *H. chiliensis*.

*Measurements.*—Length of dactylus, 13.6 mm.; height at middle, 3.6 mm.; thickness at middle, 2.7 mm.

**CALAPPA COSTARICANA**, new species.

Plate 57, fig. 24.

*Type-locality.*—Costa Rica: City of Port Limon. Port Limon formation. Pliocene series. Dr. L. A. Wailes. 4269.

*Holotype.*—Cat. No. 324240. U.S.N.M. A triangular fragment measuring about 9 mm. on each margin, representing the propodal finger and the infero-distal portion of the palm of a left chela of the weaker form—that is, without a strong submarginal tooth or lobe characteristic of the stronger chela in *Calappa*. Lower margin very sinuous, the tip of the finger directed upward, proximal half of margin armed with 6 strong tubercles directed distally. Just above, on the outer side, and beginning nearer the finger-tip there is a row of 11 smaller tubercles, normal to the surface. The prehensile edge is nearly straight, inclined at an angle of about 75° with the lower margin of the palm, and is furnished with 6 large, unequal tubercles, which end at the small sinus which ordinarily exists just below the raised margin surrounding the articulation with the dactylus; on the upper side of this sinus are 2 small tubercles, and above this point, the specimen comes to an end. The outer surface is covered with upward of 40 flattened scale-like tubercles pointing upward; they are separated from the submarginal row by a smooth depression. The propodus is thick and the inner surface is beveled, the bevel for the most part smooth; remainder of inner surface studded with very unequal pearly granules and tubercles; interspace crowded with fine punctae; 2 sinuous ridges run toward the finger-tip.

This species resembles *C. gallus* (Herbst)¹, which is found living at the present time from Florida Keys to Bahia, Brazil. The fossil species differs in the very prominent tubercles of the lower margin of the palm and the longer tubercles of the submarginal row just above, on the outer surface.

**CALAPPA FLAMMEA** (Herbst).

Plate 61, figs. 4 and 5.


**Locality.**—Near Mount Hope, Panama Canal Zone, in ditch through swampy ground about one-fourth mile from present sea beach, 6 to 8 feet above high tide; Pleistocene series; D. F. MacDonald, collector. April, 1911. Station 5850. Cat. No. 324237, U.S.N.M.

Represented only by one dactylus or movable finger belonging to the stronger chela. The milling of the stridulating ridge on the inner surface just below the upper edge is more strongly marked than in most of the recent specimens examined.

**Measurements.**—Extreme length, 15 mm.; width just distal to the upper marginal tooth, 4.7 mm.

**Distribution of Recent material.**—From North Carolina to Colombia and Venezuela.

**CALAPPA ZURCHERI** Bouvier.


Panama. Lower Miocene.

Not represented in the Museum collection.

**CALAPPELLA, new genus.**

Carapace very little broader than long, without clypeiform expansions, but with a spine at the junction of the antero-lateral and postero-lateral borders, and a spine at each end of the posterior border.

Front small, projecting forward beyond the orbits.

Orbits small, directed forward.

In the narrow front and small orbits, this genus resembles *Calappa*, but in its narrow carapace armed with 4 slender spines, it differs from that genus as well as from all other Calappinae.

**Type of the genus.**—*Calappella quadrispina*, new species.

**CALAPPELLA QUADRISPINA, new species.**

Plate 58, figs. 1 and 2.

**Type-locality.**—Panama Canal Zone. Las Cascadas section, Galllard Cut. From lowest fossiliferous bed; third bed below lowest limestone beds separated by rows of nodules. Lower part of upper half of Culebra formation. Oligocene series. D. F. MacDonald
and T. W. Vaughan, collectors. 1911. Station 6020a. Cat. No. 324238, U.S.N.M.

Measurements (approx.).—Length of carapace (spines excluded), 14 mm.; width (spines excluded), 14.4 mm.

Holotype.—Species represented by one specimen showing part of the carapace and no appendages, enclosed in a nodule which has been broken in two. Nodule not much larger around than the carapace.

Carapace nearly as long as wide, spines excluded; width between outer angles of orbits a little greater than posterior margin. Chord of the antero-lateral margin nearly twice as long as that of the postero-lateral margin. Antero-lateral margin divided into 2 parts, the anterior two-fifths being slightly convex, the posterior three-fifths very convex with a tubercle at its middle. Postero-lateral margin somewhat sinuous, but in general concave: posterior margin slightly convex, about twice as long as the slender spine at either end which is directed backward and slightly outward. Lateral spine also slender, but longer, half as long as the postero-lateral margin and pointing obliquely backward.

The central and anterior part of the surface of the carapace is lacking. There are, however, two oblique, parallel, branchial furrows; between them a row of 3 tubercles and some scattered granules; the outer part of the branchial region is higher and rough with irregular tubercles which are more or less confluent. Cardiac region high, with a median tubercle on its posterior slope; in almost the same plane transversely, but on a lower level, there is another tubercle on each side just above the postero-lateral margin.

There is a very small hollow in the nodule where the point of the front rested, and on the other half of the nodule may be seen the lower surface of the front where it joined the interantennular septum.

The orbits are small, their upper and lower margins formed by two teeth, the innermost advanced, separated by a blunt V-shaped sinus.

On the lower surface, the inner tooth of the orbit is considerably elevated (that is, ventrally). A sharp ridge runs obliquely backward from or near the epistome, and is armed with a tooth at its posterior third.

**MURSIA MACDONALDI**, new species.

Plate 58, fig. 21.

*Type-locality.*—Panama Canal Zone. Las Cascadas section. Fifth or topmost limestone. Emperador limestone. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. One specimen, part of left cheliped. Station 6019g. Cat. No. 324229, U.S.N.M.
Measurements.—Length of palm between articulations, 19 mm.; height (approx.), 10.2 mm.

Represented by the left palm only, which has the customary Calappoid form, and a portion of the immovable finger; the edges are not well shown; two teeth may be seen near the distal end of the upper margin. The only details of the outer surface that can be made out are a few large tubercles, more or less compressed as in Recent species of \textit{Mursia}; these tubercles number about 15; there is a row of 4 a little above, and subparallel to, the lower margin: from these 4 tubercles irregular rows extend obliquely upward, trending toward the fingers; including those of the horizontal row, those of the distal oblique row are 4, of the second row 5, of the third row 3, of the proximal row 3; these rows are not strictly parallel nor their tubercles regularly spaced. The lower proximal tubercle is the largest and most compressed.

There is an indication of the distal spine of the arm-joint, which may be seen in the figure.

Resembles \textit{Mursia armata} de Haan,\textsuperscript{1} but in that species the principal tubercles of the hand are 9, arranged in 3 parallel and fairly regular rows.

\textbf{MURSIA OBSCURA, new species.}

Plate 61, fig. 18.

\textit{Type-locality.—}Near Panama Canal Station "1910," north of Pedro Miguel locks, Panama Canal Zone. From dark clay, lower part of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6010. Cat. No. 324225, U.S.N.M.

Measurements of fragmentary specimen, 8.2 mm. long, 9 mm. wide.

\textit{Holotype.—}The central part of the carapace, devoid of its margin, except perhaps the middle of the posterior margin. This fragment is embedded wrong side up in a piece of rock; only the thin outer crust of the specimen remains and its under surface alone is visible. It has been referred to this genus because the cavities or pits, which represent tubercles on the dorsal surface of the shell, are arranged much as in \textit{Mursia}. There are 5 longitudinal rows of these pits: The median row consists of 3 large pits, one cardiac, one genital, one gastric, preceded by 2 small pits side by side; the two lateral rows (on each side) are very little oblique to the median line, but subparallel to each other; the inner of these rows consists of 4 pits, the penultimate one being in a transverse line with the last pit of the median row; the last pit of the inner lateral row is round and deep

\textsuperscript{1}Fauna Japonica, 1839, p. 73, pl. 19, fig. 2.
and indicates a large excrescence, perhaps a spine, on the dorsal surface; 3 pits only are visible in the outer row, the middle pit is in transverse line with the anterior pit of the other rows, while the anterior pit of the outer row is not quite in line with the two behind it. Either side of the pair of small submedian gastric pits there is a large cavity. The furrows separating the branchial from the gastric and cardiac regions are indicated by sinuous ridges.

Judging from the proximity of the rows of pits, this carapace is narrower in proportion to its length than in other species of *Mursia*. This together with the evidence of a strong prominence near the postero-lateral borders points to a genus different from any described.

**MURSILIA, new genus.**

The manus resembles that of *Mursia*, but lacks the crest or ridge on the inferior margin.

*Type of the genus.—Mursilia ecristata, new species.*

**MURSILIA ECRISTATA, new species.**

*Plate 57, fig. 27.*


*Holotype.—* Cat. No. 135219, U.S.N.M.

*Measurements.—* Length of palm, 9.8 mm., height of palm, 7.4 mm.

Represented by only one specimen showing the right palm and a portion of the wrist. Palm short and high. Surface finely and rather distantly granulated on the upper half of the outer surface and at the proximal end; more closely granulated on the lower surface. There are 9 large tubercles arranged in 3 oblique, subparallel rows; the tubercle at the inferior proximal corner is much the largest, is flattened above and has a raised rim; between it and the next tubercle in the horizontal row, but a little below, there is a smaller tubercle. Below the distal tubercle of the horizontal row of 3, and nearer the inner than the outer surface there is a small tubercle. On the upper margin there are 7 narrow, thickened teeth similar to those of *Calappa*. Below the sinus between the fifth and sixth teeth (counting from the wrist) there is a low tubercle; also one on the base of the second tooth. A part of a tubercle near the beginning of the immovable finger is visible.

The outline of the wrist is defined, but very little of the surface remains; a small piece near the distal upper corner is granulated like the upper half of the palm.

The tuberculation of the manus or palm resembles that of *Mursia*, the dentation of the upper margin is nearer that of *Calappa*, while
the segment differs from both those genera in lacking the crest on the lower margin of the palm.

Family LEUCOSIIDAE.

LEUCOSILIA JURINEI (Saussure).

Guaia (ilia) jurinei Saussure. Rev. et Mag. de Zool., No. 8, 1853, p. 12, pl. 13, fig. 4.


Locality.—Panama Canal Zone. From near Mount Hope in ditch through swampy ground. About one-quarter mile from present sea beach, 6 to 8 feet above high tide. Pleistocene series. D. F. MacDonald, collector. April, 1911. Station 5850.

Material.—Six small arm-joints more or less worn; four of them are incomplete at one or both ends.

Size.—Length of a large one, 5.6 mm.

Distribution of Recent Material.—Ranges from Mazatlan, Mexico, to Peru and the Galapagos Islands.

LEUCOSILIA BANANENSIS, new species.

Plate 57, figs. 6-8.

Type-locality.—Banana River, Costa Rica. Probably equivalent to Gatun formation. Miocene series. D. F. MacDonald, collector. 1911. Station 5882h, 5b, 1 arm, holotype, from seventh fossiliferous zone below the uppermost one of the section. Station 5882g, 5a, 1 arm, paratype (a), from sixth fossiliferous zone below the uppermost one of the section. Station 5882f, 3f, 1 arm, paratype (b), from fifth fossiliferous zone below the uppermost one of the section.

Types.—Cat. Nos. 324230, 324231, and 324232, U.S.N.M.

Measurements.—Length of holotype, 11.1 mm.; greatest diameter, 4.2 mm.

Represented by only 3 arms from 3 different layers. The best specimen represents the left arm nearly complete, lacking only the distal articulating edge.

Shape subcylindrical, slightly compressed in a vertical direction, the greatest diameter being proximal to the middle, the smallest diameter at the proximal end. The ornamentation consists of tubercles or large granules, the granules becoming small at both ends of the arm; around the middle of the segment the granules number about 15; the tops of the granules are broken off so that they appear much flatter than they really were. Compared with L. jurinei, the arm is more swollen, the granules less numerous, more equal and further apart.
LEUCOSIIDAE?, genus and species indeterminable.

Plate 60, figs. 7 and 8.

Locality—Panama Canal Zone. From near Mount Hope in ditch through swampy ground. About one-quarter mile from present sea beach, 6 to 8 feet above high tide. Pleistocene series. D. F. MacDonald, collector. April, 1911. Station 5850. Cat. No. 324236, U.S.N.M.

Material.—Dactylus of left chela, 11.4 mm. long, with proximal end lacking. This dactylus differs from those of Persephona and allied genera in its strong curvature upwards, supposing the prehensile edge to be directed inwards. This edge is nearly straight except just at the tip and is armed with 25 small unequal teeth, 2 of which in the proximal third are the largest. Besides this edge the surface is composed of 4 high, smoothly rounded ridges separated by narrow grooves; 2 of the ridges are inferior, and 2 superior, the outermost of the latter embracing the outer edge and having a longitudinal row of punctae near its middle. Each side of the prehensile edge there are 2 or 3 rows of punctae. Tip of finger bent rather abruptly but obliquely inward, while in its upward trend it continues the curve of the rest of the dactylus.

Subtribe BRACHYGNATHA.

Superfamily BRACHYRHYNCHA.

Family PORTUNIDAE.

CALLINECTES DECLIVIS, new species.

Plate 66, figs. 1–3.

Type-locality.—Banana River, Costa Rica. Eighth fossiliferous zone below the uppermost one of the section. Probably equivalent to Gatun formation. Miocene series. D. F. MacDonald, collector. 1911. Station 5882i; 5c. Cat. No. 324262, U.S.N.M.

Measurements.—Greatest height, 14 mm.; length of manus measured horizontally from extreme base of proximal spine, 21 mm.; thickness, 9.2 mm.

Holotype.—The propodus of the left cheliped, with the tip of the finger broken off. The palm is prismatic as in recent species of Callinectes, with 7 facets, more or less distinct; 4 facets on the outer surface and 3 on the inner surface. The surface, or what remains of it, is smooth and shining to the naked eye, but under a lens, shows very fine granulation, and larger scattered punctae. The facets are separated by blunt ridges; one facet is a little above the middle of
the outer surface, and has subparallel margins; the facet below this widens distally and its lower edge, not very prominent, is continued upon the finger, where it is sharper; the lower facet of the outer surface is not sharply marked; the facet above the middle narrows slightly toward either end and has raised margins; at its proximal end there is the stout base of a large spine such as exists in _Callinectes_ of the present day. The upper facet of the inner surface is narrow, wider in the middle than at the ends, and is not depressed, its distal outer corner only is visible when the manus is viewed externally; at the distal end just outside the inner margin is an indication that a spine has been broken off. The remainder of the inner surface is divided into 2 facets of nearly equal width separated by a prominent ridge.

The finger is a little curved inward; on the outer and inner surface there are 2 grooves, each with a row of large punctae, the groove at the middle of each surface being deeper than that near the prehensile teeth. The teeth are of moderate size, irregular, the larger ones alternating with one or two smaller ones: at the broad proximal end of the cutting edge there are 2 small teeth side by side, one near the inner the other near the outer surface.

This propodus differs from those of all the Recent _Callinectes_ in the position of the uppermost facet. In _C. sapidus_, etc., this facet is a part of the outer series, that is, continues the slope of the adjoining facet on the outer surface; while in the fossil it inclines downward toward the inner surface except at the distal end where it is nearly horizontal. Furthermore, the propodus is shorter in proportion to its height than in recent _Callinectes_.

I have placed this species in _Callinectes_ rather than in _Portunus_ (= _Neptunus_ of authors) because the palm is nearer the shape of _Callinectes_ than it is to similar segments in the genus _Portunus_, as _P. sanguinolentus_; the fossil is very unlike any _Portunus_ now living on the coast of tropical America.

_Callinectes reticulatus_, new species.

Plate 63, figs. 5-7.

_Type-locality._—Panama Canal Zone. Las Cascadas section, Gaillard Cut. From lowest fossiliferous bed; third bed below lowest limestone beds separated by rows of nodules. Lower part of upper half of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6020a. Cat. No. 324261, U.S.N.M.

_Measurements._—Greatest height of manus, 15.6 mm.; length of manus measured horizontally on middle of outer surface, 19.2 mm.; thickness, 10 mm.
Holotype.—The propodus of the right cheliped, the immovable finger being broken off near its middle.

In shape, this hand is shorter, higher, and thicker than the preceding. The surface, aside from the ridges and the uppermost facet is covered with a fine reticulation of transverse grooves. The facets are 7 in number and in position are like those of *C. declivis*, excepting that the narrow uppermost one which appears to belong to the inner surface in *C. declivis* is more horizontal in *C. reticulatus* and forms the upper surface of the segment. The next facet on the outer side is narrowest at the distal end and widens to the middle, after which the margins are subparallel; the next facet widens distally, and the next also, but in a lesser degree; the lower facet is ill defined. The 2 facets of the inner surface are subequal and widen distally.

There is the base of a tooth at the inner distal end of the upper facet, and a short blunt spine at the distal end of the crest between the upper and middle facets. If there was a tooth at the proximal end it is broken off.

The propodal finger bears on its upper edge the stumps of 3 subequal teeth; nearer the palm on the same surface there are 2 small acute tubercles transversely placed, the inner one the larger.

Aside from the difference in shape and ornamentation between this species and the preceding, there is a difference in the form of the facets which may be seen by comparing figures 5 to 7 with 1 to 3 on plate 66.

**CALLINECTES, species.**

Plate 65, figs. 1 and 2.

Locality.—Panama Canal Zone. From the 4 feet of dark, stratified tuff and clay immediately overlying the lower limestone bed, Las Casadas section. Upper part of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 60196. Cat. No. 324255, U.S.N.M.

A specimen of a left manus and carpus, very much worn, the upper and lower margins and the distal end of the manus being lacking. The palm is narrower than in *C. reticulatus* described above; the facet near the middle of the outer surface is wider than in *C. declivis*, and widens distally instead of having subparallel margins as in that species.

**CALLINECTES, species.**

Plate 65, fig. 7.

Locality.—Panama Canal Zone. From top part of limy sandstone below upper conglomerate, near foot of stairs, Gaillard Cut. Upper part of Culebra formation. Oligocene series. D. F. MacDonald
and T. W. Vaughan, collectors. 1911. Station 6012c. Cat. No. 324268, U.S.N.M.

The distal third of the immovable finger of a claw of a *Callinectes*. On the prehensile edge is shown the most distal of the large teeth customary in the genus followed (toward the tip) by 3 smaller teeth; the tip is defective, having been broken off, then reattached in the wrong place. There is a punctated groove down the middle of the inner and the outer surface.

Of the species of *Callinectes* living on the Pacific coast of America, this fragment resembles most *C. toxotes* Ordway, which occurs from Cape St. Lucas to Peru.

**ARENCEUS**, species.

Plate 64, fig. 1.

*Locality.*—Panama Canal Zone. From near Mount Hope in ditch through swampy ground. About one-quarter mile from present sea beach, 6 to 8 feet above high tide. Pleistocene series. D. F. MacDonald, collector. April, 1911. Station 5850. Cat. No. 324252, U.S.N.M.

*Material.*—Five fingers worn and more or less incomplete. Probably all are movable fingers or dactyli. Length of most perfect specimen, 8.2 mm. On the outer surface there are two grooves dotted with minute punctae; one is shallow and near the prehensile teeth, the other is above the middle of the segment; on the upper surface there are also two punctated grooves, but near together, while the inner surface has two furrows similar to those of the outer surface. Three or four of the prehensile teeth are enlarged as is usual in Portunids, and the tip is curved downward. There are evidences of close granulation on the uppermost ridges and on the proximal part of the segment.

This is near *A. mexicanus* (Gerstaecker²), a Recent species which occurs from the west coast of Mexico to Peru. The shape, curvature, and granulation are similar, but three of the six grooves belong definitely to the outer surface.

**EUPHYLAX CALLINECTIAS**, new species.

Plate 65, figs. 3–6.

*Type-locality.*—Banana River, Costa Rica; ninth fossiliferous zone below the uppermost one of the section. Probably equivalent to Gatun formation. Miocene series. D. F. MacDonald, collector. 1911. Station 5882; 5d. Cat. No. 324234, U.S.N.M.

² *Euctenota mexicana* Gerstaecker, Arch. fir Naturg., vol. 22, pt. 1, 1856, p. 131, pl. 5, figs. 3 and 4.
Measurements.—Length of carapace, 45 mm.; gastro-cardiac suture, 9.6 mm.

Holotype.—One male specimen, showing parts of the upper and lower surfaces, but no appendages. The outer layer of the shell of the carapace remains only in the central part, where the gastric, branchial and cardiac regions meet. This surface is granulated and areolated much as in Callinectes;¹ that is, the regions are separated by definite depressions, the gastro-cardiac groove is transverse, there is an areola at the inner angle of the branchial region, but there is a shallower division into 2 lobules than in Callinectes. The post-gastric area is incomplete anteriorly, so that it is impossible to tell whether it is marked by a raised and granulated margin; the shape of this area most nearly resembles that of C. exasperatus (G Ernstæcker²), and its granulation that of C. boecourtii A. Milne Edwards, the granules being absent or sparse along the lateral and posterior borders. Across the middle of the gastric region runs a blunt elevation, concave forward. The branchial region is divided in two by a depression running obliquely backward and outward. These last two features suggest the carapace of Euphylax dovii Stimpson,² a species now existing on the Pacific coast of America, between Central America and Payta, Peru.

Anterior margin very broad, as in E. dovii, most of it being occupied by the orbits; the front is narrow, T-shaped, much constricted at base; the anterior part of the T has a concave surface and is deflexed to meet the epistomial spine. This is more advanced than the front; its tip is broken off. The upper margin of the orbit slopes backward and outward and is somewhat undulating. The shape of the orbit cannot be definitely made out, but a portion of the smooth inner lining of the outer extremity remains. The indications are that the eyestalk is long and the corneal extremity large, as in E. dovii.

The sternum and abdomen resemble those of E. dovii, the anterior end of the sternum is depressed, the depression having a convex posterior margin, from which a furrow leads back to the abdomen. Surface of sternum and abdomen covered with large and distant punctae. Abdomen broadly triangular; first segment not distinguishable; second, third, and fourth segments each crossed by a transverse ridge; third, fourth, and fifth fused, and perhaps also the second with them. The sides of the penult segment are less convergent than in E. dovii.

This species in all the characters visible in the type-specimen resembles the genus Euphylax as typified by E. dovii, excepting in the

areolation and ornamentation of the central part of the carapace which indicate an affinity with Callinectes.

**Euphylax Fortis**, new species.

*Plate 64, figs. 11-13.*

*Type-locality.*—Banana River, Costa Rica; tenth fossiliferous zone below the uppermost one of the section. Probably equivalent to Gatun formation. Miocene series. D. F. MacDonald, collector. October, 1911. Station 5882k. Cat. No. 324233, U.S.N.M.

*Measurements.*—Length of body (approx.), 43.5 mm.; length of movable finger, 27.3 mm.; width of the sternum between the coxae of the chelipeds, 24.5 mm.

*Holotype.*—One specimen showing a part of the lower surface and the right cheliped. The abdomen resembles that of an immature female or is possibly that of a male.

Sternum broad, surface rough with coarse punctae and fine reticulating lines; anterior part depressed and with a median groove leading back to the abdomen much as in *E. callinectias*; the ridge just in front of the abdomen is more transverse than in that species.

Abdomen broadly triangular; it is impossible to tell which segments, if any, are fused; terminal segment subequilateral; surface of sixth and seventh segments like that of the sternum, of fourth and fifth segments covered with a low, confluent granulation.

Ischium of external maxilliped with a longitudinal groove, the surface on the inner side of the groove more raised than on the outer side.

Cheliped elongate. A cross section of the arm is shown and a portion of its lower surface; this last has a broad longitudinal depression through the middle, and the surface near the margins, at least, is coarsely granulate.

The general outline of the fingers can be made out and the surface of some of the prehensile teeth. The fingers are elongate, as in the usual Portunid, and gradually taper, ending in slender black tips which cross each other. The prehensile teeth are large, thick, dark-colored, and very irregular, the one at the base of the dactylus being the largest; they appear to fit close together. The cheliped is larger and stronger in proportion to the size of the body than in any recent species of Portunid.

The generic position of this species is problematical; in the width of the sternum it resembles *Euphylax*; in the strong teeth of the digits it approaches *Scylla*, while the groove on the lower side of the arm joint is unique.
GATUNIIDAE, new family.

Characters of the type genus, *Gatunia*.

GATUNIA, new genus.

Carapace of the customary Cancrid outline, that is, transversely oval, with a narrow, dentate front (between the orbits); orbits narrow, with a forward inclination; antero-lateral margins arcuate, longer than the postero-lateral, and armed with 8 teeth, including the orbital tooth; postero-lateral margins strongly convergent. Genital region very narrow. Carapace without transverse ridges. Outer maxillipeds with the ischium greatly elongate, and longitudinally grooved.

Chelipeds massive; palms thick, not flattened on the inner side, devoid of ridges on the outer side.

Last pair of feet with the propodus and dactylus flattened and broadened to form a swimming organ as in the Portunids.

Abdomen of the male with the third, fourth, and fifth segments fused.

This genus resembles the family Cancridae in the form of the carapace, front and orbits; while the swimming paddles and the abdomen are like those of the Portunidae. The chelipeds approach those of the genus *Scylla* in their massiveness, long fingers and lack of costae, but the absence of spines gives them the appearance of many of the Xanthidae.

*Type of the genus.—*Gatunia proavita* Rathbun.*

GATUNIA PROAVITA, new species.

Plates 54-56; plate 58, figs. 16 and 17.

*Type-locality.—*Gatun formation, near Gatun Dam, Panama Canal Zone. Miocene series. Collected by one of the workmen and shipped by D. F. Macdonald. Station 5659. One specimen (holotype), nearly complete. Cat. No. 324289, U.S.N.M.

*Measurements.—*Length of carapace, from tip of submedian teeth, 133.2 mm.; from median sinus, 128.3 mm.; width, between tips of teeth of posterior pair, 182.5 mm.; width between teeth of penultimate pair, the same.

*Holotype.—*Carapace about 1⅔ times as wide as long; antero-lateral margin strongly arched, cut into 7 strong teeth, besides the tooth at the outer angle of the orbit; teeth similar in shape, having a convex posterior and a concave anterior margin, tip acute; the 7 teeth increase in size from the first to the fifth and then diminish to the
seventh, which is the most spiniform. The orbit has a strong tooth at the outer and at the inner angle and one less prominent between; below the inner angle there is a narrow tooth more advanced than those above. Frontal region, between the orbits, with a concave dorsal surface; anterior border cut into 4 teeth, those of the middle pair nearer to each other than they are to those of the outer pair, and separated by a shallower sinus; teeth of inner pair oblong, with rounded end; those of outer pair thicker. Postero-lateral margins nearly straight; posterior margin slightly convex and thickened.

Surface covered with a pavement of fine, flattened granules, and with less numerous and unequal punctae visible to the naked eye. The depression between the gastric and branchial regions is well marked except anteriorly, the hepatic region not being defined. Genital region very narrow, longer than wide. Cardiac and intestinal regions incompletely outlined.

Neither the eyes nor the antennae are visible.

Epistome subtriangular, prolonged downward at the middle in an acute angle; thence a small button-hole groove runs obliquely backward. Palatal ridge strong except anteriorly where it is low and blunt. Pterygostomian region granulate, densely so near the buccal cavity. On the sternum a furrow runs obliquely forward from the coxae of the chelipeds to the median line.

The abdomen of the male is broad and at the base reaches to the coxae of the last pair of feet; there is only one segment visible between the carapace and the third segment; it is probably the second, while the first is hidden under the carapace much as in the Portunid genus Callinectes; the second is of nearly even length throughout its width; the third, fourth and fifth are fused, but their extent is indicated by indentations in the lateral margins and by a short groove at the middle; the 3d segment is produced sideways beyond the 2d and 4th and its margins are very convex; margins of the 4th to 6th segments, inclusive, taken together are slightly convergent, those of the 4th a little convex; 6th segment about 1½ times as wide as long; terminal segment nearly as long as the preceding, subtriangular, end rounded.

Chelipeds very stout, in general smooth, there being no ridges nor spines. The surface is finely granulate and punctate, the granules a little higher than on the carapace. The inferior, anterior margin is the only margin of the merus visible; it is smoothly rounded. Carpus massive, with a broad tooth at inner angle. Chelae unequal, thick, broadly rounded above and below without marginal lines; right or larger manus about 1½ times as long as high, left or smaller manus about 1¾ times as long as high; next the articulation of the larger palm with the dactylus there is a large lobe or tooth directed toward the end of the dactylus, as in Scylla. The digits each have 2
longitudinal punctate impressions on the outer surface, the larger dactylus is more arched than the smaller; the fingers cross each other a little before the tips, at least in the smaller chela; the end of the larger immovable finger is broken off; prehensile edges armed with large irregular, separated teeth, the basal tooth of the larger dactylus being of enormous size and directed obliquely backward as in *Scylla*. The distal half or two-fifths of the fingers is dark-colored, also the prehensile teeth.

The 3 pairs of ambulatory legs are only partially preserved; they would, if extended, reach about to the middle of the manus of the chelipeds; the first five segments are stout; the propodus, of which only impressions exist, has a groove through the middle and appears to be flattened; the dactylus can not be made out with any degree of certainty; the swimming-feet, or those of the last pair, are very broad, the carpus is as broad as long; the propodus is about twice as long as broad; the dactylus is lanceolate-oval, about $2\frac{1}{2}$ times as long as broad.

Another specimen (paratype a) lacking the dentate border of the carapace, and all appendages except the coxal joints of the legs, was taken from the Gatun formation, Gatun Locks, by D. F. MacDonald, May, 1911. Station 5900. Cat. No. 324241, U.S.N.M.

A much smaller specimen (paratype b) which is identified as probably belonging to this species is labeled: “Near Gatun. Miocene. Rev. G. Rowell. Cat. No. 113706, U.S.N.M.” It is probably from the Gatun formation. A portion of the left side of the carapace is preserved, showing the base of the 3 posterior of the anterolateral teeth; on the under side is shown the margin of the buccal cavity, fragments of a maxilliped and the base of the cheliped. A separate specimen (paratype c), from the same locality, is the left manus, somewhat crushed, proximally incomplete and lacking the propodal finger, but with the base of the dactylus attached, including the first or large, rounded tooth.

A fragment of a finger bearing 3 teeth (paratype d) is referred here; the smooth outer layer is almost gone except a few bits near the teeth; it was taken from the 85-foot cut on north side of big swamp on relocated line of the Panama Railroad, 1$\frac{1}{2}$ to 2 miles beyond Camp Cotton toward Monte Lirio; Gatun formation; Miocene series; D. F. MacDonald and T. W. Vaughan, collectors, 1911; Station 6030; Cat. No. 324242, U.S.N.M.

I refer here with doubt a curved fragment of a thick-shelled species, which has a large tooth occupying half its surface. It may belong near one of the articulations. It was taken at Station 60336, in the upper part of the lowest bed, Gatun section; Gatun formation; Miocene series; MacDonald and Vaughan; 1911; Cat. No. 324286, U.S.N.M.
The larger claw of this species is strikingly like that described by A. Milne Edwards under the name Scylla michelini from Sceaux, near Doué, France, in the Miocene shell deposits of the shell-marl of Anjou. M. Milne Edwards founded the species on the claw alone. It is very likely congeneric if not conspecific with the form here described.

**Family XANTHIDAE.**

**Carpilius**, species.

Plate 58, fig. 22.

**Locality.**—Panama Canal Zone. Foraminiferal marl and coarse sandstone about 200 yards south of southern end of switch at Bohio Ridge station, relocated line Panama Railroad. Upper part of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6025. Cat. No. 324243, U.S.N.M.

**Material.**—Piece of propodal segment of ambulatory leg on left side of crab. Length 17 mm., greatest width 7.2 mm., least width 5.7 mm., proximal thickness 4.5 mm., distal thickness 3.7 mm. Viewed dorsally, the anterior margin is slightly convex, the posterior faintly concave. Viewed edgeways, the upper surface is longitudinally convex, and the lower surface concave. Cross section oval. Surface, except for accidental breaks, smoothly rounded, without ridges, furrows, or tubercles.

In its smoothness and general form, resembles the propodus of the first ambulatory leg of Carpilius corallinus (Herbst), for which reason I venture to attach the name Carpilius to this fragment.

**HETERACTAEA LUNATA** (Milne Edwards and Lucas).

Plate 63, figs. 7–9.

Pilumnus lunatus Milne Edwards and Lucas, d'Orbigny's Voy. Amér. Mér., vol. 6, 1843, p. 20; vol. 9, atlas, 1847, pl. 9, fig. 2.

**Locality.**—Costa Rica: City of Port Limon. Port Limon formation. Pliocene series. Dr. L. A. Wailes, collector. Station 4269. Cat. No. 324265, U.S.N.M.

**Distribution.**—Recent, San Diego, California, to Chile.

**Material.**—One specimen showing distal portion of outer surface of larger palm, with proximal half of dactylus (showing all surfaces) attached. This must have belonged to a small individual with carapace about 15 mm. wide. The fossil is crushed and the tips of the tubercles are lacking. The shape of the two segments so

---

1 Histoire des Crustacés podophthalmatres fossiles, Paris, 1861, p. 136, pl. 3, figs. 3, 34.

S37°18'—Bull. 103—12
far as it is preserved accords with that of recent specimens; the dactylus is more deflexed than it could be if the immovable finger were preserved in situ. The tubercles of the palm are arranged in general as in recent individuals, and slight divergences are attributable to individual variation. The dactylus has 6 punctated grooves, and the prehensile tooth situated at a little distance from the base is present; the three uppermost ridges bear some tubercles, the outer ridge two tubercles, the upper one three tubercles, and the inner ridge one tubercle followed by several crenulations.

PANOPEUS ANTEPURPUREUS, new species.

Plate 58, figs. 3-11.

Type-locality.—Panama Canal Zone. From near Mount Hope in ditch through swampy ground. About one-fourth mile from present sea beach, 6 to 8 feet above high tide. Pleistocene series. D. F. MacDonald, collector. April, 1911. Station 5850.

Types.—Cat. No. 324245, U.S.N.M.

Material.—18 dactyli of stronger chela from right side; 9 dactyli of stronger chela from left side; 4 dactyli of weaker chela from left side; one propodal finger of weaker chela from right side.

With one exception these digits belonged to small individuals; the exception, a right dactylus 12.8 mm. long, is made the holotype.

The dactyli are very much like the corresponding parts of P. purpureus Lockington, a recent species ranging from Lower California to Peru. The only differences are as follows: The fingers are a little longer, slenderer, and straighter; the large basal tooth of the stronger chela is closer to the articulation with the manus; there is no coarse granulation on the basal portion of the dactyli, as there is on the living form. Most of the specimens are purplish-blue except at the tip.

The propodal finger also is slenderer than in P. purpureus; the lower groove of the outer surface is nearer the lower margin. As this finger was not attached to a dactylus, one cannot be positive that it belongs to the same species as the dactyli.

PANOPEUS TRIDENTATUS, new species.

Plate 58, figs. 12-15.

Type-locality.—Panama Canal Zone. From near Mount Hope in ditch through swampy ground. About one-quarter mile from present sea beach, 6 to 8 feet above high tide. Pleistocene series. D. F. MacDonald, collector. April, 1911. Station 5850.

Types.—Cat. No. 324244, U.S.N.M.

Material.—Eleven dactyls and three propodal digits of the right chela, all detached. One of the dactyls is made a holotype.

Measurements.—Length of longest dactyl 9.2 mm., height 3 mm.; length of holotype 6.1 mm., height 2.3 mm.

Holotype.—I have chosen a small specimen for holotype because it is the best preserved. The dactyl is rather slender for the major chela of a Panopeid, but it has the general character of Panopeus and its allies. The prehensile edge has 3 enlarged teeth, placed as follows, beginning at the proximal end: 1 1, 2 s, 1 1., 3 s., 1 1., 7 s., tip. The proximal tooth is of the customary backward-pointing type, and is of moderate size compared to the basal tooth of living Panopeids. The second of the large teeth is of nearly the same size, more pointed, and directed downward; the third large tooth is definitely smaller than the others. The small teeth are unequal and shallow. The longitudinal depression either side of the teeth is punctate; there are 3 other punctate furrows, one external, one internal and the other dorsal but nearer the outer side; just within the proximal half of the dorsal furrow there is a marginal line of granules.

Paratypes.—The number of small teeth intervening between the larger teeth of the prehensile edge vary as follows, beginning at the proximal end: 1–3, 4–6, 6–8.

One can not be sure that the propodal digits referred here belong to the same species as the dactyls. They too have 3 large teeth, which are subequal and are separated by small teeth as follows, beginning with the proximal large tooth: 2, 4–5, 4–6. Proximal end broken off in each case, but in one instance a small tooth is visible proximal to the first large tooth. When an immovable finger is applied against a movable finger of complementary size, the large teeth of the former shut into the sinuses distal to the corresponding large teeth of the latter. There are 6 longitudinal punctate depressions on each propodus, one adjacent to the teeth on either side, one external, one internal, and two inferior.

**PANOPEUS, species.**

Plate 66, figs. 8 and 9.

Locality.—From the four feet of dark, stratified tuff and clay immediately overlying the lower limestone bed. Las Cascadas section. Upper part of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6019b. Cat. No. 324254, U.S.N.M.

Material.—One dactylus of right cheliped, with proximal end incomplete. Dactylus very broad at base in proportion to its length, also unusually thick. Length, 9.2 mm.; width, 4.7 mm.; thickness, 3 mm. In outer view the upper margin is much curved, the surface
is much worn, but there is a line of punctae visible through the middle; there is a large subbasal tooth directed obliquely backward, and bounded posteriorly by a deep, wide groove; the tooth does not project beyond the general lower margin, but it may have done so when entire. On the distal portion of the outer edge of the prehensile surface there are a few shallow crenulations.

This specimen comes nearer to Panopeus than to any other known genus; from P. chilensis Milne Edwards and Lucas¹ it differs in its greater width, in the large tooth originating higher up on the outer surface and in the groove behind it being deeper and more extensive.

**EURYTIUM CRENULATUM, new species.**

Plate 64, figs. 8 and 9.

*Type-locality.*—Panama Canal Zone. From near Mount Hope in ditch through swampy ground. About one-quarter mile from present sea beach, 6 to 8 feet above high tide. Pleistocene series. D. F. MacDonald, collector. April, 1911. Station 5850.

*Holotype.*—Cat. No. 324253. U.S.N.M. Daedylus of right chela, 7.6 mm. long. This has the general shape of a Eurytium finger, but the large basal tooth of the prehensile edge is inserted higher up, its oblique base running posteriorly well up on the outer surface; the tooth is directed strongly backward and is broadly rounded at the extremity. It is followed by about ten low teeth, the first and third of which are the larger. Somewhat above the middle of the inner and of the outer surface there is a longitudinal depression containing a row of a few punctae. There is a deep groove on the upper surface and just within it but higher up there is a row of separated granules or crenulations; they point outward, that is, a side view of them may be obtained by looking down on the top of the finger. The ridge just outside the dorsal groove is proximally microscopically granulate.

This finger can not be referred to E. affinis² or E. tristani³ of the Panamanian fauna on account of the elevation and direction of the basal tooth, and the row of granules on the upper edge.

**Family GONEPLACIDAE.**

**Subfamily PRIONOPLACINAE.**

**EURYPLAX CULEBRENSIS, new species.**

Plate 66, figs. 13 and 14.

*Type-locality.*—Panama Canal Zone. Top part of limy sandstone below upper conglomerate, near foot of stairs, Gaillard Cut. Upper

---

¹ D'Orbigny's Voy. Amér. Mér., vol. 6, pt. 1, 1843, p. 16; vol. 9, atlas, 1847, pl. 8, fig. 2.

**Holotype.**—Cat. No. 324226, U.S.N.M. Propodus of right and major cheliped with only the base of the immovable finger remaining. Palm swollen. In side view the upper and lower margins are arcuate, the palm narrowing considerably toward the wrist. Surface smooth. At the distal end above the lower margin there is a deep groove which is prolonged on the finger. The palmar tooth which overlaps the dactylus is present; also 4 prehensile teeth of the fixed finger, arranged in 2 transverse rows on the upper surface, the outer tooth of the distal pair being much the largest.

**Measurements.**—Length of palm, to sinus, 6.5 mm.; height, 4.3 mm.; thickness, 2.7 mm.

This specimen has the general form of *E. nitida* Stimpson, a recent species occurring on the coast of the Gulf of Mexico and the West Indies. I have no example of the Panamian species, *E. polita* Smith for comparison. *E. nitida* is considerably larger than the fossil form, the fixed finger is somewhat wider at the base but it has the 4 basal teeth similarly disposed; the proximal end of the upper margin is thinner and more acute than in *E. culebrensis*.

**Subfamily HEXAPODINAE.**

Living representatives of this subfamily are restricted to the Indo-Pacific region.

**Genus THAUMASTOPLAX Miers.**


The generic position of the species placed here has to be determined by the characters discernible in a dorsal view. As in *Thaumastoplax*, the shape of the carapace is subrectangular with the antero-lateral corners rounded off; the second ambulatory leg is stronger than the first and third. Of the other Hexapodinae, or Goneplacids with only 3 pairs of walking legs, *Hexapus* de Haan is more subcylindrical and has the three legs of subequal size; *Lambofollia* Alcock has smaller orbits; *Hexapla* Doflein has very oblique orbits seen from above, while *Paeduna* Rathbun (＝*Amorphophus* Bell) is said to be almost cylindrical.

3 Fauna Japon., 1833, p. 5; 1835, p. 35.
THAUMASTOPLAX PRIMA, new species.

Plate 66, figs. 15-18.

_Type-locality._—Panama Canal Zone. Las Cascadas section, Gaillard Cut. From lowest fossiliferous bed; third bed below lowest limestone beds separated by rows of nodules. Lower part of upper half of Culebra formation. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6020a.

_Measurements._—Length of carapace, paratype, 12.2 mm. (approx.); width, 18 mm. (approx.) The holotype is a little wider, about 19.6 mm., but the length can not be measured as the front part of the carapace is not visible.

_Holotype and paratype._—Carapace about 1½ times as broad as long, longitudinally very convex, from side to side nearly horizontal. Upper surface not bordered by a definite line; \( H \)-shaped depression in the center of the carapace deep; surface deeply punctate, punctae crowded near the margins, sparse near the middle. Fronto-orbital distance about two-fifths as great as the extreme width of the carapace. Antero-lateral margins long, arcuate; postero-lateral margins subparallel; posterior margin slightly convex. Front deflexed and widening a little from the base of the eyestalks downward. The orbit is about as wide as the narrowest part of the front and is filled by the eyestalks; its upper margin is transverse.

Chelipeds short, when flexed scarcely reaching beyond the outer end of the orbit; carpus very large, convex, smooth, and punctate; chela small, not much longer than carpus and considerably narrower; finger shorter than palm; the end of the finger is, however, not visible. The merus of the first leg reaches quite to the end of the carpus of the cheliped, its upper margin has a row of small conical tubercles or granules, and there is a cluster of granules near the articulation with the carpus. The merus of the second leg reaches a little beyond that of the first, and is very much stronger; it also has a superior row of granules and a few granules on the outer surface; carpus elongate, about half as long as merus; propodus as wide as the greatest width of the carpus; only a portion of it is visible. Third leg very much shorter and slenderer, its carpus reaching little beyond the merus of the second pair; its merus, as well as that of the second pair, is longitudinally grooved.

The above description is made from two specimens from the same place. Each specimen was enclosed in a nodule which is broken in two. The holotype shows the upper surface of the carapace (except the front part), portions of the left cheliped, and of the 3 legs of both sides. The nodule is not large enough to have included the whole of the legs in their extended position. Cat. No. 324227, U.S.N.M. The paratype shows the carapace only; there is no trace
GEOLOGY AND PALEONTOLOGY OF THE CANAL ZONE. 177

of chelipeds or legs; the nodule is very little wider than the carapace. Cat. No. 324228, U.S.N.M.

Family GECARCINIDAE.

CARDISOMA GUANHUMI Latreille.

Plate 61, figs. 2-4.


Locality.—Costa Rica: City of Port Limon. Port Limon formation. Pliocene series. Dr. L. A. Wailes, collector. Station 4269. Cat. No. 324263, U.S.N.M.

Material.—Left propodal finger of cheliped, with extremities lacking; length 18.5 mm. Pieces of the outer crust remain along the prehensile teeth, around the distal end, and on the lower part of the proximal end, where it shows the characteristic scaly granulation of the species.

Distribution of Recent Material.—From Bahamas and Florida Keys to Brazil; Bermudas.

Family OCYPODIDAE.

UCA MACRODACTYLUS (Milne Edwards and Lucas).

Plate 64, fig. 7.

Gelasimus macrodactylus Milne Edwards and Lucas, d'Orbigny's Voy. Amér. Mér., vol. 6, 1843, p. 27; vol. 9, atlas, 1847, pl. 11, fig. 3.

Locality.—Panama Canal Zone. From near Mount Hope in ditch through swampy ground. About one-quarter mile from present sea beach, 6 to 8 feet above high tide. Pleistocene series. D. F. Mac-Donald, collector. April, 1911. Station 5850. Cat. No. 324251, U.S.N.M.

Material.—A single dactylus, 6.7 mm. long, of an ambulatory leg corresponds with that of a recent specimen from Costa Rica. The dactylus is rather slender, regularly tapering and strongly curved on its concave as well as on its convex margin, it has 6 longitudinal grooves separated by as many smooth rounded ridges; toward the horny tip these ridges are themselves guttered by a narrow groove.

Distribution of Recent Material.—From Guaymas, Mexico, to Valparaiso, Chile.

BRACHYRHYNCHA, family, genus, and species indeterminable.

Plate 64, fig. 6.

Locality.—Panama Canal Zone. Las Cascadas section, Gaillard Cut. From lowest fossiliferous bed. Third bed below lowest lime-

Material.—A specimen 9.3 mm. long and 7.7 mm. wide, which resembles the proximal part of the right manus of a crab. The outer and lower surfaces are exposed, but the outer layer of shell has almost disappeared. The surface gradually ascends to a line a little below the middle where a blunt longitudinal ridge is formed. Just below the upper margin, and also just within the lower margin on the inner side, there is a narrow furrow.

The blunt crest is suggestive of the Portunidae.

BRACHYRHYNCHA, family, genus, and species indeterminable.

Plate 64, fig. 5.


Material.—Two specimens, each embedded in a nodule, of a fragment which appears to be the merus segment of an ambulatory leg of a crab. The surface is flat, the lateral margins are arcuate and there is a shallow longitudinal depression near one edge. The shape is very suggestive of the Portunidae and yet they do not closely resemble any known species.

Superfamily OXYRHYNCHA.

Family PARTHENOPIDAE.

PARTHENOPE PANAMENSIS, new species.

Plate 66, figs. 10 and 11.

Type-locality.—Panama Canal Zone. Las Cascadas section. From fifth or topmost limestone. Emperador limestone. Oligocene series. D. F. MacDonald and T. W. Vaughan, collectors. 1911. Station 6019g. Cat. No. 324257, U.S.N.M.

Measurements.—Length of arm measured along lower margin (incomplete), 24.6 mm.; distal width, measured on inner, lower surface, 6.6 mm.; minimum width, on the same surface, 4.7 mm.

Holotype.—One specimen represented by only the merus joint of the left cheliped. This segment is thick; a cross section is quadri-
lateral and nearly as broad as long; the proximal end is broken off, the distal end is embedded in a hard matrix. The two upper surfaces are each not much more than half as wide as either of the two lower surfaces. The upper, inner and outer margins are armed with irregular spines and tubercles, the lower margin with tubercles only, which are not in a single row; the surfaces also have a few scattered spines and tubercles. The tips of most of the spines are broken off; the largest spines are one on the upper margin near the proximal end (of the specimen), and one just above the outer margin in the middle third. The distal extremity of the segment widens in a manner suggestive of the propodus of a Parthenopid, but it is not triangular-prismatic as customary in the propodal segments.

**PARTHENOPE PLEISTOCENICA, new species.**

Plate 61, figs. 10 and 11.

*Type-locality.*—Panama Canal Zone. From near Mount Hope in ditch through swampy ground. About one-quarter mile from present sea beach, 6 to 8 feet above high tide. Pleistocene series. D. F. MacDonald, collector. April, 1911. Station 5850. Cat. No. 324247, U.S.N.M.

*Holotype.*—Propodial finger of right and major chela; lower proximal portion missing. Lower margin, so far as it remains, nearly straight, tip upturned; upper margin broad at the proximal end and armed with 5 unequal blunt teeth; the first or that nearest the palm is broadly united with the second which is much larger; third of similar size and shape to the second and well separated from it; fourth much smaller and fifth minute. Four lateral rows of punctae, one either side of the prehensile teeth, and one through the middle of the inner and of the outer surface. The posterior half of both surfaces is sparsely covered with prominent and very unequal granules.

*Parthenope excavata* (Stimpson)\(^1\) of which there is an example from Panama in the United States National Museum collection has a similar prehensile surface, but the lateral face is shorter and higher and is granulate all over outside.

**EXPLANATION OF PLATES.**

**Plate 54.**

*Gatunia proovita* Rathbun, holotype, dorsal view, \(\times \frac{3}{4}\).

**Plate 55.**

*Gatunia proovita*, holotype, ventral view, \(\times \frac{4}{3}\).

Plate 56.

Gatunia proavita, holotype.

Fig. 1. Anterior view, \( \times \frac{3}{4} \).
2. Posterior view, \( \times \frac{3}{4} \).

Plate 57.

Fig. 1. Natantia, indeterminable, lateral view of pleon. \( \times 2 \).
2. Axius reticulatus Rathbun, holotype. outer view of propodus of left cheliped, \( \times 3 \).
3. Impression of same.
4. Macrobrachium, species, Cat. No. 324256, outer view of propodus of left cheliped, \( \times 3 \).
5. Upper view of same.
6. Leucosiilia bananensis Rathbun, paratype a, arm joint, \( \times 3 \).
7. Leucosiilia bananensis, paratype b, arm joint, \( \times 3 \).
8. Leucosiilia bananensis, holotype, arm joint, \( \times 3 \).
9. Macrobrachium?, species. Cat. No. 324248, segment of large cheliped, \( \times 3 \).
10. Axius?, species, Cat. No. 324250. scaphocerite, \( \times 3 \).
11. Conochele? armata Rathbun, holotype, outer view of dactylus of left cheliped, \( \times 2 \).
12. Lower view of same, \( \times 2 \).
13. Neophrops costatus Rathbun, holotype, dactylus of left cheliped, inner view, \( \times 3 \frac{1}{4} \).
14. Dorsal view of same, \( \times 3 \frac{1}{4} \).
15. Neophrops costatus, paratype a, dactylus of left cheliped, dorsal view, \( \times 3 \frac{1}{4} \).
16. Neophrops costatus, paratype c, propodal finger of left cheliped, dorsal view, \( \times 3 \frac{1}{4} \).
17. Neophrops costatus, paratype b, dactylus of left cheliped, dorsal view, \( \times 3 \frac{1}{4} \).
18. Petrolistsicus arilus Rathbun, holotype, palm of left cheliped, dorsal view, \( \times 3 \frac{1}{2} \).
19. Inner view of same, \( \times 3 \frac{1}{2} \).
20. Ventral view of same, \( \times 3 \frac{1}{2} \).
21. Pachycheles latus Rathbun, holotype, propodus of left cheliped, ventral view, \( \times 3 \frac{1}{2} \).
22. Dorsal view of same.
23. Pachycheles latus, paratype, left chela, dorsal view, \( \times 3 \frac{1}{2} \).
24. Calappa costaricana Rathbun, holotype, portion of propodus of left chela, outer view, \( \times 3 \).
25. Neophrops, species, Cat. No. 324249, dactylus of right cheliped, prehensile edge, \( \times 3 \frac{1}{4} \).
26. Dorsal view of same, \( \times 3 \frac{1}{4} \).
27. Mursilia cristata Rathbun, holotype, right cheliped, outer view, \( \times 3 \).

Plate 58.

Fig. 1. Calappella quadrispina Rathbun, holotype, impression of carapace, \( \times 3 \).
2. Carapace of figure 1, \( \times 3 \).
3. Panopeus antepurpureus, Rathbun, holotype, dactylus of right cheliped, \( \times 3 \frac{1}{4} \).
Fig. 4, 5. Panopeus antepurpureus, paratypes, dactyli of right chelipeds, \( \times 3 \frac{1}{2} \).
6. Panopeus antepurpureus, paratype, immovable finger of right cheliped, \( \times 3 \frac{1}{2} \).

7–11. Panopeus antepurpureus, paratypes, dactyli of left chelipeds, \( \times 3 \frac{1}{2} \).
12. Panopeus tridentatus Rathbun, paratype, dactylus of right cheliped, \( \times 3 \frac{1}{2} \).
13. Panopeus tridentatus, paratype, propodal finger of right cheliped, \( \times 3 \frac{1}{2} \).
14. Panopeus tridentatus, holotype, dactylus of right cheliped, outer view, \( \times 3 \frac{1}{2} \).

15. Upper edge of same, \( \times 3 \frac{1}{2} \).
16. Fragment of Gatunia prorita ?!, Cat. No. 324286, showing lobe in profile, \( \times 2 \).

17. Flat surface of same, \( \times 2 \).
18. Callianassa hilli Rathbun, paratype b, sixth segment of pleon, \( \times 2 \).
19. Callianassa hilli, holotype, merus and carpus of right cheliped, \( \times 2 \).
20. Callianassa hilli, paratype a, right cheliped, \( \times 2 \).

21. Mursia macdonaldi Rathbun, holotype, left palm, \( \times 2 \).
22. Curpilius, species, Cat. No. 324243, piece of propodus of a left ambulatory leg, \( \times 2 \).

Plate 59.

Fig. 1. Callianassa ovalis Rathbun, holotype, left cheliped, \( \times 2 \).
2. Callianassa ovalis, paratype a, propodus of left cheliped, \( \times 2 \).
3. Impression of figure 1, \( \times 2 \).
4. Callianassa ovalis, paratype b, carpus of left cheliped, \( \times 2 \).
5. Callianassa, species, Cat. No. 324277, manus of left cheliped, \( \times 3 \frac{1}{2} \).
6. Callianassa lacunosa Rathbun, holotype, left manus, distal view, \( \times 3 \).
7. Outer view of same, \( \times 3 \).
8. Inner view of same, \( \times 3 \).
9. Callianassa lacunosa, paratype, left manus, inner view, \( \times 3 \).
10. Outer view of same, \( \times 3 \).
11. Distal view of same, \( \times 3 \).

Plate 60.

Fig. 1. Callianassa noinensis Rathbun, holotype, propodus of right cheliped, lower view, \( \times 3 \).
2. Upper view of same, \( \times 3 \).
3. Outer view of same, \( \times 3 \).
4. Callianassa elongata Rathbun, holotype, propodus of left cheliped, upper view, \( \times 2 \).
5. Outer view of same, \( \times 2 \).
6. Lower view of same, \( \times 2 \).
7. Leucosiidae?, indeterminable, Cat. No. 324136, dactylus of left chela, outer view, \( \times 3 \frac{1}{2} \).
8. Upper view of same, \( \times 3 \frac{1}{2} \).
9. Callianassa scotti Brown and Pilsbry, holotype, left manus, lower view, \( \times 1 \frac{1}{2} \).
10. Callianassa scotti, paratype, Cat. No. 2259, left propodus, upper view, \( \times 1 \frac{1}{4} \).
11. Outer view of same, \( \times 1 \frac{1}{4} \).
12. Callianassa scotti, Cat. No. 324279, left manus, distal view, \( \times 1 \frac{1}{4} \).
13. Callianassa tenus Rathbun, holotype, left manus, inner view, \( \times 3 \).
14. Outer view of same, \( \times 3 \).
Fig. 1. *Callianassa crassa* Rathbun, holotype, dactylus of left cheliped, upper view, × 2.
2. Outer view of same, × 2.
3. *Callianassa crassa*, paratype, dactylus of left cheliped, outer view, × 3.
5. Outer view of same, × 2.
8. Distal view of same holotype, × 2.
9. Inner view of same, × 2.
11. Outer view of same, × 3½.
12. *Callianassa quadrata* Rathbun, holotype, left manus, outer view, × 3.
13. Upper view of same, × 3.
15. *Callianassa crassimana* Rathbun, holotype, propodus of left cheliped, inner view, × 2.
16. Impression of same, and piece of finger, × 2.
17. Holotype laid against impression of same, outer view, × 2.

Plate 62.

Fig. 1. *Callianassa magna* Rathbun, holotype, dactylus of right cheliped, inner view, × 1½.
2. Outer view of same, × 1½.
3. Upper view of same, × 1½.
5. Lower view of same, × 2.
6. Outer view of same, × 2.
7. *Callianassa quadrata*, holotype, left manus, distal view, × 2.
8. Inner view of same, × 2.
10. *Callianassa quadrata*, paratype a, left manus, outer view, × 2.
11. Inner view of same, × 2.
12. Distal view, × 2.
13. *Callianassa quadrata*, paratype c, right manus, outer view, × 2.

Plate 63.

Fig. 1. *Callianassa abbreviata* Rathbun, holotype, right manus, inner view, × 3.
2. Outer view of same, × 3.
3. Distal view of same, × 3.
4. Impression of same, × 3.
5. *Callianassa abbreviata*, paratype l, piece of propodus of left cheliped, outer view, × 3.
Fig. 6. Callianassa abbreviata, paratype a, left manus, outer view, × 3.
7. Heteractaea lunata (Milne Edwards and Lucas), right chela, Cat. No. 324265, outer view, × 3½.
8. Upper view of same, × 3½.
9. Heteractaea lunata, right chela of Recent specimen, Cat. No. 2146, × 3½.
10. Callianassa vaughani Rathbun, paratype b, portion of propodus of left cheliped, outer view, × 2.
11. Callianassa vaughani, paratype a, left manus, outer view, × 2.
12. Inner view of same, × 2.
13. Callianassa vaughani, holotype, right chela, outer view, × 2.

Plate 64.

Fig. 1. Arcnacis, species, Cat. No. 324252, left movable finger, outer view, × 3½.
2. Cardisoma guanhumi Latreille, propodal finger of left cheliped, outer view, × 3.
3. Lower view of same, × 3.
4. Upper view of same, × 3.
5. Brachyphypha, indeterminable, Cat. No. 324258, merus of ambulatory leg, × 3.
7. Uca macrodactylus (Milne Edwards and Lucas), Cat. No. 324251, dactylus of ambulatory leg, × 3½.
9. Upper view of same, × 3½.
11. Euphylax forti Rathbun, holotype, right side, showing cross sections of merus of cheliped and of two legs, × 1½.
12. Front view of same, showing remains of fingers, × 1½.
13. Ventral view of same, × 1½.

Plate 65.

Fig. 1. Callinectes, species, Cat. No. 324255, manus and carpus of left cheliped, outer view, × 1½.
2. Upper view of same, × 1½.
3. Euphylax callinectis Rathbun, holotype, dorsal view, × 1½.
4. Posterior view of same, × 1½.
5. Ventral view of same, × 1½.
6. Anterior view of same, × 1½.
7. Callinectes, species, Cat. No. 324288, distal third, tip missing, of immovable finger, × 3.

Plate 66.

Fig. 1. Callinectes declivis Rathbun, holotype, propodus of left cheliped, upper view, × 1¼.
2. Inner view of same, × 1¼.
3. Outer view of same, × 1¼.
5. Callinectes reticulatus Rathbun, holotype, propodus of right cheliped, upper view, × 1¼.
Fig. 6. Inner view of same, $\times 1\frac{1}{2}$.
7. Outer view of same, $\times 1\frac{1}{4}$.
9. Outer view of same, $\times 3$.
10. *Parthenope panamensis* Rathbun, holotype, merus of left cheliped, outer view, $\times 1\frac{1}{2}$.
11. Inner view of same, $\times 1\frac{1}{4}$.
12. *Hepatus*, species, Cat. No. 324239, dactylus of left cheliped, outer view, $\times 2$.
13. *Euryplex culebrensis* Rathbun, holotype, propodus of right cheliped, upper view, $\times 3\frac{1}{4}$.
14. Outer view of same, $\times 3\frac{1}{2}$.
16. Impression of same, $\times 2$.
18. Impression of same, $\times 2$. 
Panama Decapod Crustaceans.

For explanation of plate see page 180.
Panama Decapod Crustaceans.

For explanation of plate see page 180
Panama Decapod Crustaceans.

For explanation of plate see page 181.
Panama Decapod Crustaceans.

For explanation of plate see page 181.
Panama Decapod Crustaceans.

For explanation of plate see page 182.
Panama Decapod Crustaceans.

For explanation of plate see page 182
Panama Decapod Crustaceans.

For explanation of plate see pages 182-183.
Panama Decapod Crustaceans.

For explanation of plate see page 183.
Panama Decapod Crustaceans.

For explanation of plate see page 183.
Panama Decapod Crustaceans.

For explanation of plate see pages 183, 184.
INDEX.

abbreviata, Callianassa .......... 125, 129, 137, 147, 182, 183
acanthurus panamense, Macrobromichium .......... 131
affinis, Eurytium ................. 174
affinis, Panopeus ................. 174
Amorphopus ..................... 175
angulata, Goniochele ............. 155
Anomura ......................... 134
antepius-purens, Panopeus ...... 128, 130, 172, 180, 181
Arenaeus mexicanus ............... 165
species 128, 130, 165, 183
armata, Goniochele? .............. 125, 129, 154, 180
Mursia ......................... 159
armatus, Petrolisthes .......... 135
Astacura ......................... 132
avitus, Petrolisthes .......... 127, 129, 154, 180
Axilidae ......................... 135
Axius ................................ 123, 136
reticulatus 125, 129, 135, 180
species 128, 129, 136, 180
bahamensis, Cancer ............ 153
Petrochirus ...................... 153
Balanus concavus rariseptatus 126, 129
eburneus 127, 128, 129
glyptopoma 127, 129
(Hesperibalanus?), species 124, 125, 129
bananensis, Leucosilia 127, 130, 161, 180
bocourtii, Callinectes ........... 166
bouvieri, Petrochirus .......... 129, 153
Brachymathia ................... 162
Brachyrhyncha .................. 162
family, genus and species indeterminable 125, 130, 177, 178, 183
Brachyura ........................ 154
Calappa ......................... 180
costaricana 127, 130, 156, 180
flammea 128, 130, 157, 182
gallus 156
zurcheri 124, 130, 157
Calappella ...................... 130, 157
quadrispina 125, 130, 157, 180
Calappidae ...................... 155
californiensis, Petrochirus ...... 153
Callianassa ..................... 124, 136
abbreviata 125, 129, 137, 147, 182, 183

Callianassa crassa 126, 129, 137, 152, 182
crassimana 125, 129, 137, 141, 182
elongata 125, 129, 136, 139, 146, 181
hilli 126, 129, 137, 148, 181
lacunosa 124, 129, 136, 138, 181
magna 125, 129, 137, 151, 182
moineus 126, 129, 136, 142, 181
ovalis 125, 129, 136, 137, 181
pellucida 124, 125, 129, 137, 145, 182
quadra 124, 125, 129, 137, 145, 182
scotti 124, 125, 129, 136, 140, 142, 143, 145, 146, 181
species 129, 132, 181
species 125, 129, 153, 183
spinulosa 124, 125, 129, 136, 143, 182
stimpsoni 148
stridens 125, 129, 137, 151, 182
tenuis 126, 129, 136, 144, 181
toulai 124, 129, 137, 146
vaughani 125, 126, 129, 137, 148, 183

Callianassidae .................. 136
Callinectes ...................... 163, 166, 169
bocourtii 127, 128, 129, 166
declivis 127, 130, 162, 164, 183
exasperatus 166
reticulatus 125, 130, 163, 164, 183
species 125, 130, 164, 183
toxotes 127, 130, 164, 183
callinectias, Euphylax .......... 127, 130, 165, 167, 183
Callinectias .................... 131
Cancer (Astacus) jamaicensis 131
bahanensis 153
flammeus 157
gallus 156
Cancridae ....................... 123
Cardisoma ....................... 123
guanhumi 127, 130, 177, 183
Carpilius ......................... 171
corallinus 171
species 125, 130, 177, 181
INDEX.

chilensis, Panopeus .......................... 174
chilensis, Hepatus ......................... 128, 129, 155, 183
corneus rarisextatus, Balanus ..... 126, 129
corallina, Carpilius .......................... 171
costaricana, Calappa ......................... 127, 129, 156, 180
costatus, Nephrops .......................... 128, 129, 132, 133, 180
cressa, Callianassa .......................... 126, 129, 137, 152, 182
cressimana, Callianassa ...................... 125, 129, 137, 141, 182
crenulatum, Eurytium .......................... 127, 130, 174, 183
culebrensis, Euryplax ......................... 125, 130, 174, 184
Decapoda ......................................... 131
devilis, Callinectes ........................... 127, 130, 162, 164, 183
dovi, Euphylax ................................. 166
Dromiacea ....................................... 154
Dromiidae ....................................... 154
eburneus, Balanus ............................. 127, 128, 129
eristata, Muralia .............................. 126, 130, 160, 180
eIonanta, Callianassa ........................ 125, 129, 136, 139, 146, 181
Euctenota mexicana ............................ 165
Euphylax ........................................ 125, 160, 167
callinectes ................................. 127, 130, 163, 167, 183
dovi ............................................. 170
fortis .......................................... 127, 130, 167, 183
Euryplax ......................................... 123
culebrensis ................................. 125, 130, 174, 184
nitida ........................................... 175
polita .......................................... 175
Eurytium ........................................ 123, 174
affine .......................................... 174
crenulatum ................................. 128, 130, 174, 183
tristani ........................................ 174
exasperatus, Callinectes ..................... 166
evacuta, Parthenope ......................... 179
evacuta, Lambus ............................... 179
fammea, Calappa .............................. 128, 130, 157, 182
fammeus, Cancer .............................. 151
fortis, Euphylax .............................. 127, 130, 167, 183
Galathidea ...................................... 134
galathina, Porcellana ........................ 135
galathinus, Petrolithes ........................ 135
gallus, Calappa ............................... 156
Cancer ........................................ 156
Catula ......................................... 130, 168, 170, 180, 181
Catulldace ..................................... 168
Gecareusidae .................................. 177
Gelasimus macrodactylus .................... 177
glyptopoma, Balanus ......................... 127, 129
Goneplacidae .................................. 123, 174
Goniocoche .................................... 154
angulata ....................................... 155
armata ......................................... 125, 129, 154, 180
granulatus, Petrochirus .................... 153
grossimanus, Pachycheles ................... 131
guanhum, Cardisoma .......................... 127, 130, 177, 183
Hepatus ........................................ 123
chilensis ................................. 128, 129, 155, 183
species ....................................... 125, 129, 155, 184
Hesperbalanus, species ...................... 124, 125, 120
Heteractae ..................................... 123
lungata ................................. 127, 130, 171, 183
Hexaplax ........................................ 175
Hexapodinae .................................. 123, 175
Hexapus ........................................ 175
Hili, Callianassa .............................. 126, 129, 137, 148, 181
Homeridae ..................................... 132
Injudicata, Lepas ............................ 126, 129
Jamaicence, Macrobrachium .................. 131
Jamaicensis, Cancer (Astacus) .............. 131
Jurinel, Leucothyla ........................... 128, 130, 161
Lamnoidea ...................................... 124
Lamnochla ................................. 129, 136, 138, 181
Lambdophallus ................................ 175
Lambros excavatus ......................... 179
latus, Pachycheles ............................ 127, 129, 134, 180
Lepas Injudicata ............................. 126, 129
Leucothyla ..................................... 161
genus and species inde-terminable ........... 128, 130, 162, 181
Leucothyla ..................................... 123
bunane ................................. 127, 130, 161, 180
jurinel ................................. 128, 130, 161
lungata, Heteracta ........................... 127, 130, 171, 183
lunatus, Pilumnus ............................ 171
macdonaldi, Mursia ........................... 126, 130, 158, 181
Macrobrachium ............................... 131
acanthurus panama- nese ..................... 131
Jamaicence .................................... 131
mexicanum .................................. 131
species ................................. 126, 129, 130, 180
species ................................. 128, 129, 132, 180
macrodactylus, Gelasimus .................. 177
Uca ............................................ 128, 130, 177, 183
magna, Callianassa .......................... 125, 129, 137, 151, 182
Malacostraca .................................. 131
mexicana, Euctenota ......................... 165
mexicanum, Macrobrachium ................ 131
mexicanus, Arentaeus ....................... 165
Palaemon ..................................... 131
michellini, Scylla ............................ 171
molnensis, Callianassa ....................... 126, 129, 130, 180
136, 142, 181
Mursia ........................................ 132, 136, 160
armata ....................................... 159
macdonaldi ................................. 126, 130, 158, 181
obscura ................................. 124, 130, 159, 182
Murslia ........................................ 160
eristata ................................. 126, 130, 160, 180
Natantia ....................................... 131
family, genus, and species inde-terminable .... 129, 131, 180
Nephrops ...................................... 123
costatus ................................. 128, 129, 132, 180
species ....................................... 128, 129, 133, 180
Neptunus ..................................... 163
nitida, Euphylax ............................. 175
obscura, Mursia .............................. 124, 130, 159, 182
Oxyrhynchidae ................................ 177
ovalis, Callianassa ......................... 125, 129, 130, 180
Oxyrhyncha .................................. 136, 137, 181
INDEX.

Oxytomata ........................................ 155
Pachycheles ...................................... 123
grossimanus ....................................... 134
latus ............................................. 127, 129, 134, 180
Paedum ............................................ 175
Paguridae .......................................... 153
Palaemon mexicanus .............................. 131
Palaemonidae ..................................... 131
panamanense, Macrobrachium acanthurus .... 131
panamensis, Parthenope .......................... 126, 130, 178, 184
Panopeus ........................................... 173, 174
affinis ............................................. 174
anteriorpurpurs .................................. 128, 130, 172, 180, 181
chilensis .......................................... 174
purpureus ......................................... 172
descriptus ......................................... 125, 130, 173, 184
Parthenope excava ................................ 179
panamensis ........................................ 126, 130, 178, 184
pleistocenea ...................................... 128, 130, 173, 182
Parthenopidae .................................... 179
Persephona ........................................ 162
Petrochirus ........................................ 124
bahamensis ........................................ 153
bouvieri .......................................... 129, 153
californiensis .................................... 153
granulatus ........................................ 153
Petrolisthes ....................................... 123
armatus ........................................... 135
avitus .............................................. 127, 129, 134, 150
galathinus ......................................... 135
Pilumnus latus .................................... 171
pleistocenea, Parthenope ....................... 128, 130, 179, 182
polita, Euryplax .................................. 175
Porcellana armata ................................ 135
galathina .......................................... 135
Porcellanidae ..................................... 154
Portunidae ......................................... 123, 162
Portuus ........................................... 163
sanguinoventus ................................. 134
prima, Thaumastoplaa ............................ 125, 130, 175, 184
Prionoplactae .................................... 174
proavita, Gatinia .................................. 126, 130, 179, 180, 181
purpureus, Panopeus ............................ 172
quadra, Callianassa .............................. 124
125, 129, 137, 145, 182
quadrispina, Calappella ....................... 125, 130, 157, 180
rarisubitus, Balanus concavus ................ 126, 129
Reptantia .......................................... 132
reticulosus, Axius ................................ 125, 129, 135, 180
Callinectes ....................................... 125
130, 163, 164, 183
sanguinoventus, Portunus ..................... 163
spadix, Callinectes .............................. 163
scotti, Callianassa ............................... 124, 125, 129, 130, 142, 145, 146, 181
Seyll .............................................. 167, 168, 169, 170
michelin .......................................... 171
spinulusa, Callianassa .......................... 125, 129, 130, 143, 182
stimous, Callianassa ............................ 148
stridens, Callianassa ............................ 125, 129, 137, 151, 182
tenuis, Callianassa ............................. 148
Thalassindea ...................................... 135
Thaumastoplaa ................................... 175
prima .............................................. 125, 130, 175, 184
toulai, Callianassa ............................... 124, 129, 137, 140
toxotes, Callinectes ............................. 165
tridentatus, Panopeus ........................... 128, 130, 172, 181
tristani, Eurytium ............................... 174
Uca macraclyti................................. 128, 130, 177, 183
vaughani, Callianassa ......................... 125, 126, 129, 137, 145, 158
Xanthidae ......................................... 171
zurcheri, Calappa ............................... 124, 130, 157
CIRRIPEDIA FROM THE PANAMA CANAL ZONE.

By Henry A. Pilsbry,
Of the Academy of Natural Sciences, Philadelphia.

The small number of barnacles collected show the following relations. The Pleistocene and Pliocene species are identical with recent Atlantic coast and Caloosahatchie Pliocene species, respectively, and are distinctively Atlantic forms. Of the Oligocene and Miocene species, one has relatives in both oceans, another only in the Pacific; the affinities of the third being doubtful.

**BALANUS EBURNEUS** Gould.


This recent species is represented by four individuals from Station 5867, the wall being preserved complete, but without opercular plates. The smooth surface and the closely, regularly septate parietal tubes are characteristic, the septa forming cells about equal in length and breadth, throughout the tubes.

*Locality and geologic occurrence.*—They are from a dark mud formation about 10 feet above the present sea level, near lower end of Gatun Locks. Pleistocene series. D. F. MacDonald, collector. April, 1911. Cat. No. 324297, U.S.N.M. Five specimens, from Station 5868, from Mount Hope, in swamp ditch, in black mud formation; Pleistocene; D. F. MacDonald, 1911. Cat. No. 324290, U.S.N.M.

Ten specimens of the same were taken at Station 6088, also from black mud from lower end of Gatun Locks. Pleistocene series. D. F. MacDonald, collector, 1911. Cat. No. 324293, U.S.N.M.

**BALANUS GLYPTOPOMA** Pilsbry.

_Plate 67, figs. 1–3._

_Balanus concavus glyptopoma_ Pilsbry, Bull. U. S. Nat. Mus., No. 93, p. 102. pl. 21, fig. 2; pl. 22, figs. 2–2c.

The walls only of several groups growing on oysters and scallops were collected. They agree with the above species described from the Pliocene of the Caloosahatchie River, and show some additional characters, notably the color. The radii are broad. The parietes are weakly ribbed longitudinally, the intervals in the best preserved individuals being of a deep livid brown color, the low ribs white. The parietal tubes are crossed by many septa, down to the base; these are a little less regular than in _B. eburneus_, most of the cells being longer.
than wide, exactly as in the type of *B. glyptopoma*. There are 16 tubes in the rostrum of one of the specimens figured (fig. 2). The basis is profusely porous, the pores septate (fig. 3, left hand and middle individuals of group shown in fig. 1). The middle specimen of this group is 31 mm. high, the rostro-carnial diameter about 22 mm.

*B. glyptopoma* was described as a subspecies of *B. concavus* Bronn, but it differs from that by the closely seaptate parietal tubes, and is evidently a distinct species. In *B. concavus* the tubes are filled up near the summits, and are open, with very few septa below, or none in the American subspecies. The Miocene form formerly referred to *B. glyptopoma* is a distinct subspecies of *B. concavus*.

**Location and geologic occurrence.**—The specimens are from Station 5903, across Chagres River and about 200 to 225 feet above it, top of hill opposite Alhahuela, in a gray tufaceous limestone, Cat. No. 324298, U.S.N.M. and Station 5906a, 50 to 75 feet below 5905, Cat. No. 324299, U.S.N.M. Both collected by D. F. MacDonald. Upon mentioning to Dr. William H. Dall that I had identified a Pliocene barnacle from these Stations, he kindly informed me that "both are above the Oligocene strata and separated from the latter by an unconformity. They are doubtless Pliocene. 5906a is the lower of the two horizons."

Mexico. From the Sayula District of Chiapas, on the Arroyo Chapapoapam. Pliocene series. Dr. C. W. Hayes and others, collectors; 1911. Station 5886. One specimen, without opercular valves. Cat. No. 324291. U.S.N.M.

**Balanus concavus rariseptatus**, new subspecies.

Plate 67, fig. 4.

In form this barnacle is somewhat cylindric with contracted summit in the adult stage, convexly conic when young. The orifice is ovate. The walls are only slightly roughened longitudinally. The carinolateral compartments are narrow, the parietes about one-third as wide as the lateral compartments. The radii are wide with oblique summits, without pores; the articulating edges being crenulated. The parietal tubes have very few, irregularly scattered, transverse septa. There are 29 tubes in the rostrum of the type-specimen. Another, of equal size, has 17 tubes in the lateral, 6 in the carinolateral compartment.

**Length**, 27 mm.; carino-rostral diameter, 22.5 mm.; lateral diameter, 21 mm. In the largest individual exposed the rostrum is 35 mm. long.

This form is represented by a group of about 16 individuals growing upon and largely concealing a single old one of about 37 mm. basal diameter. Probably three generations are present. They were
in a tufaceous limestone. The tubes of the walls are solidly filled with calcite.

This was at first thought to be a smooth form of *Balanus concavus* Bronn, but on cutting it the parietal tubes were found to be much more numerous. In a specimen of *B. concavus* from the British Red Crag (Pliocene), No. 12058, U.S.N.M., there are 19 tubes in the rostrum, which is 65 mm. long. Most of these tubes have transverse septa at long, irregular intervals, but in some places near the edges the septa are rather close, though irregular.

The relation of this form to *B. concavus* can not be exactly estimated until the opercular plates are found. It may be an ancestral form of *concavus* or a distinct species. Meantime, it is readily recognizable by the characters of the compartments.

**Locality and geologic occurrence.**—Panama Canal Zone. From 85 foot cut, just on north side of big swamp, on relocated line Panama Railroad, 1 1/2 to 2 miles beyond Camp Cotton toward Monte Lirio. Gatun formation. Miocene series. D. F. MacDonald and T. W. Vaughan collectors, 1911. 1 cluster; Cat. No. 324292, U.S.N.M.

**Balanus (Hesperibalanus?)**, species.

A small, conic barnacle having a basal diameter of about 7 or 8 mm. is represented by several compartments and one incomplete specimen, without opercular valves. The walls are smooth except for slight ripples parallel to the base. They are solid, having no parietal tubes. The compartments are rather thick for so small a barnacle, and when parted the articulating edges of the radii and the opposed sutural surfaces are seen to be conspicuously crenulated. The basis is calcareous, thin, and seems to have radial threads on its inner face.

These characters indicate a species of the subgenus *Hesperibalanus*, or possibly *Solidobilanus*. Neither group has been recognized hitherto in American tertiary deposits, or in the recent faunas of the Panamic region or western Atlantic. The specimens do not seem characteristic enough to serve as the basis of a new species, though they can not, I think, be referred to any described form.

**Locality and geologic occurrence.**—They were collected by MacDonald and Vaughan in the “lowest fossiliferous bed, the third below the lowest limestone bed, Las Cascadas section, Gaillard Cut. Lower part of upper half of Culebra formation. Oligocene.” Station 6020a, Cat. No. 324295, U.S.N.M.

A single valve was taken one-fourth mile south of Empire Bridge, from lower dark clay beneath lower conglomerate, lower part of Culebra formation, Oligocene; Station 6012a; Cat. No. 324296, U.S.N.M.
This species is based upon a calcareous plate believed to be the scutum of a Lepadid barnacle. It is thin, trapezoidal in outline, the basal border straight, almost equal to the length, and a little contracted or narrowly bent in. The tergal extremity is broad and somewhat convex. The occludent margin is almost straight. The surface has the curvature of an ordinary *Lepas*, such as *L. anatifera*, and is sculptured with coarse, unequal concentric folds, with, towards the growing edges, some rather fine concentric striation.

The fossil is imperfect at the tergal end, but if restored according to the lines of growth it would be about 25 mm. long; width 23 mm.

That the fossil has been correctly interpreted is by no means certain. If Lepadid, as believed, the very obtuse tergal end probably indicates a small, transversely placed tergum, not running between scutum and carina, or perhaps none. Either condition would denote greater specialization than the modern genus *Lepas*. However this may be, the fossil is specifically recognizable by its form and sculpture, and we must await the finding of further material to reveal its nature.

**Locality and geologic occurrence.**—The holotype is No. 324448, U.S.N.M. It was found by MacDonald and Vaughan in a section of the bluffs exposed along the Panama Railroad. Relocation, about 3,500 feet south of Gatun Railroad Station, in bed No. 6033b, Gatun formation. Miocene series.

**EXPLANATION OF PLATE 67.**

1. *Balanus glyptopoma* Pilsbry. Lateral view of group from Station 5903.  
2. Rostral view of a specimen of *B. glyptopoma* growing on *Pecten*, Station 5903, the outer lamina of the wall removed. Length of rostrum 16 mm.  
3. *Balanus concavus rariseptatus* Pilsbry. Type.  
5. *Lepas injudicata* Pilsbry. Type.
Panama Cirripedes.

For explanation of plate see page 188.
FOSSIL CORALS FROM CENTRAL AMERICA, CUBA, AND PORTO RICO, WITH AN ACCOUNT OF THE AMERICAN TERTIARY, PLEISTOCENE, AND RECENT CORAL REFS.

By Thomas Wayland Vaughan,

INTRODUCTION.

The object of the present memoir is to contribute information that may aid in deciphering the geologic history of the perimeters of the Gulf of Mexico and the Caribbean Sea. Therefore, problems of correlation, the physical conditions under which the different formations were deposited, and the distribution of land and sea during the successive geologic epochs have been particularly in mind.

The material on which this paper is based is extensive. It includes collections made in Panama by Dr. D. F. MacDonald and me, working jointly, and by Doctor MacDonald while alone; and Dr. Ralph Arnold obtained a small but valuable lot of specimens at Empire in the Canal Zone. The collections from Cuba were made by Dr. Arthur C. Spencer, Mr. O. E. Meinzer, and myself; the one from Porto Rico was made by Mr. R. T. Hill, who also obtained a small but valuable lot of specimens in Antigua; the principal collections from Antigua and Anguilla are the results of my individual efforts, and I obtained considerable material in St. Bartholomew, but not so much as Cleve got in 1869. There are numbers of small lots, as follows: One from Nicaragua, obtained by Dr. C. W. Hayes; one from Colombia, collected by Mr. G. C. Matson; specimens from Limon, Costa Rica, procured by Doctor Wailes and Mr. H. Pittier; and specimens from eastern Mexico, obtained by Mr. E. T. Dumble. All of the collections mentioned are the property of the United States National Museum, having been made in connection with official work of some kind, or the material, if privately collected, has been presented to the Museum. Messrs. Matson, Wailes, Pittier, and Dumble have presented specimens. My own collecting in Antigua, St. Bartholomew, and Anguilla was made possible by a minor grant from the Carnegie Institution of Washington, and as a result I brought some thousands of specimens to Washington.
These were presented to the United States National Museum by
the Carnegie Institution.

Besides having studied the material indicated, I have twice been
able to examine all of Duncan’s types preserved in the Museum of the
Geological Society of London and in the British Museum (Natural
History), and I heartily thank the officers of those institutions for
the privileges accorded me. In 1904 Prof. A. G. Högbom and
Prof. C. Wiman most generously permitted the Cleve collection
from St. Bartholomew and Anguilla to be sent to me in Washington.
This collection contained all of Duncan’s types from St. Bar-
tholomew; and I thank Messrs. Högbom and Wiman for the excellent
opportunity they gave me. Some duplicates from the Cleve col-
lection, identified by direct comparison with Duncan’s types, were
procured for the United States National Museum by exchange.

Opportunities to study the Gabb collection from Santo Domingo,
divided between the Philadelphia Academy of Natural Sciences and
the Museum of Comparative Zoology, and the specimen obtained by
Miss Carlotta J. Maury in Santo Domingo, have been very valuable.
In fact, as a result of Miss Maury’s careful stratigraphic studies in
that Republic, the stratigraphic relations of the Santo Domingan
faunas became known. Except retaining a few duplicates, she has
generously presented to the United States National Museum the
material obtained by her.

I wish to thank my associates in the United States National Museum
and in the United States Geological Survey for their helpfulness
during the prosecution of this study. Mr. W. O. Hazard, of the
Survey, photographic laboratory, made most of the photographs used
for illustrations, and Miss Frances Wiesser retouched some of them.

There is almost no literature on the Tertiary fossil corals of
Central America, Cuba, or Porto Rico. I listed a few Pleistocene
species obtained by Mr. R. T. Hill at a place 1½ miles west of Port
Limon, Costa Rica;¹ and Felix has recorded from Colombia² three
species, as follows:

Orbicella theresiana Felix, probably a synonym of Solenastrea
bournoni M. Edward and Haime.

Isastraea turbinata Duncan.

Stephanocoenia cf. S. fairbanksi Vaughan.

None of these records is further considered in the present paper.

Toula has described Oculina gatunensis from Gatun (see footnote,
page 352 of this paper).

GEOLOGIC CORRELATION BY MEANS OF FOSSIL CORALS.

That vegetative variation in corals is great and that without large
suites of specimens the limits of variation can not be ascertained are

Sitzungsber., vol. 35, pp. 82-93, 1905.
two facts so well known to students of Madreporaria that they need only to be mentioned. I can not be sure that all of the supposed species recorded in this paper as valid are really valid; and perhaps in identifying specimens from one locality with species from other localities I may not always have discriminated closely enough. I am discussing close resemblances and minute differences, for these are the basis of correlation within such regional limits as the borders of the Gulf of Mexico and the Caribbean Sea, and the recognition and proper evaluation of this kind of resemblances and differences affects the reliability of the deductions as to age equivalence. I have been as careful as I well could be, but I should not like to insist that I am always right in these very refined matters of observation and of inferences based on such refined observation. In order to minimize error inherent in such work, I have tried not to rely on one species, but on groups of species—for instance the species of Orbicella and of Goniopora in both the Emperor limestone and the Anguilla formation—and I have utilized the testimony of other groups of organisms.

Comparisons of faunas according to the percentages of species in common may be very misleading. Faunas now living only a short distance from each other may have nothing or almost nothing in common. In order to illustrate this I am introducing a table of the corals obtained in the Cocos-Keeling Islands by Dr. F. Wood Jones. Although the list has been published elsewhere, it is not very long and strikingly illustrates faunal phenomena that are of great geologic importance.

List of corals obtained by Dr. Wood Jones in Cocos-Keeling Islands and their habitat.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seriatopora angulata Klunzinger, delicately branched.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pocillopora bulbosa Ehrenberg, br., form depends on environment</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>daniiformis (Esper), br., rather strong</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>verrucosa (Ellis and Solander), stout br</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clesopa Dana, strong br., aborted on surf.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>epona M. Edwards and Haine, br., rather strong</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>woodjonesi Vaughan, br., rather strong</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbicella versipora (Lamark), msv</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyphastrea microphthalmus (Lamark), msv</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinopora lamellosa (Esper), thin folia</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptastrea caripora (Dana), msv</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>baltica (M. Edwards and Haine), msv</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>immersa Klunzinger, msv</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favitesstelligera (Dana), msv</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>speciosa (Dana), msv (dead specimen)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favites abdita (Ellis and Solander), msv</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>melicerum (Ehrenberg), msv (dead specimen)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptoria phrygia (Ellis and Solander), msv</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrophiura microconus (Lamark), msv (dead specimen)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ecora (Pallar), lobate</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

List of corals obtained by Dr. Wood Jones in Cocos-Keeling Islands and their habitat—Continued.

<table>
<thead>
<tr>
<th>Name of species and growth-form</th>
<th>Lagoon</th>
<th>Barrier pools and barrier flat</th>
<th>Exposed barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Fungia fungites</em> (Linnaeus), free disk</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td><em>scutaria</em> Lamark, free disk</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td><em>Herpetopita crassa</em> Dana, free coral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Purona danae</em> (M. Edwards and Haime), strong folia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>malediscus</em> (Gardiner), msv</td>
<td></td>
<td></td>
<td>Lagoon edge of barrier.</td>
</tr>
<tr>
<td><em>serrata</em> Verrill, msv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Psammocora haliana</em> M. Edwards and Haime, msv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp., incrust.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Dendrophyllia willeyi</em> (Gardiner), msv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>diaphana</em> Dana, incrust., base, protub. coralites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Astreopora myriophthalma</em> (Lamark), msv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Montipora levis</em> Quad., br.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>futaosa</em> (Dana), frag., br.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>ramosa</em> Bernard, frag., br.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>cocosensis</em> Vaughan, br.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>spumosa</em> (Lamark), msv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp., lobate columns.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>informis</em> Bernard, msv., pl. on lower edges.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>folia</em> (Pallas), thin folia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Acropora pulchra</em> (Brook), frag., br.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>pharaoenis</em> (M. Edwards and Haime), br.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>forms arabica</em> (M. Edwards and Haime)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>corymbosa</em> (Lamark), corymbose.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>specifera</em> (Dana), corymbosa.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>scherzeriana</em> (Brueggenmann), msv., base, stout br.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>ocella</em> (Klunzinger), msv., lob.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>variabilis</em> (Klunzinger), br.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>pelitfera</em> (Lamark), strong br.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Porites solida</em> (Forskål), msv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>somaliensis</em> Gravier, msv.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>lichen</em> Dana, incrust.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>nigrescens</em> Dana, br.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Millepora dichotoma</em> Forskål, br.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>platyphylla</em> Ehrenberg, strong folia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp., incrust.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of species according to locality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Of the 23 species found in the lagoon, 3 also occur on the exposed barrier, and one of these is so modified to meet surf conditions that ordinarily the specimens from the two localities would not be recognized as belonging to the same species. Thirteen per cent of the lagoon species occur on the exposed barrier; while 18 per cent of the exposed-barrier species occur in the lagoon. These are the relations within perhaps half a mile. There are 20 species in the barrier pools and on the barrier flat. Of these 6 occur within the lagoon and 2 were obtained on the exposed barrier; or there are 30 per cent in common with the lagoon and 10 per cent in common with the exposed barrier. When such relations as these prevail among the living corals of a small group of small islands, what are the chances that we should among fossil corals get a large percentage of common species?

The collection listed shows that certain species do occur in all three habitats, and, by searching, spots may be found where the
faunas of the different habitats mingle. Corals of the same habitat should be compared, or groups of species of the same genera, as I have done for Empire (Canal Zone) and Anguilla, where the habitats are nearly enough alike for the same genus to thrive in both. Unless it can be established that the habitats are ecologically very nearly the same the percentages can not be used safely.

**GEOLOGIC HISTORY OF THE UPPER EOCENE AND LATER CORAL FAUNAS OF CENTRAL AMERICA, THE WEST INDIES, AND THE EASTERN UNITED STATES.**

**Eocene.**

**BRITO FORMATION, NICARAGUA.**

Dr. C. W. Hayes collected on or near the Pacific coast of Nicaragua the following species:

*Astrocoenia d'achiardii* Duncan.

*Syzygyophyllia hayesi* Vaughan.

**ST. BARTHOLOMEW LIMESTONE.**

I am introducing the name St. Bartholomew limestone for the upper Eocene limestones of St. Bartholomew. Description of the rock, its stratigraphic relations, and summaries of its faunal characters are given in the papers referred to in the footnotes. Only two species of corals found in the St. Bartholomew limestone are actually described in the present memoir, namely:

*Astrocoenia d'achiardii* Duncan.

*incrustans* (Duncan) Vaughan.

The fossil corals from the St. Bartholomew limestone have been specially considered by Duncan and myself. Prof. A. G. Högborn, of the University of Upsala, kindly lent me in 1904 the entire Cleve collection from St. Bartholomew, and in 1914 I spent eight days studying and collecting on the island. I am combining both the Cleve and my collections in the following list, and am adding the names of the Jamaican Eocene species, several of which also

---


occur in St. Bartholomew. Duncan described Eocene species from Jamaica in the papers referred to in the footnotes below.¹

Eocene corals from St. Bartholomew and Jamaica.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Placostrochus clevei</em> (Duncan)</td>
<td>X</td>
<td></td>
<td>Turbinoceras clevei Duncan.</td>
</tr>
<tr>
<td><em>Asterosmilia porotata</em> (Duncan)</td>
<td></td>
<td></td>
<td>Flabellum appendiculatum Duncan, not Brogniart.</td>
</tr>
<tr>
<td>new species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Trochosomia</em> new species</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Stylomphora compressa</em> Duncan, contorta (Leymerie) (fide Duncan)</td>
<td>X</td>
<td>X</td>
<td>Stillocenia ducdeni Vaughan.</td>
</tr>
<tr>
<td><em>Astrociona ducdeni</em> (Vaughan), incrustans (Duncan)</td>
<td>X</td>
<td>X</td>
<td>Stephanocenia incrustans Duncan.</td>
</tr>
<tr>
<td><em>Antillia</em> (? * compressa* (Duncan). (f) clevei (Duncan)</td>
<td>X</td>
<td></td>
<td>Cirripedia compressa Duncan.</td>
</tr>
<tr>
<td><em>Columnastrus cyanus</em> Duncan</td>
<td></td>
<td></td>
<td>Cirripedia clevei Duncan.</td>
</tr>
<tr>
<td><em>Favia</em> new species 1</td>
<td>X</td>
<td></td>
<td>&quot;Eocene of Jamaica.&quot;</td>
</tr>
<tr>
<td>new species 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Goniastrea variabilis</em> Duncan</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Macandra</em> new species 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new species 2</td>
<td>X</td>
<td></td>
<td>Municeina arealata Duncan, not Limnaneus.</td>
</tr>
<tr>
<td><em>Leptoria profunda</em> Duncan, conferticosta (Vaughan), conferticosta var. columnaris (Vaughan)</td>
<td>X</td>
<td>X</td>
<td>Utrophyllum macrocorpa Duncan, not Reuss.</td>
</tr>
<tr>
<td><em>Trochosomia</em> cataclipsis (Vaughan)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Antillia</em> compressa (Duncan)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Antillia</em> grandis (Duncan)</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td><em>Franceana</em> (Vaughan), carnobritannia (Vaughan)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Angulata</em> (Duncan)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Cynthele</em> (Duncan)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Physosomia</em> insignis (Duncan)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Protethmos</em> (? new species 1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new species 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new species 3</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new species 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Metethmos</em> (? new species</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Dendractis</em> cantabriciensis Vaughan</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td><em>Aetinacia</em> new species</td>
<td>X</td>
<td></td>
<td>Astracopera parlea Duncan, not Pickett.</td>
</tr>
<tr>
<td><em>Multicolinumscle ronchus cystiformalis</em> (Duncan)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td><em>Goniopora</em> new species 1</td>
<td>X</td>
<td></td>
<td>Actinoceras rollei Duncan, not Reuss.</td>
</tr>
<tr>
<td>new species 2</td>
<td>X</td>
<td></td>
<td>Porites ramosa Duncan, not Catullo.</td>
</tr>
</tbody>
</table>

The following names in Duncan's list of St. Bartholomew corals are dropped, because the specimens on which he based his determinations could not be found:

Stylophora distans (Leymerie).
conferta Reuss.
tuberosa Reuss.
granulata Duncan.
Stephanocoenia elegans (Leymerie).
Astrocoenia multigranosa Reuss.
ramosa (Sowerby).
Plocophyllia caliculata (Catullo).
Solenastraea columnaris Reuss.

The revised list of the St. Bartholomew coral-fauna contains 33 species, two of which may be referred to the synonymy, but a few species may be added from the collection I made, the study of which is not quite complete. I have described and have had figures made of all the species in the Cleve collection. I hope soon to add descriptions of the specimens I obtained and then to publish a full account of the fauna.

I seriously doubt the Catadupa corals being Eocene; it seems more probable that they are Cretaceous. The species I described as Trochosmilia hilli is probably a fungid coral. The Richmond "beds" of Jamaica contain two species, one of which is found in the St. Bartholomew limestone. The Cambridge "beds" contain three species, two of which also occur in the St. Bartholomew limestone. The correlation of the Richmond and Cambridge formations of Jamaica with the St. Bartholomew limestone, seems to be well founded.

JACKSON FORMATION AND OCALA LIMESTONE.

The corals of the upper Eocene Jackson formation in the Gulf States are described in monograph cited below. The species are as follows:

Flabellum cuneiforme var. wailesi Conrad.
Aldrichiella 2 elegans (Vaughan).
Turbinolia pharetra Lea.
Trochocyathus lunulitiformis (Conrad).

var. montgomeriensis Vaughan.

Caryophyllia dalli Vaughan.
Parasmilia ludoviciana Vaughan.
Archohelia burnsii (Vaughan). 3
Astrangia expansa Vaughan.
ludoviciana Vaughan.
harrisi Vaughan. 4

Platycoenia jacksonensis Vaughan.
Balanophyllia irrorata (Conrad).

2 Changed from Aldrichia.
3 Changed from Astrolelia.
4 Name added.
Endopachys maclurii (Lea).

var. triangulare Conrad.

shaleri Vaughan,¹

minutum Vaughan.

A comparison of this list with the one of the St. Bartholomew and Jamaican corals reveals nothing in common; but I believe it can be made clear that the two faunas are of nearly the same age. That the Jackson formation in Mississippi and Louisiana is a shallow-water deposit is indicated by the nature of the sediments, the growth of specimens of Astrangia on rounded, somewhat indurated balls of sand, such as are common along some beaches, the presence of oyster shells, etc. The striking difference between the Jackson and St. Bartholomew coral faunas is due neither to great difference in geologic age nor to difference in the depth of water in which the faunas lived, but it is due to difference in the temperature of the water. The St. Bartholomew is a tropical fauna; the Jackson is a temperate fauna.

The correlation of the St. Bartholomew limestone, the Richmond and Cambridge formations of Jamaica, and the Brito formation of Nicaragua with the Jackson formation of the Gulf States has been made possible by the work of C. W. Cooke and J. A. Cushman. Cooke shows in the paper cited in the footnote ² that the Ocala limestone of southern Georgia and Florida is of Jackson age; and in more recent papers he ³ describes the stratigraphic occurrence, and J. A. Cushman ⁴ describes the species of the orbitoid genus of foraminifers Orthophragmina from the Ocala limestone in southern Georgia and Florida. The following is a list of the species:

Orthophragmina flintensis Cushman.

floridana Cushman.

americana Cushman, st.

mariannensis Cushman, st.

mariannensis var. papillata Cushman, st.

georgiana Cushman, st.

vaughani Cushman, st.

Those species whose names are followed by "st." are stellately marked or are stellate in form. The Ocala limestone is a shoal-water deposit, laid down in a sea having a tropical temperature.⁵ One of the results of my collecting in St. Bartholomew was to find in the St. Bartholomew limestone a stellate species of Orthophragmina,

¹ Name added.
nearly related to *O. mariannensis* Cushman, and a second species of *Orthophragmina* that is of lenticular form. I also collected two species of *Nummulites* and one species of *Lepidocyclina* in St. Bartholomew. *Lepidocyclina* occurs in Georgia as far down stratigraphically as a horizon about the middle of the Jackson formation, and apparently as low as the base of the formation. The presence of a species of *Orthophragmina* so similar to *O. mariannensis* seems to warrant the correlation of the St. Bartholomew limestone with the upper part of the Ocala limestone of Florida and Georgia, and therefore with the Jackson formation in Mississippi and in the States farther westward.

Regarding the Brito formation of Nicaragua, it must be recognized that a single poor specimen of coral furnishes slim evidence on which to base a correlation. Doctor Cushman submits the following statement regarding the foraminifera from the Brito formation:

As to the Brito material, two lots especially are of interest. No. 6411 "coast about 2 m. s. e. of Brito Harbor" marked "Ool. fos. 1. s." has abundant orbitoids with a beautifully ornamented exterior which without the confirmatory evidence of sections seem to be clearly *Orthophragmina* of a group not so far represented in the material studied. From No. 6408 two miles n. w. of Brito Harbor, however, there is more evidence. The material is very different and contains specimens which in accidental section show definite chambers of *Orthophragmina* of a different group. This does not however suggest either of the species from St. Bartholomew. Associated with it is a species of the flattened, broadly spiral form of nummulites. In the St. Bartholomew material there is such a form but of a species very much larger.

Now there is on the other hand a closer resemblance, that is to the lowest material of the Flint River collections. The Brito species of *Orthophragmina* is similar so far as I have made out to the one I have called *O. flintensis*. Moreover it is associated at Brito as along the Flint River with this broadly spiral, flattened form of nummulite. The specimens of nummulite from the two localities are very close in form and size and only differ in minute details. They may not be specifically identical in final analysis but are very close.

The statement by Doctor Cushman seems conclusive.

A horizon very nearly the same is recognizable in Colombia as the following quotation from Doctor Cushman shows:

Now, as to the specimen from one league west of Arroyo Hondo, Bolívar, Republic of Colombia. There is an association of *Nummulites* and stellate orbitoids which very decidedly suggests Eocene. While I can not definitely make out the equatorial chambers, the stellate form is very apparent in several specimens, and I should say specifically different from any of the species of *Orthophragmina* described in my paper from Georgia and Florida; in fact, they represent a very different group, I think, but are undoubtedly *Orthophragmina*.

Eocene deposits of the same or nearly same horizon as the St. Bartholomew limestone are widely distributed in Cuba, as is indicated by species of *Orthophragmina* and a number of echinoid species that also occur in St. Bartholomew.
From the foregoing discussion it is clear that marine upper Eocene formations are widely distributed in the southern United States, the West Indies, Central America, and northern South America, and that the Atlantic and Pacific Oceans were connected at that time. One of the areas in which there was such a connection was across the present site of eastern Nicaragua.

Haug, I believe, correctly correlated the Jackson of Mississippi and other Gulf States with the Bartonian-Ludian (Priabonian) of Europe.¹

Attention should be directed to a statement by Oppenheim ² in which he suggests that the St. Bartholomew coral-fauna might be the equivalent of the Priabona formation. The sequence I am giving three of the important American horizons precisely parallels Oppenheim’s order, as expressed on page 13 of his work cited. It is as follows:

**Oligocene:**
- Middle (Stampian = Rupelian = Antiguan).
- Lower (Sannoisian = Lattorfiian = Vicksburgian).

**Eocene:**
- Upper (Priabonian = Ludian = Jacksonian = horizon of St. Bartholomew limestone, etc.).

**Lower Oligocene.**

The lower Oligocene corals of the United States have been described by me.³

Dr. C. W. Cooke, in a paper recently published, subdivides the Vicksburg group in Mississippi, Alabama, and Florida as follows:

**Subdivisions of the Vicksburg group in Mississippi, Alabama, and Florida.**

<table>
<thead>
<tr>
<th>Mississippi</th>
<th>Alabama</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryam calcareous marl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marianna limestone</td>
<td>Glendon limestone member.</td>
<td>Mariana limestone</td>
</tr>
<tr>
<td>Mint Spring calcareous marl member.</td>
<td>&quot;Chimney Rock&quot; facies</td>
<td></td>
</tr>
<tr>
<td>Forest Hill sand</td>
<td>Red Bluff clay</td>
<td></td>
</tr>
<tr>
<td>(Western Mississippi)</td>
<td>(Eastern Mississippi).</td>
<td></td>
</tr>
</tbody>
</table>

¹ Haug, Émile, Traité de géologie, vol. 2, p. 1523, 1911.
The "coral limestone," formerly referred to the top of the Vicksburg group, as will be shown on subsequent pages, is, in my opinion, equivalent to the basal part of the Chattahoochee formation. The following is a list of the species of corals at present known from the Vicksburg group:

<table>
<thead>
<tr>
<th>Name</th>
<th>Byram calcareous marl.</th>
<th>Glendon limestone member</th>
<th>Mint Spring calcareous marl member</th>
<th>Red Bluff clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flabellium magnocostatum Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbinolia insignifies Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Striophilotrochus puscher Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archohelia neglecta (Vaughan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vicksburgia (Conrad)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARRISSI (Vaughan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aludris (Vaughan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiguastrea calcitosa (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balanophylla elongata Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>caulifera (Conrad)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>caulifera var. multigranosa Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dendrophyllia new species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This fauna is different from any now known in the West Indies or Central America. It lived under conditions closely similar to those under which the Jackson fauna of the same area lived. It is important to note that Antiguastrea calcitosa, a species very abundant in the middle and sparingly present in the upper Oligocene, occurs in the uppermost beds of the Vicksburg group. The Oligocene coral reef represented by the "coral limestone" at Salt Mountain, Alabama, and at Bainbridge, Georgia, overlies the Vicksburg group, which can with considerable assurance be correlated with the lower Oligocene (Lattorfan) of Veneto and elsewhere in Europe. The greatly-developed Oligocene coral reefs of Antigua are to be correlated with the reefs of Bainbridge. They are therefore stratigraphically higher than the Vicksburg group and are of middle Oligocene (Rupelian = Stampian) age.

**MIDDLE OLIGOCENE.**

**ANTIQUA FORMATION.**

The following list of species is based on a revision of Duncan's work on the Antigua corals, after a study of his types in the collect-

---


tions of Geological Society of London and the British Museum (Natural History), and principally the collection made by myself which contains 60 species. It seems that I failed to find 7 of the species reported by Duncan; and apparently Mr. Robert T. Hill and Dr. J. W. Spencer each obtained one species that I did not collect. I feel a little doubtful about two or three of Duncan’s types having really come from Antigua. Each species whose name is preceded by an asterisk * is considered in the systematic part of this paper.

**Fossil corals from the Antigua formation.**

<table>
<thead>
<tr>
<th>Name</th>
<th>Distribution outside Antigua</th>
<th>Nomenclatorial notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Stylophora pomerosa</em> Vaughan</td>
<td>Salt Mt., Ala</td>
<td></td>
</tr>
<tr>
<td>new species</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Pocillopora tenus</em> Duncan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new species</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Madrepora</em> new species</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Stylocenia pumpellija</em> (Vaughan)</td>
<td>Bainbridge, Ga</td>
<td><em>Stylocenia lobata-rotundata</em> Duncan, not M. Edwards and Hume.</td>
</tr>
<tr>
<td>new species</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Astrocoenia quantamamensis</em> Vaughan</td>
<td>Cuba, Panama</td>
<td><em>Astrocoenia ornata</em> Duncan, not M. Edwards and Hume.</td>
</tr>
<tr>
<td><em>decaturensis</em> Vaughan</td>
<td>Cuba, Bainbridge, Ga.</td>
<td></td>
</tr>
<tr>
<td><em>porloricen sis</em> Vaughan</td>
<td>Porto Rico.</td>
<td></td>
</tr>
<tr>
<td><em>Antitasia</em> new species</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Genus</em> Antitasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Enypilla</em> new species</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Antillia</em> new species</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Leptomus</em> new species</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Cladocora</em> recrurcosa Lonsdale</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Orbicella antillarum</em> (Duncan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>discorps</em> (Duncan)</td>
<td>Aruba.</td>
<td><em>Heliastrea costata</em> (Duncan) Duncan.</td>
</tr>
<tr>
<td><em>intermedia</em> (Duncan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Antiquastrea cellulosa</em> (Duncan)</td>
<td>Porto Rico, Cuba, Fla, Ga., Miss, Mex., Anguilla, Aruba.</td>
<td><em>Heliastrea cellulosa</em> (Duncan) Duncan + <em>Isastrea turbina</em> Duncan.</td>
</tr>
<tr>
<td><em>var. curvata</em> (Duncan)</td>
<td>Ga., Fla., Mex.</td>
<td></td>
</tr>
<tr>
<td><em>var. villosa</em> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploastrea hirsuta <em>monitor</em> (Duncan) Duncan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Poria macdonaldi</em> Vaughan</td>
<td>Panama.</td>
<td><em>Steppholoscoenia reussi</em> Duncan.</td>
</tr>
<tr>
<td><em>Flexitespolygonalis</em> (Duncan)</td>
<td>Bainbridge, Ga.</td>
<td><em>Coelaria densisclerophi</em> Duncan,</td>
</tr>
<tr>
<td>new species</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Lameliastrea sungii</em> Duncan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Genus</em> lamberter</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Goniastrea reussi</em> (Duncan)</td>
<td>Panama.</td>
<td><em>Macandrica species</em> Duncan.</td>
</tr>
<tr>
<td><em>Macandrica antillensis</em> Vaughan</td>
<td>Cuba.</td>
<td><em>Coelaria lobifortis</em> Duncan,</td>
</tr>
<tr>
<td><em>denis-clerophi</em> (Duncan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Leptoria spenceri</em> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Manicina willoughbiensis</em> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Fironastrea antillensis</em> Vaughan</td>
<td>Cuba.</td>
<td></td>
</tr>
<tr>
<td><em>Parama</em> new species</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Leptastrea</em> new species</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new species 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Haloaster</em> new species</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Siderostrea conferta</em> (Duncan)</td>
<td>Porto Rico, Canal Zone, An guilla.</td>
<td><em>Isastrea conferta</em> Duncan.</td>
</tr>
<tr>
<td><em>Cyanophyera hilli</em> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>browni</em> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>hilli</em> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>splendens</em> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>antillensis</em> (Duncan)</td>
<td>Porto Rico, Cuba, Mex.</td>
<td><em>Heliastrea antillensis</em> (Duncan) Duncan + <em>Antillia antillarum</em> Duncan.</td>
</tr>
<tr>
<td><em>tenus</em> (Duncan)</td>
<td>Porto Rico, Cuba</td>
<td></td>
</tr>
</tbody>
</table>
Three of the species recorded by Duncan from Antigua, in my opinion, are incorrectly identified and their names are dropped from the list. They are as follows:

Favvoidea junghuhni Reuss, according to Duncan.
Heliastrea barbadensis Duncan.
Solenastraea turonensis (Michelin), according to Duncan.

Another species, Astraea megalaxona Duncan, is based on unidentifiable material, and its name is also dropped. The total number of recorded species from Antigua, therefore, is 69, and 5 varieties are recognized. Of the 33 species indicated as new, descriptions of 8 have been written and descriptions of 26 remain to be written at the time of making out the preceding table.

The number of species, 69, recognized is interesting for comparison with the number recorded for areas in which living reefs occur. Von Marenzeller 1 records 71 species from the Red Sea in his report on the Pola expedition corals. Bedot 2 records a total of 74 species + 5 varieties from Amboina—a number that should be reduced by about 4, because of the reference of some names to the synonymy of other species listed, leaving the number of valid species at about 70. In my paper on the shoal-water corals from Murray Island, Australia, I list 63 species from Murray Island and its vicinity in water not exceeding 18 fathoms deep, and report 51 species from Cocos-

---

Keeling Islands. It is known that at least a few more than 51 species occur in these islands. Outside the main coral-reef zone the number of species is smaller. For instance, there are only 43 supposedly valid species recorded from water between 0 and 25 fathoms deep in the Hawaiian Islands and Laysan. It is not certain that 3 of the species included in the number 43 were obtained in the Hawaiian Islands. The usual number of species obtained in Florida or the West Indies, in water less than 25 fathoms deep, where conditions are favorable for coral growth is about 35. There were on the Antigua reef as many species of corals as are at present usual for one island or a small group of islands in the Indo-Pacific, and about twice as many species as are usual on a living West Indian reef.

The reason for referring the Antigua reefs to a horizon above the lower (Lattorarian) Oligocene is given on page 199. The following list of middle (Rupelian) Oligocene genera is taken from Fabiani, but it is considerably revised and needs further revision:

* [*Stylophora.*](#) *Monticolaia?* *Hydrotophora.* *Dimorphastrea?*
* [*Stylocoenia.*](#) *Leptotaxis.* *Leptotonia.* *Cyathomorpha.*
* [*Trochoselia.*](#) *Astrangia.* *Myceophyllia.* *Hydrophylia.*
* [*Trocchosemia.*](#) *Holangia.* *Trochoseris.* *Astraeomorpha?*
* [*Cocosmia.*](#) *Gombertangia.* *Cyathosiris.* *Acropora.*
* [*Epismilia?*](#) *Orcicella.* *Mesomorpha.* *Dendractis.*
* [*Phyllosemia?*](#) *Solcnastrea.* *Comoscris?* *R.*
* [*Parasemia?*](#) *Antiguestrea.* *Cyatophyllia?* *Actinacis.*
* [*Euphyllia.?*](#) *Allophyllia?* *Goniophyllia?* *Goniopora.*
* [*Dichosemia.?*](#) *Isabophyllia.?* *Leprophyllia?* *Goniopora.?*
* [*Stylina.?*](#) *Calamophyllia.?* *Stephanosmiia.?* *Porites.*
* [*Grunia.?*](#) *Goniastrea.?* *Thomasteria.?* *Alveopora.*

* Indicates that the genus is also found in the middle Oligocene of the West Indies or the southeastern United States.

The generic characters of a number of the corals listed by Fabiani can not be ascertained without a restudy of authentically identified specimens in the light of modern systematic technique, which require that besides having an adequate knowledge of the morphology of the coral skeleton, the investigation shall proceed from a critical study of the type-species of the genera to be recognized to a similar critical study of the species to be generically identified, and that due attention shall be paid to the rules of zoologic nomenclature as expressed in the International Code. I will point out in passing that there are in the United States National Museum 10 specimens of the coral to which Reuss applied the name *Cyathophyllia annulata.* It would be too great a diversion to give in this place a discussion of the literature on this species. This is a fungid coral,

---

2. Vaughan, T. W., Recent Madreporaria of the Hawaiian Islands and Laysan, U. S. Nat. Mus. Bull. No. 59, pp. 32-34, 1907. [The list referred to has been slightly revised and the number reduced by 2 names.]
with a synapticulate and perforate wall at and just below the calicular margin, the wall at lower levels usually, but not invariably, becoming solid. In Fabiani’s list this species, under the generic name *Stephanosmilia* (name proposed by Reuss in 1874, not *Stephanosmilia* De Fromentel, 1862), comes between *Parasmilia* and *Plocophyllia* (a synonym of *Euphyllia*). I do not know what the systematic relations of *Leptaxis* Reuss are. Reuss based the genus and the type-species, *L. elliptica* Reuss, on a single specimen from Monte Grumi and seems not to have obtained another from anywhere. Until additional specimens of *L. elliptica* have been critically studied, *Leptaxis* is not an identifiable genus. Although Duncan considered *Leptaxis* a subgenus of *Antillia*, I think that it may be one of the simple fungid genera. The species referred to 10 genera, whose names are followed by a question mark, “?”, should all be critically restudied.

The names of the genera preceded by an asterisk, “*”, in the foregoing table are also found in the middle Oligocene of the West Indies or the southeastern United States. The following genera have closely related species:

- **Stylophora** *Euphyllia* *Leptomussa* *Actinacis*
- **Stylococenia** *Orbicella* *Cyathomorpha* *Goniopora*
- **Astrocoenia** *Antiquastrea* *Astreopora* *Alveopora*

I am not at all sure that some of the American middle Oligocene and the European Rupelian species are not identical.

Dr. Joseph A. Cushman has described the following species of *Lepidocyclina* from the collection I made in Antigua (not yet published):

- *Lepidocyclina gigas* Cushman
- *undulata* Cushman
- *undosa* Cushman
- *favosa* Cushman

*L. undulata* seems to be the largest known species of *Lepidocyclina*, some specimens attaining a diameter of 100 mm.

The calcareous algae, echinoids, Mollusca, and Bryozoa, as well as the Foraminifera of the Antigua formation will be described in a forthcoming volume to be published by the Carnegie Institution of Washington. The Antigua formation must, in my opinion, be the type of the American middle Oligocene.

**PEPINO FORMATION OF PORTO RICO.**

The corals here listed were almost all collected by Mr. R. T. Hill. I have added the names of a few additional species collected by members of the New York Academy Porto Rico Survey.

---

Fossil corals from the Pepino formation.

Astrocoenia portoricensis Vaughan, Antigua, and Canal Zone.
Orbicella costata (Duncan), Antigua, Anguilla, Canal Zone.
Antiquastrea cellulosa (Duncan), Antigua, Florida, Georgia, etc.
Macandra portoricensis Vaughan.
Leptoseris portoricensis Vaughan.
Pironastraea anguillensis Vaughan, Antigua.
Siderastrea conferta (Duncan), Antigua, Canal Zone, Anguilla.
Cyathomorpha antiquensis (Duncan), Antigua, Cuba, Mexico.
tenuis (Duncan), Antigua, Cuba.
Diploastrea crassolamellata (Duncan), Antigua, Cuba, Georgia.
Astreopora portoricensis Vaughan.
Goniopora portoricensis Vaughan.

Of the 12 species from the Pepino formation, 8 are known in the Antigua formation of Antigua.

Limestone above conglomerate near Guantanamo, Cuba.

The geologic relations of the corals from the vicinity of Guantanamo will be described by Mr. O. E. Meinzer in a forthcoming report. The following is a list of the species:

Fossil corals from the middle Oligocene, Guantanamo, Cuba.

Pocillopora guantanamoensis Vaughan.
Astrocoenia guantanamoensis Vaughan, Antigua, Panama.
decaturensis Vaughan, Antigua, Georgia.
meinzeri Vaughan.
Antiquastrea cellulosa (Duncan), Antigua, Porto Rico, etc.
Trochoseris meinzeri Vaughan, Panama.
Pironastraea antiquensis Vaughan, Antigua.
Cyathomorpha anguillensis Vaughan, Anguilla.
antiquensis (Duncan), Antigua, Porto Rico, etc.
tenuis (Duncan), Antigua, Porto Rico, etc.
Diploastrea crassolamellata (Duncan), Antigua, etc.
Goniopora decaturensis Vaughan, Georgia.

Of the 12 species here listed 7 are also found in Antigua; of the 5 remaining species 2 are at present known from only one locality, 2 occur elsewhere in association with a fauna of the same facies as that of Antigua, while 1 occurs in the base of the Anguilla formation.

Limestone, Rio Canapu, Manasasas trail, Cuba.

The following species were collected by Dr. Arthur C. Spencer:
Leptoria spenceri Vaughan, Antigua.
Cyathomorpha tenuis (Duncan), Antigua.
Diploastrea crassolamellata (Duncan) Antigua.

The first and second species of the above list were obtained at station No. 3473 of the U. S. N. M. record of localities for Cenozoic in-
vertebrate collections. Specimens of Orthophragmina were obtained at the same station and indicate upper Eocene or lower Oligocene as the age of the rock. This matter will be further discussed in the forthcoming report on West Indian paleontology.

**Basal Part of Chattahoochee Formation in Georgia.**

The localities at which the specimens of fossil corals were obtained are at Blue or Russell Springs on Flint River about 4 miles below Bainbridge, and at other localities along Flint River to Hale’s Landing, about 7 miles below Bainbridge. The corals are most embedded in or weathered out of chert which was once a coral-reef limestone that was formed on the subaerially eroded surface of the Eocene Ocala limestone after submergence. Dr. W. H. Dall in a recently published paper appears to correlate this bed with the Orthaulax pugnax zone of Tampa, Florida, and states that I concur in that opinion. Although the chert forming the base of the Chattahoochee formation in the vicinity of Bainbridge is faunally nearly related to the “silex” bed of the Tampa formation, in my opinion they are not of the same age, the “silex” bed being geologically younger. The coral faunas are not the same, and there is at least a species of one genus at Tampa of stratigraphically later affinities than any species in the vicinity of Bainbridge.

The following are the species from near Bainbridge mentioned in this paper:

Fossil corals from basal part of Chattahoochee formation near Bainbridge, Georgia.

*Stylophora minutissima* Vaughan.

*Stylocoenia pumpeylli* (Vaughan) Vaughan, Antigua.

*Astrocoenia decaturensis* Vaughan, Antigua, Cuba.

*Orbicella bainbridgensis* Vaughan, Santo Domingo?, Porto Rico.

*Antiquastrea cellulosa* (Duncan), Antigua, etc., Tampa.

var. *silecensis* Vaughan, Antigua, etc.

*Favites polygonalis* (Duncan) var., Antigua.

*Siderastrea silecensis* Vaughan, Tampa; Alum Bluff formation.

*Diploastrea crassolamellata* (Duncan), Antigua, etc.

var. *magnifica* (Duncan), Antigua, etc.

*Astrocopora antiquensis* Vaughan, Antigua.

*Actinacis alabamensis* (Vaughan), Antigua; Salt Mountain, Ala.

*Goniopora decaturensis* Vaughan, Cuba.

---

1 The more important references to the literature are as follows:


Of the 13 species and varieties listed above, 9 are common to Antigua, and Goniopora decaturensis occurs in Cuba in association with species of corals abundant in Antigua; of the 3 remaining species, Stylophora minutissima has so far been positively identified only at Bainbridge, but it is very near a species common in Antigua; 2 of the 13 forms are known from the "silex" bed of Tampa. The coral fauna near Bainbridge is a moderately rich one. In addition to those listed there are species of Stylophora, Astrocoenia, Antillia?, Astrangia or Rhizangia, Mesomorpha, Astreopora, Actinacis, Goniopora, and Alveopora, and of a few genera not yet positively identified. There are between 25 and 30 species, of which only 4 or 5 are common to the Tampa coral fauna.

It should be stated here that casts of a species of Pecten, which appears to P. suwaneeensis Dall, occur at station 3381 in the matrix with Diploastrea crassolamellata, which may therefore be of upper Eocene as well as of Oligocene age, or I may not have discriminated closely enough between species.

"CORAL LIMESTONE" OF SALT MOUNTAIN, ALABAMA.1

I described in the monograph referred to in the footnote two species, as follows:

Stylophora ponderosa Vaughan, Antigua.

Actinacis alabamensis (Vaughan), Antigua; Flint River, Georgia.

I long surmised that the "coral limestone" of Salt Mountain really represented the basal part of the Chattahoochee formation, but only recently did I obtain evidence that this limestone is the stratigraphic correlative of the Antigua formation and of the coral reef horizon near Bainbridge.

SAN RAFAEL FORMATION OF EASTERN MEXICO.2

The formation from which the fossil corals were obtained was first designated by Mr. Dumble "San Fernando beds," a name long in use for a Tertiary formation in the Island of Trinidad. He has recently changed the name to San Rafael. It is an important formation in eastern Tamaulipas, Mexico. Several of the corals are not well enough preserved for purposes of identification. The following is a list:

Antiguastraea cellulosa (Duncan), Antigua, etc.

var. silicensis Vaughan, Antigua, etc.

Favites mexicana Vaughan.

Maeandra dumblei Vaughan.

---


2 The principal literature is as follows:

Cyathormorpha antiquensis (Duncan), Antigua, etc.
Goniopora species. Similar to Antiguan species.
Although the identifiable species are few, it appears safe to correlate the San Rafael formation with the Antigua formation.

TONOSI, PANAMA.

Doctor MacDonald obtained at this locality, station 6587, the following species of corals:
Astrocoenia guantanamensis Vaughan, Antigua, Cuba.
Favia macdonaldi Vaughan, Antigua.
Maeandra antiquensis Vaughan, Antigua.
Trochoseris meinzeri Vaughan, Cuba.
Diploastrea crassolamellata (Duncan), Antigua, Cuba, etc.
There can be no reasonable doubt that this is the same as the coral fauna found in the Antigua formation. As the locality at which the specimens were obtained is on the Pacific coast of Panama, the evidence is conclusive that there was middle Oligocene connection between the Atlantic and the Pacific in that area.

SERRO COLORADO, ARUBE.

Three species were obtained at this locality, as follows:
Orbicella insignis (Duncan), Antigua.
Antiquastrea cellulosa (Duncan), Antigua.
Goniopora species (the kind of casts to which Duncan applied the name Alvepora daedalea var. regularis).
This fauna is evidently the same as that of the Antigua formation.

CONCLUDING REMARKS ON THE MIDDLE OLIGOCENE.

The foregoing lists show that Antiguan middle Oligocene coral fauna is known in Porto Rico, Cuba, southern Georgia, southern Alabama, eastern Mexico, Panama, and Arube. That it also occurs in Santo Domingo is known from some of the specimens, Siderastrea conferta (Duncan) typical and a peculiar variety of Asterosmilia exarata (Duncan), both brought from Santo Domingo by Gabb. It is a key horizon in the American Oligocene. The Byram calcareous marl of Mississippi occurs either at its base or just below its base. It therefore overlies all the Vicksburgian lower Oligocene, with the possible exception of the uppermost member, and is stratigraphically just below the "silex bed" of the Tampa formation. The correlation of the deposits containing this fauna with the Rupelian of Veneto has been made on page 202.

That there was middle Oligocene connection between the Atlantic and the Pacific was pointed out on this page in discussing the species from Tonosi, Panama.

The Culebra formation and the base of the Emperador limestone in the Canal Zone contain a few species that indicate close relationship with the Antiguan horizon, but on the whole the affinities are rather with the next higher fauna. Fossil corals were obtained in the Culebra formation at three stations, as follows:

Station 5863, west side of Gaillard Cut, at station 1863 of the Canal Commission, between points opposite Curacha and Paraiso.

Station 6020c, Las Cascadas, Gaillard Cut, third bed from the bottom of the section.

Station 6026, one and one-half miles south of Monte Lirio, on Panama Railroad (relocated line).

The list of species is as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Station 5863</th>
<th>Station 6020c</th>
<th>Station 6026</th>
<th>Emperador Is.</th>
<th>Antigua.</th>
<th>Anguilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stylophora imperatoris Vaughan goethalsi Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbicella costata (Duncan)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siderastrea conferta (Duncan)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astreopora antiguaensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Goniopora cascadenisis Vaughan</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Of the 6 species in the Culebra formation, 2 also occur in the Emperador limestone; 4 also occur in the Antigua formation; and 4 also occur in the Anguilla formation. There is only one species, Astreopora antiguaensis, that is elsewhere known only from the Antigua horizon; while 2 species are at present known elsewhere only from the Anguilla horizon. These relations indicate, but do not prove, that the upper part of the Culebra formation, the part of the formation in which the corals were collected, is stratigraphically higher than the Antigua formation, and is, therefore, referable to the upper Oligocene. The foraminiferal fauna, to be discussed on pages 554, 555, 585, supplies stronger evidence in favor of considering the upper part of the Culebra as of upper Oligocene age.

Emperador limestone.

The principal collections from the Emperador limestone were made by Doctor MacDonald and me at Station 6015 and 6016, in Empire village. Dr. Ralph Arnold subsequently made a small collection in Empire and obtained one species, Pocillopora arnoldi Vaughan, not collected by Doctor MacDonald and me. Doctor MacDonald and I also made a small collection at Station 6024b, the upper bed at the lower end of the culvert where the Panama Railroad (relocated line) crosses Rio Agua Salud; and he subsequently obtained some
very interesting specimens at station 6256, which is 1⅔ miles south of Miraflores. The following is a list of the species:

Species of corals from the Emperador limestone.

<table>
<thead>
<tr>
<th>Species of corals from the Emperador limestone</th>
<th>Empire quarries</th>
<th>Station 6024b</th>
<th>Station 6256</th>
<th>Anguilla</th>
<th>Antigua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stylophora imperatoris Vaughan...</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>panamensis Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>goethalsi Vaughan...</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mcdonaldii Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>canalis Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pocillopora arnoldi Vaughan...</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrocoenia portoricensis Vaughan...</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Orbicella imperatoris Vaughan...</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>canalis Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stylophora panamensis Vaughan...</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Goniastrea canalis Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavona panamensis Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acropora panamensis Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tabulatae Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astreopora goethalsi Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonioptera hilli Vaughan...</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>panamensis Vaughan...</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>imperatoris Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>canalis Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clevei Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porites dawsonii Vaughan...</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>tomlai Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>panamensis Vaughan...</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>angulilittia Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Synularia) howei Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mcdonaldii Vaughan...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Of 26 species from the Emperador limestone, 6 have been identified in the Antigua formation and 9 in the Anguilla formation, but it is probable that the number of species common to the Emperador limestone and the Anguilla formation will be somewhat increased. The Emperador limestone is of nearly the same horizon as the Anguilla formation. Additional evidence favoring this opinion will be adduced on subsequent pages.

ANGUILLA FORMATION.

This name is proposed for the coralliferous limestone and argillaceous marls of Anguilla. The type-locality is on the south and west sides of Crocus Bay, where it is exposed to a thickness of about 200 feet. The fauna has been monographically described, and the account of it will be published in a forthcoming volume of the Carnegie Institution of Washington. The following species of corals from it are considered in the present paper:

1 The principal literature is as follows:
Vaughan, T. W., see references in footnote, p. 193.
Species of corals from the Anguilla formation.

<table>
<thead>
<tr>
<th>Name</th>
<th>Culebra formation</th>
<th>Emperador limestone</th>
<th>Antigua</th>
<th>Other localities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stylophora imperatoris Vaughan</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Cuba</td>
</tr>
<tr>
<td>Orbicella imperatoris Vaughan</td>
<td>X</td>
<td>X</td>
<td></td>
<td>P. R.; Cuba; etc.</td>
</tr>
<tr>
<td>costa (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>canula Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiquastra cellula (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apureia anguillensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pironestra anguillensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siderestra conferta (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyrtomorpha anguillensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rathausi Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goniopora panamensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imperatoris Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>canula Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cerci Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cascadensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porites anguillensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P. R. = Porto Rico.

Of the 17 species listed above, 4 are also found in the Culebra formation, 9 in the Emperador limestone, and 12 of the 17 in the combined Culebra and Emperador of the Canal Zone. In addition to the species here considered there are other species of *Stylophora*, *Styllocenia*, *Antillia*, *Cladocora*, *Maeandra*, *Goniopora*, and *Porites*. There are 9 or 10 species of *Goniopora*. The total coral fauna in the collections available to me comprises about 28 species.

The Anguilla formation is correlated with the Emperador limestone for the following reasons: *Heterosteginoides*, a new genus of orbitoidal foraminifera described by Doctor Cushman, is represented in the Anguilla formation by a species, also found in Antigua, but very near a species that occurs in the Emperador limestone. Although *Heterosteginoides* occurs in both Antigua and Anguilla, *Lepidocyclina*, which is so abundant in Antigua, was not collected by me in Anguilla and is only sparingly present in the Emperador limestone. The identity of certain species of corals in the two formations has been shown. *Echinolampas semiorbis* Guppy is abundant in Anguilla (on the west side of Crocus Bay between 25 and 70 feet above sea level) and in the base of the Emperador limestone, Canal Zone. *Orthavlax pugnax* (Heiplrinn) was collected in the base of the Crocus Bay exposures.

Cuban localities.

*Orbicella imperatoris* Vaughan has been collected at the following localities in Cuba: Station 3450, 4 miles north of Pinar del Rio; station 3451, one-half mile west of Ciénaga railroad station, near Húbana; station 3566, Bejueal; station 7544, Rio Yateras, near Guantanamo. That the Anguilla horizon is widely extended in Cuba is shown by the distribution of the echinoids which will be considered in another place.
The corals from the "silex" bed of the Tampa formation considered in this paper are as follows:

*Orbicella tampäensis* Vaughan.

var. *silecensis* Vaughan.

*Antiquastrea cellulosa* (Duncan).

*Siderastrea silecensis* Vaughan.

*Siderastrea hillsboroensis* Vaughan occurs at about the same horizon as the "silex" bed.

The Tampa coral fauna has not been described in print, but I furnished Doctor Dall a list of my manuscript names of the species and it appeared in his monograph of the molluscan fauna of the *Orthaulax pugnax* zone of the Oligocene of Tampa, Florida. I have pointed out that *Orbicella tampäensis* var. *silecensis* (see p. 391 of this paper) closely resembles some of the variants of *O. costata* from Anguilla and that the specimens identified as *Siderastrea silecensis* in which there are over 60 septa perhaps should be referred to *S. conferta* (see p. 449). Besides the species mentioned, there are species representing the following genera: *Stylophora, Antillia?, Galazea, Solenastrea, Maeandra, Syzygophyllia?, Endopachys, Acropora, Goniopora, Porites, and Alveopora*.

Two and perhaps three of the "silex" bed species of corals also occur at Bainbridge, but the faunas otherwise are not the same. Two of the species from Tampa are near living West Indian and Floridian species. These are *Solenastrea tampäensis* Vaughan, *nomen nudum*, which is near *S. hyades* (Dana); and *Porites willcoxi* Vaughan, *nomen nudum*, which has the septal arrangement of *Porites astreoides*. The presence of such species with modern affinities seems to me to indicate a considerably younger age than that of the reefs near Bainbridge. Furthermore *Lepidocyclina* is abundant in the reefs near Bainbridge, but has not yet been found at Tampa. *Orthaulax pugnax* occurs in the "silex" bed at Tampa, but it has not been found in the overlying limestone; the same species occurs in the base of the Anguilla formation, but I did not find it at higher levels. Dr. C. W. Cooke, who has monographically described the mollusca of the Anguilla formation, correlates it with the Tampa formation on the basis of similarity in their molluscan faunas. The correlation of the Tampa formation is further discussed on pages 570, 571.

**CONCLUDING REMARKS ON THE UPPER Oligocene.**

That there was connection between the Atlantic and Pacific oceans during upper Oligocene time is shown by the continuity of both the Culebra formation and the Emperador limestone from the Atlantic to the Pacific slopes of the Isthmus. On the geologic map, plate 153,
the Emperador limestone is represented as dipping below the Gatun formation on the north side of the Isthmus, and it is exposed almost down to the sea level on the south side. The Culebra formation underlies the Emperador limestone on both slopes, but it is not indicated on the map on the north slope of the Isthmus.

**Miocene.**

**Bowden Marl.**

The point of departure in the consideration of the Miocene is the fauna of the Bowden marl of Jamaica. The following is a revised list of the species:

- *Placotrochus costatus* Duncan.
- *Sphenotrochus* new species.
- *Placocyathus barretti* Duncan.
- *alveolus* (Duncan.)
- *Stylophora granulata* Duncan.
- *Asterosmilia profunda* (Duncan).
- *hilli* Vaughan.
- *Stephanocoenia intersepta* (Esper), also living.
- *Anillia walli* Duncan.
- *Thysanus excentricus* Duncan.
- *elegans* Duncan.
- *new species.*
- *Syzygophyllia gregorii* (Vaughan).
- *Siderastrea siderea* (Ellis and Solander), also living.
- *Goniopora* new species.
- *Porites baracoaensis* Vaughan.
- *Acropora* new species.

This fauna indicates somewhat deeper water than that in which the species mentioned on preceding pages lived; but the presence of *Stephanocoenia intersepta, Siderastrea siderea, Acropora* new species, a massive species of *Goniopora*, and *Porites baracoaensis*, furnish evidence in favor of the conclusion that the depth probably was not so much as 20 fathoms. The most striking feature of this list is that it contains the names of two species still living in the Caribbean region, in this respect differing from all the other faunas previously considered in this paper. The Bowden not only marks the introduction of species that persist in the West Indian region, but as neither in Jamaica, Santo Domingo, nor Cuba, have species of *Astrocoenia, Stylocoenia, Leptomussa, Antiguastrea, Favites, Lepioria, Trochoseris, Leptoseris, Haloseris, Pironastraea, Mesomorpha, Cyathomorpha, Diploastrea, Astreopora, Actinacis*, or *Porites* (*Synaraea*) been found in beds of the same age as or younger than the Bowden, these

---

GEOLOGY AND PALEONTOLOGY OF THE CANAL ZONE.

15 genera and one subgenus of middle and upper Oligocene corals apparently had become extinct in this region. The genus *Thysanus* is present in the Pliocene Caloosahatchee marl of Florida; and in Santo Domingo *Placocyathus, Stylophora, Antillia*, and *Syzygoophyllia* occur at horizons above that of the Bowdon marl, while the number of species now living increases. The Bowdon marl marks an important change in the character of the coral faunas, a change from an older to a more recent facies. It therefore seems to me that the Bowdon marl can not be considered of Oligocene age, and that it must be referred to the lower Miocene.

**Santo Domingo.**

With regard to the species reported by Duncan from Santo Domingo, it will be said that Duncan does not describe the stratigraphy of Santo Domingo, but refers the specimens to the Nivajè shale, the superficial or tufaceous limestone, Posterero shale, Corro Gordo shales, Esperanza shale, and "the silt of the sandstone plain." The following is a list of the species recorded by him, the geologic formation in which they were reported to be found, and the revised names with annotations:

**Fossil corals reported by Duncan from Santo Domingo.**

<table>
<thead>
<tr>
<th>Name used by Duncan</th>
<th>Nivajè shale.</th>
<th>Superf and tufaceous limestone</th>
<th>Posterero shale.</th>
<th>Esperanza shale.</th>
<th>Silt of the sandstone plain.</th>
<th>Revised names and annotations</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Flabellum exaratum</em> Duncan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Described from Vere, Jamaica; genus doubtful; identification doubtful.</td>
</tr>
<tr>
<td><em>Flabellum</em> new species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not determinable.</td>
</tr>
<tr>
<td><em>Placocythus tonsdalei</em> Duncan</td>
<td>(?)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Placocythus tonsdalei</em> Duncan.</td>
</tr>
<tr>
<td><em>Ceratocyclus ducundec-costatus</em> M. Edwards and Haime.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>From yellow shale of Angostina, Santo Domingo; specimens not determinable.</td>
</tr>
<tr>
<td><em>Trococytthus latro-spinosus</em> M. Edwards and Haime</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Placocythus</em> new species.</td>
</tr>
<tr>
<td><em>Paracycthus henekeni</em> (Duncan) Duncan</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Paracycthus henekeni</em> (Duncan).</td>
</tr>
<tr>
<td><em>Placocythus barretti</em> Duncan</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td><em>Placocythus barretti</em> Duncan; originally described from Bowden, Jamaica.</td>
</tr>
<tr>
<td><em>var. variabilis</em> Duncan</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Placocythus variabilis</em> Duncan.</td>
</tr>
<tr>
<td><em>Pocillopora crassorumosa</em> Duncan</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td><em>Pocillopora crassorumosa</em> Duncan.</td>
</tr>
<tr>
<td><em>Stylophora affinis</em> Duncan</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Stylophora affinis</em> Duncan.</td>
</tr>
<tr>
<td><em>Stylophora affinis</em> Duncan var. 2</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Stylophora minor</em> Duncan.</td>
</tr>
<tr>
<td><em>rareitia</em> M. Edwards and Haime</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>*Stylophora new species; also from Corro Gordo shales.</td>
</tr>
<tr>
<td><em>Trococytthus abnormalis</em> Duncan</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Name discarded for Santo Dominga species.</td>
</tr>
<tr>
<td><em>Asteroxenia anomala</em> Duncan</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Asteroxenia abnormalis</em> (Duncan).</td>
</tr>
<tr>
<td><em>corumata</em> Duncan</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Asteroxenia exarata</em> Duncan; also in Antigua formation, Antigua.</td>
</tr>
<tr>
<td><em>Stephanocoenia intersepta</em> M. Edwards and Haime.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td><em>Stephanocoenia intersepta</em> (Esper).</td>
</tr>
<tr>
<td><em>Anulastrea spongiformis</em> (Duncan) Duncan.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td><em>Dichocoenia tuberosa</em> Duncan.</td>
</tr>
<tr>
<td><em>Dichocoenia tuberosa</em> Duncan</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td><em>Dichocoenia tuberosa</em> Duncan.</td>
</tr>
</tbody>
</table>
Fossil corals reported by Duncan from Santo Domingo—Continued.

<table>
<thead>
<tr>
<th>Name used by Duncan</th>
<th>Nivajé shale</th>
<th>Superf. and Sub.-Superf. limestones</th>
<th>Postero. shale</th>
<th>Esperanza shale</th>
<th>Silt of the sandstone plain</th>
<th>Revised names and annotations</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Platellum dubium</em> Duncan.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td><em>Antillia dubia</em> (Duncan).</td>
</tr>
<tr>
<td><em>Antillia longoclita</em> Duncan.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Antillia bilobata</em> Duncan.</td>
</tr>
<tr>
<td><em>Cyphastrea costata</em> Duncan.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The type of this is from Bar-</td>
</tr>
<tr>
<td><em>Phylocenia sculpta</em> M. Edwards and Haime var. <em>tegula</em> Duncan.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>buria and is a precise syno-</td>
</tr>
<tr>
<td><em>Phylocenia limbatia</em> Duncan.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nym of <em>Orbicella amputata</em></td>
</tr>
<tr>
<td><em>Plesiastrea ramosa</em> Duncan.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Ellis and Solander); but the</td>
</tr>
<tr>
<td><em>Heliastrea cylindrica</em> (Duncan) Duncan</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Santo Domingan specimen is</td>
</tr>
<tr>
<td><em>endophylla</em> (Duncan) Duncan brevis (Duncan) Duncan</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a species of <em>Solenastrea</em>.</td>
</tr>
<tr>
<td><em>Plesiastrea distans</em> Duncan</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Orbicella limbatia (Duncan);</td>
</tr>
<tr>
<td><em>globosa</em> Duncan.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>also reported from “yellow</td>
</tr>
<tr>
<td><em>Solenastrea verhekti</em> M. Edwards and Haime.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>shale.”</td>
</tr>
<tr>
<td><em>Stephanocenia dendroida</em> M. Edwards and Haime.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Varietal forms of *Orbicella</td>
</tr>
<tr>
<td><em>Thysanus corbicula</em> Duncan.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>carinosa* (Linnaeus).</td>
</tr>
<tr>
<td><em>Telesphylla grandis</em> Duncan.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Orbicella brevis</em> (Duncan).</td>
</tr>
<tr>
<td><em>necula</em> Duncan.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Varietal forms of <em>Solenastrea</em></td>
</tr>
<tr>
<td><em>Manicina arculata</em> (Linnaeus).</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bournoni M. Edwards and</td>
</tr>
<tr>
<td><em>Macrodiscina filoniana</em> Lamarck.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Haime.</td>
</tr>
<tr>
<td><em>sinuosissima</em> M. Edwards and Haime.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A highly fossilized specimen;</td>
</tr>
<tr>
<td><em>Lithophylla affinis</em> (Duncan) Duncan.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>name discarded for the Santo</td>
</tr>
<tr>
<td><em>dentata</em> Duncan.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Locality not given; probably</td>
</tr>
<tr>
<td><em>Aparicia apricites</em> Lamarck.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a species of <em>Astrocoenia</em>.</td>
</tr>
<tr>
<td><em>undita</em> Lamarck var.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Thysanus corbicula</em> Duncan.</td>
</tr>
<tr>
<td><em>Siderastrea grandis</em> Duncan.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Thysanus grandis</em> (Duncan).</td>
</tr>
<tr>
<td><em>Porites colgogiana</em> Michelini.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“Shale,” no other data on ge-</td>
</tr>
<tr>
<td><em>Alveopora feniastrea</em> Dana.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>logic relations; name dropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>from list.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Macrodiscina filoniana</em> (Da-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nam).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The name proposed by Milne</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Edwards and Haime is a syno-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nym of *Macrodiscina stri-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>gosa* (Dana); name dropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>from list.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Macrodiscina affinis</em> (Dun-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>can); may be the young of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Macrodiscina affinis</em> (Palas).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Syzzyphyllia argophila</em> (Vau-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ghinian) type from Bovden,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jamaica.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>Syzzyphyllia dentata</em> (Da-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nam).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Material poor; names dropped</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>from list.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Type from Jamaica is *Sibera-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>sidera</em> (Ellis and Solan-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>der).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>This seems to be a synonym of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><em>S. sidera</em> (Ellis and Solan-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>der).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Name dropped from list.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Name dropped from list.</td>
</tr>
</tbody>
</table>

It has appeared that perhaps two distinct geologic horizons were represented by these collections, one of which is the Nivajé shale and another which is represented by the superficial and tufaceous limestones and the silt of the sandstone plain. The revised list for the Nivajé shale is as follows:

Revised list of species reported by Duncan from the Nivajé shale.

*Placotrochus lonsdalei* Duncan.
*Paracyathus henekei* (Duncan).
*Placocyathus variabilis* Duncan.
Placocyathus costatus Duncan.
new species.
Pocillopora crassoramosa Duncan.
Stylophora affinis Duncan.
minor Duncan.
new species.
Asterosmilia abnormalis (Duncan).
exarata Duncan.
Dichocoenia tuberosa Duncan.
Antillia dubia (Duncan).
bilobata Duncan.
Orbicella limbata (Duncan).
brevis (Duncan).
cavernosa (Linnaeus).
Thysanus corbicula Duncan.
grandis Duncan.
navicula Duncan.
Maeandra areolata (Linnaeus).
Syzygophyllia gregorii (Vaughan).
dentata (Duncan).

A total of 23 species.
The species from the superficial and tufaceous limestones and the silt of the sandstone plain are as follows:

Revised list of species reported by Duncan from the superficial and tufaceous limestones and the silt of the sandstone plain.

*Placocyathus variabilis Duncan.
Stephanocenia intersepta (Esper).
*Dichocoenia tuberosa Duncan.
Orbicella limbata (Duncan).
*Orbicella cavernosa (Linnaeus).
Solenastrea bournoni M. Edwards and Haime.
Mussa affinis (Duncan).
Siderastrea siderea (Ellis and Solander).

A total of 8 species, of which 3, those preceded by an asterisk *, are also reported from the Nivajé shale; 6 of these species are either at present living in the West Indies or the fossil specimens are so similar to those of living species that specific discrimination is uncertain (see table on pp. 213, 214 for notes). One species, Orbicella limbata, is very similar to one of the growth forms of Orbicella annularis. This leaves only one species, Placocyathus variabilis, that seems clearly to indicate an older Tertiary age. But it should be added that the species of Stylophora, to which Duncan attached the name raristella, also indicates a rather old Tertiary formation. Might these two species have been mixed with specimens from a younger formation? Having in
mind the information above stated, I published the suggestion that some of the Santo Domingan fossil corals are perhaps of Pliocene age.¹

Recently Miss Carlotta J. Maury has submitted to me for study the fossil corals she collected during an expedition to Santo Domingo. She informs me that the zones on Rio Gurabo are lettered in stratigraphically descending series, "A" being at the top and "G" at the base of the section; zone H on Rio Cana is considered to be the same as zone G on Rio Gurabo. Bluff 1 on Cercado de Mao is correlated by Miss Maury with a part of the Rio Gurabo section above zone G, and bluff 3 on Cercado de Mao is correlated with that part of the Rio Gurabo section below zone F.

As regards the corals, the definite stratigraphic tie-point is found in zone H on Rio Cana, where three species which also occur in the Bowden marl of Jamaica were collected. It has been stated on pp. 212, 213 of this paper that the Bowden coral fauna is stratigraphically above the Oligocene faunas of Antigua, Bainbridge (Georgia), Lares (Porto Rico), Empire (Panama), and Tampa (Florida). These Santo Domingan corals, except those from zone G-H, therefore belong stratigraphically above the horizon of the Bowden marl. In a manuscript now almost ready for press I am describing as new six additional species of _Placocytathus_ from Miss Maury's collection. These are not entered in the table following.

Table of species of Santo Domingan corals and their zonal distribution.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A and B</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Placogrylates new species</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>barretti Duncan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>variabilis Duncan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cortatus Duncan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stylophora granulata Duncan</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>affinis Duncan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madracis decipiens (Lyman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asterostyla abnormalis (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poecillopora crassorumosa Duncan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephanoceros interupta (Esper)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichocoenia tuberosa Duncan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antillia cuba (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>biloba Duncan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbicella limbata (Duncan),</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bahiaensis Vaughan?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exocorina var. cylindrical (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenastrea bouroni (M. Edwards and Halime)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thysanurus grandis Duncan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synzaphydda dentata (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gregoria (Vaughan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agaricia dominicansis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paxoa new species...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siderastrea sidera (Ellis and Solander)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porites new species..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rio Gurabo, zone not stated.
Do.
Do.
Do.
An inspection of the foregoing table shows that at zone H *Orcicella cavernosa* and *Solenastrea bournoni*, both now living, were collected, bringing the total of living species from the Bowden horizon up to four.

The following are my conclusions on the geologic age of the coralliferous beds of Santo Domingo:

1. The oldest fauna represented by Miss Maury's collection, zone H on Rio Cana, is that of the Bowden marl. It is somewhat younger than the Chipola marl of Florida and is of Burdigalian age according to European nomenclature.

2. Zone F is closely related to G and H. It is also probably of Burdigalian age, and corresponds to a part of the Alum Bluff formation of Florida lying above the Chipola marl member.

3. Zone E and D are faunally near the underlying beds and are probably of uppermost Burdigalian or Helvetian age.

4. Zones C to A, inclusive, are probably of Helvetian age.

5. The Santo Domingan coral faunas are younger than the extensively developed Oligocene coral reefs of Georgia, Florida, Cuba, Porto Rico, Anguilla, Antigua, and Central America.

6. The presence in Santo Domingo of *Asterosmilia exarata* variety, which is also found in the Antigua formation, of a species of *Leptomussa*, and of *Siderastrea conferta* (Duncan) typical, indicates that there are deposits of middle and upper Oligocene age in Santo Domingo, but Miss Maury did not make collections of corals from those horizons.

### CUBA.

#### BARACAO AND MATANZAS.

Fossil corals of Bowden age were collected at two localities—namely, station 3476, in a yellow marl at Baracoa; and station 3461, also in a yellow marl in the gorge of Yumuri River, Matanzas. The species are as follows:

**Fossil corals from Baracoa and Matanzas, Cuba.**

<table>
<thead>
<tr>
<th>Name</th>
<th>Baracoa</th>
<th>Matanzas</th>
<th>Bowden</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Stylophora granulata</em> Duncan</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Pocillopora baracodensis</em> Vaughan</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td><em>Madracis mirabilis</em> (Duchassaing and Michelotti)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Thysanus hayesi</em> Vaughan</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td><em>Porites baracodensis</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. <em>matamasensis</em> Vaughan</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### LA CRUZ MARL.

This name is proposed for the bedded, yellow, argillaceous, and calcareous marl particularly well exposed on the east side of Santiago Harbor between Santiago and the Morro. The type exposures are along the railroad eastward from the La Cruz to the crossing of the highway from Santiago to the Morro. The corals collected in this
GEOLGY AND PALEONTOLOGY OF THE CANAL ZONE.

formations are listed below. Descriptions of the mollusca by C. W. Cooke will appear in a forthcoming publication of the Carnegie Institution of Washington. The corals are as follows:

Fossil corals from the La Cruz marl, Cuba.

<table>
<thead>
<tr>
<th>Name</th>
<th>Santo Domingo above zone II</th>
<th>Santo Domingo zone II</th>
<th>Bowden</th>
<th>Recent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stylophora affinis Duncan</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ptilophora species</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Stephanocenia intersepta (Esper)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbicellina urnata (Duncan)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Solenastrea humidus (Dana)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thysanus bourdoni M. Edwards and Haine</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td><em>Siderastrea plicatellina</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Goniopora jacobiana</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Porites porites</em> (Fallas)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td><em>astralides</em> (Lambeck)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Of 11 species listed above, 5 are now living in the Antillean region; but of the 8 genera represented, 4, i.e. 50 per cent, are now unknown in the Atlantic Ocean. The horizon appears to be above that of the Bowden marl, and to be near zones D and E of the table on page 217. I obtained numbers of poor prints and casts of corals near or at the base of the formation in the vicinity of Santiago. Although they are too poor for determination, they resemble in form the species of *Placophyllus*, *Asterosmilia*, *Antillia*, *Thysanus*, and *Syzygophyllia*, of the Santo Domingan deposits. Similar poor casts and imprints suggest that this is a widely distributed formation in Cuba.

FLORIDA.

ALUM BLUFF FORMATION.

The coral fauna of the Chipola marl, member of Alum Bluff formation is small, comprising four species representing as many genera, namely, *Stylophora*, *Antillia*, a new genus that resembles a *Thysanus* with a commensal sipunculid worm in its base, and *Goniopora*.

The coral fauna of the Alum Bluff formation is meager. Excluding the Chipola marl member it comprises the following species:

Fossil corals from the Alum Bluff formation.

<table>
<thead>
<tr>
<th>Name</th>
<th>Oak Grove</th>
<th>White Springs</th>
<th>Tampa brickyard</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Astraea</em> new species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siderastrea hillisboeressis Vaughan</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td><em>Goniopora jacobiana</em> Vaughan</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>


Although, in my opinion, the formation in which these corals occur should be referred to the Miocene, I believe it is very low Miocene,
below the Bowden horizon. A recent discovery by Sellards is of importance in determining the age of the Alum Bluff formation. The following is a list of the vertebrates:

- *Parahippus leonensis* Sellards.
- *Merijchippus* species.
- *Oxydactylus*?
- *Leptomeryx*?

Sellards says:

It would seem, therefore, as a whole, that the vertebrate fossils indicate that the Alum Bluff formation is to be referred to the Miocene. The presence of protohippine horses in particular would seem to be decisive as to the age of the formation, excluding its reference to the Oligocene.

The opinion of Prof. J. C. Merriam on the age indicated by the *Merijchippus* is quoted. He says that he would judge the horizon to near the lower portion of the middle Miocene. Later Professor Merriam informed me that he considers the *Merijchippus* as of lower Miocene (Burdigalian) age.

The evidence in favor of considering the Alum Bluff as of lower Miocene age might be greatly multiplied. The presence at Oak Grove, Yellow River, Florida, of a species of *Astrhelia* closely related to *A. palmata* (Goldfuss) of the Maryland Choptank and Calvert formations suggests Miocene. *Pecten sayanus* Dall indicates Miocene. Canu and Bassler are positive that the Bryozoa are of Miocene age. Berry’s opinion based on his study of the fossil flora is not incompatible with this interpretation.

**MIDDLE AND SOUTH ATLANTIC STATES.**

The following is a list of the Miocene species, as far as at present known:

<table>
<thead>
<tr>
<th>Miocene corals from the Middle and South Atlantic States.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------</td>
</tr>
<tr>
<td><em>Paracyathus vaughani</em> Gane.</td>
</tr>
<tr>
<td><em>Astrhelia palmata</em> (Goldfuss).</td>
</tr>
<tr>
<td><em>Astrangia lineata</em> (Conrad).</td>
</tr>
<tr>
<td><em>conradii</em> Vaughan.</td>
</tr>
<tr>
<td><em>Septantrca marylandica</em> (Conrad).</td>
</tr>
<tr>
<td><em>crassa</em> (Tuomey and Holmes).</td>
</tr>
<tr>
<td><em>Favites vaughani</em> (Gregory).</td>
</tr>
</tbody>
</table>

Berry has recently reviewed the Miocene Calvert flora of Maryland and Virginia, and expressed the following opinion: 3

Seven of the Calvert plants, or 26.9 per cent, are common to the Tortonian of Europe, and 10 others, or 38 per cent, are represented in the Tortonian by very similar forms. In view of the fact that these floras spread into both regions from a common and equally accessible source, as I have just stated, the evidence that the Calvert flora indicates a Tortonian age is as conclusive as intercontinental correlations can ever be. Compared with other American floras of Miocene age, that of the Calvert has little in common with the described Miocene floras from Colorado, Idaho, Oregon, or California, which are all lake or river valley floras of moist upland forest types.

Should Berry be correct in his correlation of the Calvert with the European Tortonian, there is at present no definitely recognized Helvetian Miocene in the Coastal Plain of the United States; and consequently no Helvetian coral-fauna.

COSTA RICA.

Corals representing the Bowden horizon or one very near it were obtained in Costa Rica at two localities, viz:

‘Limon, Colline en démolition,’ No. 618 of the H. Pittier collection; and at station 6249, Hospital Point, Bocas del Toro. The species from the former of these localities are as follows:

*Asterosmilia hilli* Vaughan.
*Stephanocoenia intersepta* (Esper).
*Dichocoenia tuberosa* Duncan.
*Balanophyllia pittieri* Vaughan.
*Balanophyllia pittieri* was obtained at Hospital Point as well as at Port Limon.

PANAMA.

The type of *Stylophora portobellensis* Vaughan, from Portobello, was probably collected in the Gatun formation.

COLOMBIA.

Mr. George C. Matson collected at a locality 0.5 kilometer east of Usiacuri in association with a fauna representing the Gatun formation specimens of *Septastrea matsoni* Vaughan, which is very nearly related to *Septastrea marylandica* (Conrad)—a species common in the St. Marys and Yorktown Miocene of Virginia. The available evidence leads to the opinion that the Gatun formation is of Miocene age, and that part of it is of upper Miocene age.

CONCLUDING REMARKS ON THE MIocene.

The Gatun formation, the formation next above the Emperador limestone, according to the geologic map, plate 153, occurs only on the north flank of the Isthmus and does not extend from ocean to ocean. There is in the Canal Zone no evidence to indicate inter-

---

oceanic connection during Miocene time, although there was such connection in other areas not far away, in Nicaragua for instance. During the Miocene there was a very weak development of reef-corals in Central America, the Antilles, and the southeastern United States, as the foregoing lists show. The Miocene is characterized by the disappearance of many genera of corals that were abundant in the middle and upper Oligocene and by the introduction of the modern coral-fauna. However, a number of genera at present known living only in the Indo-Pacific persisted. These genera are as follows:

*Placotrochus.* Pocillopora. *Syzygophyllia.*


*Stylophora.* Favites. *Goniopora.*

Of the Miocene genera, Astrhelia, Septastrea, and Thysanus are not known living.

**Pliocene.**

**Caloosahatchee marl, Florida.**

The following species of corals have been recognized in the Caloosahatchee marl:

*Archohelia limonensis* Vaughan.

*Dichocoenia* new species 1.

new species 2.

*Meandrina maeandrites* (Linnaeus).

*Cladocora johnsoni* Gane.

*Phyllangia floridana* Gane.

*Solenastrea hyades* (Dana).

*bournoni* M. Edwards and Haime.

*Septastrea crassa* (Tuomey and Holmes).

*Thysanus* species.

*Maendra plicocenia* (Gane).

aff. *M. striigosa* (Dana).

aff. *M. clivosa* (Ellis and Solander).

*Siderastrea plicocenia* Vaughan.

*dalli* Vaughan.

*Porites porites* (Pallas).

*furcata* Lamarck.

*divaricata* Le Sueur.

Those species whose names are preceded by an asterisk are considered in the descriptive part of this paper.

The foregoing list is complete for the Caloosahatchee corals from Caloosahatchee River and Shell Creek, Florida, except one species of whose genus I am not sure. There are in the United States National Museum 19 species from the Caloosahatchee marl. Of these 19 species, 6 and perhaps 8 are also living in the Floridian region, while the other species, except those belonging to *Septastrea*
and *Thysanus*, have close relatives in the present Floridian fauna.

I have previously pointed out that this fauna contains no genera at present confined to the Indo-Pacific, such as *Placotrochus*, *Placo-cyaithus*, *Stylophora*, *Pocillopora*, *Antillia*, *Syzygophyllia*, and *Goniopora*, all of which occur in the West Indian Miocene, and all except the first two also occur in the West Indian Oligocene or Eocene.

**Limon, Costa Rica.**

Certain corals collected in the vicinity of Limon are reputed to come from a bed of Pliocene age. They are as follows:

*Madracis mirabilis* (Duchassaing and Michelotti).

*Archohelia limonensis* Vaughan.

*Orbicella annularis* (Ellis and Solander) var.

*cavernosa* var. *endotheca* (Duncan).

var. *cylindrica* (Duncan).

Except *Archohelia limonensis*, it appears that these corals might represent the Santo Domingan Miocene above the Bowden horizon.

The material is not adequate for a positive opinion.

**Carrizo Creek, California.**

Recently I have described in detail an interesting small reef-corall fauna from Carrizo Creek, Imperial County, California. The following table, taken from the paper mentioned, contains the names of the species composing this fauna and of the most nearly related species in Florida and the West Indies.

<table>
<thead>
<tr>
<th>Name</th>
<th>Most nearly related species in Florida or West Indies.</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Eusmilia carricensis</em> Vaughan</td>
<td><em>Eusmilia fastigiata</em> (Pallas), Pl, R.</td>
</tr>
<tr>
<td><em>Dichocoria merriami</em> (Vaughan), var.</td>
<td><em>Dichocoria species</em>, P; <em>D. stokesi</em> Milne Edwards</td>
</tr>
<tr>
<td><em>Solenastrea fairbanki</em> (Vaughan), typical</td>
<td><em>Solenastrea hyades</em> (Dana) (and <em>S. bournoni</em> Milne</td>
</tr>
<tr>
<td><em>var. columnaris</em> (Vaughan)</td>
<td><em>Solenastrea</em> and Haime, P, Pl, R.</td>
</tr>
<tr>
<td><em>var. normalis</em> Vaughan</td>
<td><em>Solenastrea</em></td>
</tr>
<tr>
<td><em>var. minor</em> Vaughan</td>
<td><em>Maendra bournoni</em> Milne Edwards and Haime, P, Pl, R.</td>
</tr>
<tr>
<td><em>Maendra boxeri</em> Vaughan</td>
<td><em>Maendra labrinthiformis</em> (Lumaeus), Pl, R.</td>
</tr>
<tr>
<td><em>Siderastrea mendenhalli</em> Vaughan</td>
<td><em>Siderastrea dalli</em> Vaughan, P.</td>
</tr>
<tr>
<td><em>var. minor</em> Vaughan</td>
<td><em>Siderastrea pilocenica</em> Vaughan, P.</td>
</tr>
<tr>
<td><em>Siderastrea californica</em> Vaughan</td>
<td><em>Porites astrophytes</em> Lumach, Pl, R.</td>
</tr>
<tr>
<td><em>Porites carricensis</em> Vaughan</td>
<td></td>
</tr>
</tbody>
</table>

P, Pliocene; Pl, Pleistocene; R, Recent.

Regarding the geologic age of this fauna, it was said:

The specific affinities of the Carrizo Creek corals are discussed in detail after the descriptions in the systematic part of this paper. The Carrizo Creek species are so near species belonging to the same genera in the Pliocene Caloosahatchee marl of Florida and in the Pleistocene and living reefs of Florida and West Indies that it seems to me they can scarcely be so old as Miocene; lower Pliocene appears to be the maximum age which may be assigned to the fauna.

---

1. The reef-coral fauna of Carrizo Creek, Imperial County, California, Prof. Pap. 98-T, p. 366, 1917.
The following is said as to the bearing of this fauna on a possible post-Oligocene interoceanic connection:

That there was interoceanic connection across parts of Central America during upper Oligocene time and that this connection was terminated in Miocene time is generally admitted. The extinction of Pacific faunal elements in the Gulf of Mexico, the Caribbean Sea, and the Western Atlantic Ocean has been discussed and summarized on page 366. Was there interoceanic connection during upper Miocene or Pliocene time after the sharp differentiation of the Caribbean and Mexican Gulf faunas from the Indo-Pacific faunas, thereby permitting interoceanic faunal migration? The discovery of a reef-coral fauna of purely Floridian and Caribbean facies at the head of the Gulf of California strongly suggests, if it is not positive proof, that the western Atlantic fauna extended from the Atlantic into the Pacific after the faunal differentiation had taken place. It is well known that the living reef-coral fauna on the Pacific side of Central America is depauperate in comparison with that on the Atlantic side. Greater vigor may account for the dominance of the migrant fauna over the Pacific fauna, which was finally suppressed, or geologic or other ecologic conditions that are not yet understood may have excluded the Pacific fauna from the head of the Gulf of California, while they permitted the migration of the Atlantic fauna into that area.

That the suggested interoceanic connection existed can scarcely be doubted. To locate it, in the present state of meager knowledge of the areal and stratigraphic geology of Central America, is not possible. Perhaps it was across the Isthmus of Tehuantepec. The problem awaits future investigation.

This fauna differs from the Miocene fauna of the La Cruz marl of Cuba in the absence of genera at present living in the Indo-Pacific, for instance, *Stylophora*, *Pocillopora*, and *Goniopora*. As none of the Indo-Pacific genera occurs in the Carrizo Creek fauna, and as only genera of Atlantic affinities have been found there, it seems necessary to infer that the fauna migrated from the Atlantic to the head of the Gulf of California after the Indo-Pacific genera had become extinct in the Atlantic. This would mean connection between the Atlantic and the Gulf of California in very late Miocene or Pliocene time.

Attention should here be called to a statement for which I am responsible. It is said in the report referred to below\(^1\) that some fossils obtained by Mr. William Palmer in a quarry in Calle Infanta, Habana, may be of Pliocene age, although it is probable that they are Pleistocene and that other limestone near Habana is perhaps of Pliocene age. The material obtained by Mr. Palmer is very poor, but some specimens are casts of the inside of the calice and the interseptal loculi of a large bilobate species of *Antillia*. The species more probably is *A. walli* Duncan of the Bowden marl, but it might be *A. bilobata* Duncan; another cast seems to represent a species of *Thysanvs*: while another is a species of *Syzugophyllia*, probably *S. dentata* (Duncan). One specimen of *Stephanocoeenia intersepta* (Ellis and Solander) is identifiable. The material seems quite clearly to represent either the Bowden or a somewhat higher horizon

\(^1\) Hayes, C. W., Vaughan, T. W., and Spencer, A. C., A geological reconnaissance of Cuba, p. 23, 1902.
in the Miocene. It is not Pliocene, according to our present knowledge of Pliocene coral faunas.

**Pleistocene.**

Only the names of the Pleistocene species considered in this paper are given in the following lists:

*Pleistocene corals from Mount Hope and Colon, Canal Zone.*

*Oculina diffusa* Lamarck.

*varicosa* Le Sueur.

*Eusmilia fastigiata* (Pallas).

*Astrangia (Phyllangia) americana* M. Edwards and Haime.\(^1\)

*Cladocora arbusecula* Le Sueur.

*Solenastrea bournoni* Milne Edwards and Haime.

*Favia fragum* (Esper).

*Macandra areolata* (Linnaeus).

*Manicina gyrosa* (Ellis and Solander).

*Agaricia agaricites* (Linnaeus).

\(\text{var. } purpurea\) Le Sueur.

*pusilla* Verrill.

*Siderastrea radians* (Pallas).

*siderea* (Ellis and Solander).

*Acropora muricata* (Linnaeus)\(^1\)

*palmata* (Lamarck) at Colon.

*Porites furcata* Lamarck.

*astroides* Lamarck.

*Millepora alcicornis* Linnaeus.

It will be remarked in passing that the coral fauna at Mount Hope is a typical inner-flat coral fauna.

Pleistocene specimens were obtained at Monkey Point and Limon, Costa Rica. The list is as follows:

*Pleistocene corals from Monkey Point and Limon, Costa Rica.*

<table>
<thead>
<tr>
<th>Name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eusmilia fastigiata (Pallas).</td>
</tr>
<tr>
<td>Macandra areolata (Ellis and Solander).</td>
</tr>
<tr>
<td>Strigosa (Dana).</td>
</tr>
<tr>
<td>Manicina gyrosa (Ellis and Solander).</td>
</tr>
<tr>
<td>Agaricia agaricites var. crassus Verrill.</td>
</tr>
<tr>
<td>Siderastrea siderea (Ellis and Solander).</td>
</tr>
<tr>
<td>Acropora muricata (Linnaeus).</td>
</tr>
<tr>
<td>Palmata Lamarck.</td>
</tr>
<tr>
<td>Porites furcata Lamarck.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monkey Point.</th>
<th>Limon Moin Hill.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>(\times)</td>
<td>(\times)</td>
</tr>
</tbody>
</table>

The corals from Monkey Point represent a seaward-facing reef; while those from Moin Hill are more characteristic of inner-flat conditions.

\(^1\) Names added in the proof and not entered in the table of species, pp. 228-237, or the systematic account of the faunas.
1. The upper Eocene coral-fauna of the St. Bartholomew limestone is known in St. Bartholomew, in Jamaica, and on the Pacific side of Nicaragua.

2. No lower Oligocene coral-fauna is at present known in the West Indies or Central America.

3. Rich middle Oligocene coral-faunas are known in Antigua, Porto Rico, Cuba, Georgia (near Bainbridge), Alabama (Salt Mountain), eastern Mexico, Panama, and the Island of Arube. The same fauna is known to be present in Santo Domingo.

4. Upper Oligocene coral-faunas are present in Anguilla, the Canal Zone, Florida (Tampa formation), and there are some reef-corals representing the same fauna in Cuba. There seems to be a distinct break between this and the succeeding Miocene faunas.

5. The Bowden, Jamaica, lower Miocene fauna is represented in Santo Domingo, Cuba, and Costa Rica. This fauna is probably younger than the coral-fauna of the Alum Bluff formation in Florida.

6. A closely related but higher Miocene fauna is present in Santo Domingo and Cuba. It seems probable that this fauna is geologically older than the coral fauna of the Maryland and Virginia Miocene.

7. The presence at Usiacuri, Colombia, of a species of Septastrea, very closely related to S. marylandica of the St. Marys and Yorktown Miocene of Virginia, suggests the presence in northern South America of a middle or an upper Miocene coral fauna.

8. There is a moderately rich Pliocene fauna in the Caloosahatchee marl of Florida, and this fauna appears to be represented at Limon, Costa Rica.

9. Pleistocene reefs are extensively developed in Central America, the West Indies, and Florida.

10. Living reefs exist in the same areas in which there are Pleistocene reefs.

11. The periods of reef-coral development are as follows:
(a) Upper Eocene St. Bartholomew limestone, weak development.
(b) Middle Oligocene, the greatest known development of American coral-reefs.
(c) Upper Oligocene, considerable development of reefs.
(d) Miocene, weak development of reefs.
(e) Pliocene, weak development of reef-corals in Florida.
(f) Pleistocene, extensive development of reefs.
(g) Recent, extensive development of reefs.

12. Periods of connection between the Atlantic and Pacific oceans are as follows:
(a) Upper Eocene.
(b) Middle and upper Oligocene and lower Miocene.
(c) A connection, probably narrow, in very late Miocene or in Pliocene time.
<table>
<thead>
<tr>
<th>Name of species</th>
<th>Eocene—Brito formation, Nicaragua</th>
<th>Oligocene.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stylophora imperatoris</strong> Vaughan</td>
<td></td>
<td><strong>Horizon of</strong></td>
</tr>
<tr>
<td><strong>panamensis</strong> Vaughan</td>
<td></td>
<td><strong>Antigua formation.</strong></td>
</tr>
<tr>
<td><strong>affinis</strong> Duncan</td>
<td></td>
<td><strong>Culebra formation,</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Canal Zone.</strong></td>
</tr>
<tr>
<td><strong>portobellensis</strong> Vaughan</td>
<td></td>
<td><strong>Horizon of</strong></td>
</tr>
<tr>
<td><strong>goethalsi</strong> Vaughan</td>
<td></td>
<td><strong>Anguilla formation.</strong></td>
</tr>
<tr>
<td><strong>macdonaldi</strong> Vaughan</td>
<td></td>
<td><strong>Gaillard Cut; 1½ mi. S. Monte</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Lirio.</strong></td>
</tr>
<tr>
<td><strong>granulata</strong> Duncan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>canalis</strong> Vaughan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alabama; Antigua.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>ponderosa</strong> Vaughan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pocillopora arnoldi</strong> Vaughan</td>
<td></td>
<td><strong>Near Guata-</strong></td>
</tr>
<tr>
<td><strong>baracoiensis</strong> Vaughan</td>
<td></td>
<td><strong>nomo, Cuba.</strong></td>
</tr>
<tr>
<td><strong>guantanamensis</strong> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Madracia mirabilis</strong> (Duchassaing and Michelotti)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Astrociona d'achianthi</strong> Duncan</td>
<td>Also St. Bartholomew</td>
<td></td>
</tr>
<tr>
<td><strong>guantanamensis</strong> Vaughan</td>
<td></td>
<td><strong>Antigua; near Guata-</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>nomo, Cuba; Tono-</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>ni, Panama.</strong></td>
</tr>
<tr>
<td><strong>incrustans</strong> (Duncan)</td>
<td></td>
<td><strong>Bain bridge,</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Ga.; Antigua; near Guata-</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>nomo, Cuba.</strong></td>
</tr>
<tr>
<td><strong>decaturensis</strong> Vaughan</td>
<td></td>
<td><strong>Near Guata-</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>nomo, Cuba.</strong></td>
</tr>
<tr>
<td><strong>meizieri</strong> Vaughan</td>
<td></td>
<td><strong>Antigua; Lares</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>P. R.</strong></td>
</tr>
<tr>
<td><strong>portoricensis</strong> Vaughan</td>
<td></td>
<td><strong>Bain bridge,</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Ga.; Antigua.</strong></td>
</tr>
<tr>
<td><strong>Stylacoenia pumpellyi</strong> (Vaughan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Oculina diffusa</strong> Lamarck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Pactesia** Le Sueur</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Archaoleia limonensis</strong> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Astrosmilia hilli</strong> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Stephanocoenia intercepta</strong> (Esper)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Dichocoenia tuberosa</strong> Duncan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Eusmilia fastigiata</strong> (Pallas)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Cledoca arbucula</strong> (Le Sueur)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Orbicella annularis</strong> (Ellis and Solander)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>limbata</strong> (Duncan)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geographic Distribution of Species.

<table>
<thead>
<tr>
<th>Oligocene—Continued</th>
<th>Miocene—Horizon of Böden marl, etc.</th>
<th>Pliocene</th>
<th>Pleistocene</th>
<th>Recent.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empire: Rio Agua Salud</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empire</td>
<td>Santo Domingo; Santiago, Cuba.</td>
<td></td>
<td></td>
<td></td>
<td>Porto Bello; probably Gatun formation.</td>
</tr>
<tr>
<td>Empire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empire: Rio Agua Salud</td>
<td>Matanzas and Baracoa, Cuba; Rio Gurafo, St. Domingo, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empire</td>
<td>Baracoa, Cuba</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rio Agua Salud</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mt. Hope, C.Z.</td>
<td>Florida; West Indies, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mt. Hope, C.Z.</td>
<td>Mt. Hope, C.Z.</td>
<td>do</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limon, C.R.; Caloosa-hatchee marl, Florida</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limon, C.R.; Bowden, Jamaica.</td>
<td>West Indian region.</td>
<td>West Indies, Bermuda, etc.</td>
<td></td>
<td>Very near the Pleistocene and living D. stokesi M. Edwards and Haime of the West Indies, Florida, etc.</td>
</tr>
<tr>
<td></td>
<td>Bowden, Jamaica; Limon, C.R.; Santo Domingo, Cuba</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limon, C.R.; Santo Domingo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mt. Hope, C.Z.; Monkey Pt., C.R.; W.I.</td>
<td>West Indies; Florida, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mt. Hope, C.Z.</td>
<td>Mt. Hope, C.Z.</td>
<td>do</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limon, C.R.; W.I.; Fl., etc.</td>
<td>do</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Santo Domingo, Cuba.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table of Stratigraphic and Geographic Name of species.

<table>
<thead>
<tr>
<th>Name of species</th>
<th>Eocene—Brito formation, Nicaragua</th>
<th>Horizon of Antigua formation</th>
<th>Culebra formation, Canal Zone</th>
<th>Horizon of Anguilla formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbicella imperatoris Vaughan</td>
<td></td>
<td></td>
<td></td>
<td>Anguilla, Cuba</td>
</tr>
<tr>
<td>antillarum (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>altissima (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cavernosa (Linnaeus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. endotheata (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. cylindrica (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aperta (Verrill)</td>
<td></td>
<td>Bainbridge, Ga.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bainbridgensis Vaughan</td>
<td></td>
<td></td>
<td>Antigua; Lares, P. R.</td>
<td>Anguilla</td>
</tr>
<tr>
<td>costata (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>canalis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tampiensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. silecensis Vaughan</td>
<td></td>
<td>brevis (Duncan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>insignis (Duncan)</td>
<td></td>
<td></td>
<td>Antigua; Arube.</td>
<td></td>
</tr>
<tr>
<td>intermedia (Duncan)</td>
<td></td>
<td></td>
<td>Antigua</td>
<td></td>
</tr>
<tr>
<td>gabbii Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>irradans (M. Edwards and Halmie)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solenastrea hyades (Dana)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bourroni M. Edwards and Halmie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septastrea motsoni Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antignastrea cellulosa (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td>Anguilla; Tampa, Florida</td>
</tr>
<tr>
<td>var. curvata (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. silecensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>elegans (Reuss)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aiceolaris (Catullo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styliangia panamensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favia fragum (Esper)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maccollnuti Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favites mexicana Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>polygonalis (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goniastrea cancellis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maenandra antiquiensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>portoricensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dumbei Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>areolata (Linnaeus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Antigua: P. R.; Cuba; Ga.; eastern Mex.; Arube.
- Bainbridge, Ga.; Antigua; Las Cascadas.
- Eastern Mex.; Antigua; Tonsi, Panama; Antigua.
- Eastern Mex.; Tonsi, Panama; Lares, Porto Rico.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Empire and near Miraflores.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santo Domingo.</td>
<td></td>
<td>Limon, C. R.</td>
<td>West Indies; Florida.</td>
<td>West Indies; Florida; Brazil.</td>
<td>Montserrat, geologic horizon unknown. St. Croix, Trinidad; probably about the horizon of the Antigua formation.</td>
</tr>
<tr>
<td>Santo Domingo.</td>
<td></td>
<td>do</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empire.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santiago and Gienaga, Cuba.</td>
<td>Santiago, Cuba; Santo Domingo, Usiacuri, Colombia.</td>
<td>Caloohatchee marl, Fla.</td>
<td>West Indies; Florida.</td>
<td>West Indies; Florida.</td>
<td>Tampa, Fla.; about the horizon of the Anguilla formation. Do. Santo Domingo, Nivajah shale. Horizon unknown.</td>
</tr>
<tr>
<td>Empire, C. Z.</td>
<td></td>
<td>Mt. Hope, C. Z.; W. I.; Fla.</td>
<td>W. I.; Fla.</td>
<td>Bermudas; Azores; St. Vincent.</td>
<td>Rupelian (Oligocene), Veneto, Italy.</td>
</tr>
<tr>
<td>Empire, C. Z.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rupelian (Oligocene), Veneto, Italy.</td>
</tr>
</tbody>
</table>

37149—19—Bull. 108—4
<table>
<thead>
<tr>
<th>Name of species</th>
<th>Eocene—Brito formation, Nicaragua</th>
<th>Oligocene</th>
<th>Culebra formation, Canal Zone</th>
<th>Horizon of Anguilla formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macandra clivosa (Ellis and Solander)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>strigosa</em> (Dana)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptoria speculii Vaughan</td>
<td></td>
<td>Rio Canapu, Cuba; Antigua</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Manicina gyrina</em> (Ellis and Solander)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>willoughbiensis</em> Vaughan</td>
<td></td>
<td>Antigua</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thysanus ecenicricus Duncan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>hayesi Vaughan</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syzygophyllia hayesi Vaughan</td>
<td></td>
<td>Brito</td>
<td>Guantanamo; Tonosi, Panama</td>
<td></td>
</tr>
<tr>
<td>Trochoseria meyeri Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aparicio agaricites (Linnaeus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. purpurea La Sueur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. crassa Verrill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var. pusilla Verrill</td>
<td></td>
<td></td>
<td></td>
<td>Anguilla</td>
</tr>
<tr>
<td><em>anguillensis</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>dominicensis</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavona panamensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Leptoseris portoricensis</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Pironastraea anguillensis</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>antiguensis</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siderastrea pariana (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>radians</em> (Pallas)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>stelata</em> Verrill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>confusa</em> (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>pourtalesi</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>pilosea</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>hilleborocensis</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>siderea</em> (Ellis and Solander)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>var. dominicensis</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>siteccensis</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
<td>Anguilla</td>
</tr>
<tr>
<td><em>dalli</em> Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Distribution of Species—Continued.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emperador limestone, Canal Zone.</td>
<td>Monkey Pt., C. R.; W. I.; Fla.</td>
<td>do...</td>
<td>do...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mt. Hope, C. Z.; Moin Hill, C. R.; W. I.; etc.</td>
<td></td>
<td></td>
<td>Fla.; W. I.; etc.</td>
<td></td>
</tr>
<tr>
<td>Santiago, Cuba; Bowden, Jamaica; Matanzas, Cuba.</td>
<td>Mt. Hope, C. Z.; W. I.; Fla.; etc.</td>
<td>Mt. Hope, C. Z.; Moin Hill, C. R.</td>
<td>do...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mt. Hope, C. Z.; Colon, C. Z.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empire.</td>
<td>Mt. Hope, C. Z.; W. I.; Fla.; etc.</td>
<td>Mt. Hope, C. Z.; W. I.; Fla.; etc.</td>
<td>W. I.; Fla.; Bermudas.</td>
<td></td>
<td>Brazilian reefs.</td>
</tr>
<tr>
<td></td>
<td>Caloosashatchee marl, Fla.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowden, Jamaica; Santo Domingo; Santiago, Cuba.</td>
<td>Mt. Hope, C. Z.; Monkey Pt., C. R.; W. I.; Fla.</td>
<td></td>
<td></td>
<td>W. I.; Fla.; etc.</td>
<td>Haiti. Do.</td>
</tr>
<tr>
<td></td>
<td>Caloosashatchee marl, Fla.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

St. Croix, Trinidad; probably nearly the same as the Antigua horizon.

Do.

Santo Domingo; horizon unknown.

Chattahoochee, Tampa, and Alum Bluff formations, Florida and Georgia.

Do.
<table>
<thead>
<tr>
<th>Name of species</th>
<th>Eocene—Brito formation, Nicaragua</th>
<th>Oligocene.</th>
<th>Horizon of Antigua formation</th>
<th>Culebra formation, Canal Zone</th>
<th>Horizon of Anguilla formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siderastrea conferta (Duncan)</td>
<td></td>
<td>Antigua</td>
<td>Las Casadas</td>
<td>Anguilla</td>
<td></td>
</tr>
<tr>
<td>Cystomorpha rochetti (Michelin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hilli Vaughan</td>
<td></td>
<td>Antigua</td>
<td>Anguilla</td>
<td></td>
</tr>
<tr>
<td></td>
<td>browni Vaughan</td>
<td></td>
<td>do</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>belli Vaughan</td>
<td></td>
<td>do</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>splendens Vaughan</td>
<td></td>
<td>do</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>anguillensis Vaughan</td>
<td></td>
<td>do</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>roxboroughi Vaughan</td>
<td></td>
<td>do</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tenuis (Duncan)</td>
<td></td>
<td>do</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploastrea heliopora (Lamarck)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>crassolamellata (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>var, magnifica (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>var, nubeni (Duncan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blanophylla pilleri Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acropora panamensis Vaughan</td>
<td></td>
<td>Antigua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>saludensis Vaughan</td>
<td></td>
<td>do</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>muriata (Linnæus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>palmata (Lamarck)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astreopora gothalsii Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>antiquensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>portoricensis Vaughan</td>
<td></td>
<td>Lares, P. R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tetanicis alabamensis Vaughan</td>
<td></td>
<td>Ala.; Bainbridge, Ga.; Antigua.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>coniopora hilli Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>panamensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>decaturensis Vaughan</td>
<td></td>
<td>Bainbridge, Ga.; Guantánamo, Cuba; Antigua; P.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>regularis (Duncan)</td>
<td></td>
<td>Bainbridge, Ga.; Guantánamo, Cuba; Antigua; P.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>var. microscopica (Duncan)</td>
<td></td>
<td>R.; Aruba.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>jucobiana Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>imperatoris Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>canalis Vaughan</td>
<td></td>
<td>Lares, P. R.; Antigua.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>portoricensis Vaughan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Distribution of Species—Continued.

<table>
<thead>
<tr>
<th>Oligocene—Continued.</th>
<th>Miocene—Horizon of Bowden marl, etc.</th>
<th>Pliocene.</th>
<th>Pleistocene.</th>
<th>Recent.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emperor limestone, Canal Zone.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>East coast of Africa to Fiji islands.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lattorfan and Rupelian (Oligocene) of Veneto, Italy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rio Agua Salud, C. Z.</td>
<td>Limon and Hospital Pt., C. R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W. I.; Fla.; etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Monkey Pt. and Moin Hill, C. R.; W. I.; Fla.; etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Monkey Pt., C. R.; Colon, C. Z.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W. I.; Fla.; etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table of Stratigraphic and Geographic

<table>
<thead>
<tr>
<th>Name of species</th>
<th>Eocene—Brito formation, Nicaragua</th>
<th>Oligocene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horizon of Antigua formation.</td>
<td>Culebra formation, Canal Zone.</td>
</tr>
<tr>
<td>Goniopora clevel Vaughan</td>
<td>Antigua</td>
<td>Las Caseadas</td>
</tr>
<tr>
<td><em>caseadensis</em> Vaughan</td>
<td>do.</td>
<td>do.</td>
</tr>
<tr>
<td><em>Porites porites</em> (Pallas)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>furcata</em> Lamarck</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>baracoidensis</em> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>var. matanzasensis</em> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>douvillei</em> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>teulai</em> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>astroides</em> Lamarck</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>panamensis</em> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>anguillensis</em> Vaughan,</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Synarca</em> howei Vaughan,</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>macdonaldii</em> Vaughan</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Millepora allicorns</em> Linneaus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Distribution of Species—Continued.

<table>
<thead>
<tr>
<th>Oligocene—Continued.</th>
<th>Miocene—</th>
<th>Pliocene</th>
<th>Pleistocene</th>
<th>Recent</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Emperor limestone, Canal Zone.</strong></td>
<td><strong>Horizon of Bowden marl, etc.</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empire</td>
<td>Santiago, Cuba.</td>
<td></td>
<td>W.I.</td>
<td>W.I.; Fl.; etc.</td>
<td></td>
</tr>
<tr>
<td>Empire</td>
<td>Baracoa, Cuba; Bowden, Jamaica.</td>
<td></td>
<td>Mt. Hope, C. Z.; Moin Hill, C. R.</td>
<td></td>
<td>do.</td>
</tr>
<tr>
<td>Empire</td>
<td>Santiago, Cuba.</td>
<td></td>
<td>Mt. Hope, C. Z.; W. I.; Fl.</td>
<td>W. I.; Fl.; Bermudas; Brazil, etc.</td>
<td></td>
</tr>
<tr>
<td>Empire</td>
<td>Santiago, Cuba.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empire</td>
<td>Mt. Hope, C. Z.; W. I.; Fl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empire</td>
<td>Mt. Hope, C. Z.; W. I.; Fl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empire</td>
<td>Mt. Hope, C. Z.; W. I.; Fl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Remarks.**
CONDITIONS UNDER WHICH THE WEST INDIAN, CENTRAL AMERICAN, AND FLORIDIAN CORAL REEFS HAVE FORMED, AND THEIR BEARING ON THEORIES OF CORAL-REEF FORMATION.

A brief review of the results obtained from a study of American Tertiary and post-Tertiary corals in their relation to the larger problem of coral-reef formation in general will now be given. In a paper recently published I stated that in my opinion coral reefs should be studied from at least the following standpoints:

1. The corals themselves, to ascertain the ecologic conditions under which they live or lived, and to distinguish the calcium carbonate secreted by corals from that contributed through other agencies.

2. A complex of geologic processes operating in the area must be studied, analyzed, and evaluated—among these are the agencies other than corals whereby calcium carbonate may be taken from the sea water, the probability of the solvent action of sea water on calcium carbonate, the effects of winds, currents, and waves in building, shaping, and destroying banks, and in submarine planation.

3. The stratigraphic and structural geology of the area, including a careful study of the origin of the sedimentary rocks with which corals are associated.

4. The physiography, especially that of the shore line, that of the land area adjacent to the shore, and that of the sea bottom from the shore to abyssal depths.

In the subsequent discussion, after defining coral reef, brief attention will be given to the following topics: (1) The general ecology of reef-forming corals; (2) the more striking hypotheses of the formation of coral-reefs; (3) the conditions under which the American Tertiary and Pleistocene reefs have formed and their importance as constructional geologic agents; (4) the conditions under which the living reefs of the same area formed and their importance as constructional agents; (5) coral reefs of the Pacific Ocean and comparison of them with the American fossil and living reefs; (6) summary of conclusions.

It is needless to say that, as an elaborate discussion of the subjects mentioned would require a large volume, it is possible in the present connection to give only summary statements.

Definition of the Term "Coral Reef."

As definitions are essential in this as in other discussions, the expression "coral reef" will be defined as follows:

A coral reef is a ridge or mound of limestone, the upper surface of which lies, or lay at the time of its formation, near the level of the sea, and is predominantly composed of calcium carbonate secreted by organisms, of which the most important are corals.2

2 Vaughan, T. W., Physical conditions under which Paleozoic coral reefs were formed, Bull. Geol. Soc. America, vol. 22, p. 238, 1911.

238
Frequently it is difficult to decide whether or no to apply the designation "coral reef" to richly coralliferous deposits that are obviously bedded. However, I am applying it wherever corals of reef facies seem sufficiently abundant to have formed appreciable rugosities on the sea bottom, although the deposits are bedded.

Reefs predominantly formed by calcareous algae should be designated "nullipore" or "Lithothamnium reefs." However, where the proportion of these organisms to corals is so nearly the same that only exact computation will decide between the two, such a reef may be designated "coral." The expression "reef coral" will be applied to corals of the facies usual in reefs; and "coralliferous limestone" or "coralliferous beds" will be applied where corals are present, although they may be rare. Rock predominantly composed of the shells of mollusks, of the tests of foraminifera and Bryozoa, and of chemically precipitated calcium carbonate are excluded from the category "coral reefs."

The restricted use of the term "coral reef" in this paper will probably be disapproved by a considerable number of investigators, but in my opinion it is essential to clear thinking. Limestones are initially formed by one of two processes, namely, (1) through chemical precipitation either by inorganic or organic agencies that lead to supersaturation of water with reference to calcium carbonate (CaCO₃), (2) through the activity of organisms that cause the precipitation of calcium carbonate (CaCO₃) in contact with their soft tissues. Corals belong to a group of organisms that secrete calcium carbonate (CaCO₃), that is, cause the precipitation of calcium carbonate (CaCO₃) in contact with their soft tissues. Every kind of shoal-water calcium-carbonate deposit has been called "coral rock": the molluscan-shell sands of the Bermudas, the chemically precipitated calcium carbonate of the oolites of Florida and the Bahamas, and limestones composed of the remains of Foraminifera and Bryozoa. The terms coral sand and coral mud have been applied to bottom-deposits in which there is no coral. To apply the term "coral rock" or "coral-reef rock" to all the kinds of limestones indicated would at the present time, in my opinion, be willful mental obfuscation. The study of the origin of limestones and the classification of limestones according to the source of their ingredients constitute a scientific problem of great geologic importance, and I believe it a scientific duty to break away from a usage that in most instances concealed scientific fact.

The importance of the distinction between "reef" and the material lying between a "reef" and the shore is particularly discussed on page 249.
Ecology of Reef-Forming Corals.

This subject has received the attention of very many investigators, and most of the broad principles have long been known. Darwin clearly recognized the difference in growth-form of exposed-reef corals and the corals that grow in the lagoons.1 This subject has been discussed at great length by subsequent investigators, of whom I am one, but although facts have been presented in a more or less statistical way, the principle of adaptation of growth form to environment was as clearly perceived by Darwin as it is by anyone today. Dana's conclusions on the relations of corals to the temperature of the ocean have been modified in only a subordinate way. It is scarcely known who first recognized the polymorphism of species of corals according to difference in habit. The recognition of such vegetative adaptation was at least foreshadowed by Klunzinger and Pourtalès. Brook clearly recognized the principle, and during more recent years it has been elaborately discussed by Gardiner, Von Marenzeller, Wood Jones, and many others, including myself. The literature on coral ecology is enormous, and probably the ecologic relations of no other group of marine organisms are so well known.

Recently I have published two summaries on the physical conditions under which coral reefs form,2 and have discussed in detail the temperature relations of coral reefs in a paper entitled Temperature of the Florida Coral-reef Tract.3 Dr. A. G. Mayer has given important information on some of the subjects of coral ecology in a paper entitled Ecology of the Murray Island coral reef;4 and I have given considerable data on the relation between the growth-form of colonies and habitat in my monograph, Some shoal-water corals from Murray Island (Australia), Cocos-Keeling Islands, and Fanning Islands.5 The last-mentioned paper contains a complete bibliography of my publications on corals and coral reefs up to March, 1917.

In the second of my papers referred to in the preceding paragraph,2 I state on page 99:

The conditions necessary for vigorous coral-reef development may be summarized as follows: (1) Depth of water, maximum, about 45 meters; (2) bottom firm or rocky, without silty deposits; (3) water circulating, at times strongly agitated; (4) an abundant supply of small animal plankton; (5) strong light; (6) temperature, annual minimum not below 18° C.; (7) salinity between about 27 and 38 parts per thousand.

To this should be added the statement that the mean temperature of the coldest month must not be lower than about 21° C.

---

1 Structure and distribution of coral reefs, ed. 3, pp. 1-19, 1889.
5 Idem, pp. 49-233, pls. 39-93, 1918.
Wherever there are well-developed fossil coral reefs it seems safe to infer that the physical conditions above enumerated prevailed. It is unnecessary to discuss separately each item entered under No. 11 of the summary statement of the periods of coral reef development on page 226. During upper Oligocene time (the time of the deposition of the upper part of the Chattahoochee formation) tropical conditions extended in Georgia as far north as latitude 32° 45'.

Hypotheses of the Formation of Coral-Reefs.

During the past few years elaborate reviews of theories of the formation of coral reefs have been published by Prof. W. M. Davis, the larger of which are referred to in the footnote below. These reviews are valuable in presenting most of the important coral-reef theories, as they are understood by a physiographer, who is convinced of the adequacy of the Darwinian hypothesis. Numbers of complex phenomena associated with coral reefs are not considered, and his presentations are not in all respects satisfying. Prof. R. A. Daly has reviewed the literature on coral-reef theory, particularly from the standpoint of an adherent of the glacial-control hypothesis. The literature on coral reefs is so enormous, that in the present paper consideration can be given only to certain papers that largely deal with coral-reef hypotheses or that contain information on areas herein discussed. The limitations of space cause me to omit references to many papers of much merit.

Three kinds of coral reefs are generally recognized, namely: (1) Fringing or shore reefs which, as the name indicates, occur along the strand line; (2) barrier reefs which occur at variable distances off shore and have lagoons from 1 or 2 to as much as 30 or even 40 fathoms in depth between them and the strand line; (3) atolls, which are ring-like and inclose lagoons above whose surface no land-masses of importance protrude.

As the relations of barrier reefs and atolls to the platforms above which they rise constitute in the opinion of geologists the essential part of the theory of the development of Recent reefs, the warfare of coral reef theory has been waged over the interpretation of these relations, which are the conditions of changing or changed position of the strand line and the part played by reef-forming organisms as constructional agents.

1. According to Darwin and Dana, corals first form a fringing reef off the sloping shore of a subsiding land area; the reef grows

4 Dana, J. D., Corals and coral reefs, ed. 3, pp. 263, 267, 1890.
upward at such a rate that its top remains near the surface of the water and through retreat of the shore it is converted into a barrier. Continued subsidence, where the inclosed land area is an inland, may result in the production of an atoll inclosing a lagoon without any land mass projecting above the water level. But this is not all. The Darwinian hypothesis involves more than mere subsidence and the conversion of a fringing into a barrier reef. It also attempts to account for extensive submarine platforms by assuming that they have been built upon sloping basements through agencies dependent on the presence of reefs. (See text-figs. 4, 5, 6.) Dana's interpretation is essentially that of Darwin.

That Darwin considered an alternative hypothesis is shown by the following quotation:

I may here observe that a bank either of rock or of hardened sediment, level with the surface of the sea and fringed with living coral, would be immediately converted into an atoll, without passing, as in the case of a reef fringing the shore of an island, through the intermediate form of a barrier reef.

1 Corals and coral islands, ed. 3, figs. pp. 233, 257, 1890.
He adds, however,

* * *

but as we have seen, the larger groups of atolls in the Pacific and Indian Oceans have not been formed on banks of this nature. 1

![Diagram](image)

**Fig. 6. Reproduction of J. B. Jukes' section across the Great Barrier Reef of Australia.**

- **a.** Sea outside the barrier, generally unfathomable.
- **b.** The actual barrier.
- **c.** Clear channel inside the barrier, generally about 15 or 20 fathoms deep.
- **d.** The inner reef.
- **e.** Shoal channel between the inner reef and the shore.
- **f.** The great buttress of calcareous rock, formed of coral and the detritus of corals and shells.
- **g.** The mainland, formed of granites and other similar rocks.

2. The first important protest against the Darwinian explanation was by Carl Semper, 2 who, in 1863, after studies in the Pelew Islands, advanced the hypothesis that atolls could be formed in areas of elevation by the solution of the interior of preexistent limestone masses, and that solution, erosion by currents, and wave-cutting could develop platforms behind fringing reefs, thus transforming a fringing into a barrier reef.

3. Murray 3 introduced the idea of banks being built upward by showers of the remains of pelagic organisms until the bathymetric zone of reef-forming organisms is reached, and he called attention to the cutting of volcanic islands down to wave base. His theory has been briefly summarized by himself in the following words: 4

That when coral plantations build up from submarine banks they assume an atoll form, owing to the more abundant supply of food to the outer margin, and the removal of dead coral rock from the interior portions by currents and by the action of the carbonic acid gas dissolved in sea-water.

That barrier reefs have been built out from the shore on a foundation of volcanic débris or on a talus of coral blocks, coral sediment, and pelagic shells, and the lagoon channel is formed in the same way as a lagoon.

That it is not necessary to call in subsidence to explain any of the characteristic features of barrier reefs or atolls, and that all these features would exist alike in areas of slow elevation, of rest, or of slow subsidence.

4. H. B. Guppy in 1890 published the following important opinion regarding the relations of barrier reefs to submarine plateaus or ledges: 5

I have now gone far enough to establish the probability, judging from the instance of the Australian Barrier-reef, that reefs of this class are in reality, and not in appearance,
situated on the border of a submarine plateau or ledge. Such a position, according to the explanation of barrier-reefs, first advanced by LeConte, and supported by myself, presents the most favorable conditions for reef growth, the corals being limited on the outside by the depth, and on the inside by the sediment in the water. The influences of food-supply and currents act subsequently as auxiliary causes.

What, then, is the explanation of the submarine ledge? The supposition that it is a continuation of the land slope is at once negatived by the fact that the slope of the land in the reef-encircled islands of the Pacific is usually 6 degrees or 7 degrees, sometimes only 3 degrees or 4 degrees, but often as much as 10 degrees, or 12 degrees, whilst the submarine ledge, when stripped of reefs and defined by the 100-fathom line, would possess a scarcely recognizable inclination, represented by a fraction of a degree. It will be found, however, when we examine the contour of such an island as Vanikoro, that the distance of the barrier-reef from the coast may vary according to the slope of the land. Thus, on the west side of this island, the average angle of the land slope is 6 degrees, and the distance of the barrier reef about $2\frac{1}{2}$ miles. On the north side the inclination of the land is between 11 degrees and 12 degrees, and the barrier reef is rather over a mile distant. This is just what we should expect. The more gradual the land slope, the broader will be the submarine ledge, cut out in the course of ages by the action of the sea; and the more distant will be the barrier reef that has grown up along its margin. This I believe to be the true explanation of the position of barrier reefs. A submarine ledge is in the first place necessary; and, since the sediment and mud in the shallower waters on the ledge repress the growth of corals, reefs will naturally spring up toward the margin of the ledge, where the water is clearer and where the depth is within that of the reef-coral zone.1

5. Admiral Sir W. J. L. Wharton 2 explained the uniform depth of atoll lagoons, whose edges are in various degrees encircled by growing coral, by considering that the corals grow upon foundations that are the bases of volcanic islands that have been reduced by wave action to wave base.

6. Alexander Agassiz 3 found older limestone under the recent reefs in many areas investigated by him. He explained atolls by the solution and erosion of the interior of preexisting limestone masses and ascribed the formation of the platforms of barrier reefs to marine erosion without change of sea level.

7. Andrews 4 pointed out that the platform of the Great Barrier Reef of Australia has been submerged at a relatively recent date and that it continues southward beyond the reef, and he inferred that only a minor part of the platform is "formed of coral growth."

8. The opinions of Stanley Gardiner 5 are closely in accord with those of Semper, Murray, Wharton, and Agassiz. According to him submarine planation is effective to depths as great as 200 fathoms.

9. Hedley and Griffith Taylor\textsuperscript{1} accepted Andrews’s interpretations and clearly showed that coral reefs of either atoll or linear form that rise above shallow platforms owe their shapes to prevailing winds and currents. They say:

This explanation differs from that of Sir J. Murray, who considers the atoll form to be assumed by abundant growth of well-fed corals on the margin and the solution of dead coral rock in the interior. But if solution be so destructive, how can a reef form at all?\textsuperscript{2}

10. According to Daly\textsuperscript{3} the depths in the drowned valleys within barrier reefs, in barrier-reef lagoons, and in atoll lagoons in the Pacific, are closely accordant and he attributes this accordance to Recent rise of sea level subsequent to deglaciation, whereby the depth of water in the Tropics was increased some 33 to 38 fathoms, thus submerging antecedent platforms of marine planation. That glaciation and deglaciation effect the development of living reefs did not originate with Daly, but it is principally he who has elaborated the hypothesis. He gives in his papers an account of the earlier suggestions.

11. Wood Jones\textsuperscript{4} considered sedimentation the critical factor in coral-reef theory, as corals grow only where there is comparatively little deposition of sediment. He accepts the conclusions of Hedley and Griffith Taylor on the importance of winds and currents in shaping atolls, and especially attacks the hypothesis of "a deepening or widening of the lagoon by a process of 'solution'."

Although the results of my own investigations will be elaborated on subsequent pages, the following summary statement may here be made: I have greatly multiplied the evidence in favor of Recent submergence in the coral-reef areas in the western Atlantic, the Gulf of Mexico, and the Caribbean Sea, and have shown that the living offshore reefs in those areas formed either during or after submergence and are growing on submerged basement platforms where conditions are favorable for the life of reef-forming corals. The platforms are continuous beyond the limits of the reefs and their existence is in no wise dependent upon the presence of reefs.

I have also shown that the great Florida Plateau has existed as a plateau since at least late Eocene time; and that some of the west Indian platforms are about as old. As these plateaus existed previous to Pleistocene time they could not have been formed by marine planation during Pleistocene glaciation. Whatever be the cause of shift in position of strand line, off-shore reefs form on shallow submarine flats during or after rise in sea level, provided the rate of movement be not too rapid. This explanation applies to the fossil reefs of


\textsuperscript{2} Idem., p. 407.


Florida and the West Indies as well as to the reefs living to-day. I have pointed out that there are in the Virgin and northern Leeward Islands and off the shores of Central America certain submarine terrace flats, one at a depth of about 17 to 20 fathoms; another at a depth of about 26 to 30 fathoms, the deeper flat being separated from the shallower by an escarpment. These relations accord with the demands of the Glacial-control theory as expounded by Daly.

Tests of Coral-reef Hypotheses.

The tests of the theories comprise ascertaining the answers to the following questions:

1. Were the important coral reefs of the world formed during or after the submergence of their basements, either by a sinking of the land or by a rise of ocean level due to some world-wide cause?

2. What is the rôle of corals as constructional geologic agents? What percentage of the sediments around coral reefs is composed of corals, and is the flat area between a barrier reef and the shore due to infilling behind the reef or was there a shallow marginal flat before the reef formed?

3. Can a lagoon channel behind a barrier reef or the lagoon within an atoll rim be formed by submarine solution by sea water or by submarine scour?

4. What and how much effect have wind-induced and other currents in shaping coral reefs?

5. What effect have glaciation and deglaciation had on the development of living coral reefs?

Before considering the fossil and living coral reefs of the West Indies in their bearing on the answers to these questions, some of the more important criteria to be used in answering the questions will be briefly outlined.


The criteria for recognizing elevation of a former strand line comprise: (a) Coastal terraces bordered inland by escarpments or cliffs that may be inferred to owe their origin to wave cutting; (b) wave-cut grooves in cliffs and sea caves that stand too high to have been formed at present sea level; (c) elevated beaches or bars, which under proper conditions form on shallow marine terraces and at the mouths of embayments; (d) the presence above sea level of organisms that must have lived in the ocean.

The criteria for recognizing submergence of former strand lines comprise: (a) Indentation of the coast line caused by the sea invading the lower parts of subaerially eroded valleys, the channels of which in many instances are preserved below sea level across and beyond the existing strand line; (b) the presence below sea level of
submarine flats separated by relatively steep slopes or escarpments, that are due either to marginal wave cutting by the sea or are due to the formation of a subaqueous profile above a previous profile; (c) the presence, especially in limestones, below sea level, of solution wells, pits, and caverns that inferentially were formed subaerially by the solvent action of fresh water; (d) the presence inland of free openings that connect with the sea, showing that there are underground channels by which ground water formerly flowed to the sea; (e) the presence of submerged peat bogs or swamp deposits composed of plants that grow only at or above sea level; (f) the presence below sea level of indurated limestone, the induration of which is due to solution of some of the original material and subsequent redeposition; (g) erosion unconformities at the bases of marine formations, showing that there was subaerial erosion of the basement previous to the submergence during which the formation was deposited or accumulated in the sea.

The foregoing statements might be elaborated, but to do so seems unnecessary. The criteria enumerated are those I have actually used in my own work.

Besides ascertaining the proper succession of changes in the position of strand line, it is essential that the amount of the oscillations be measured, that differential crustal movements be noted and dated, and that an estimate be made of the endurance of the strand line in its relation to present sea level.

CRITERIA FOR MEASURING THE AMOUNT OF VERTICAL SHIFT IN STRAND LINE, AND FOR DETERMINING THE RELATIVE AGES OF TERRACES AND THE PHYSIOGRAPHIC STAGE ATTAINED BY A SHORE LINE.

The criteria for estimating the exact amount of rise or fall of sea level are not yet definite, because adequate study has not been made of the factors that determine effective wave base and of the depth to which effective wave cutting extends. Notwithstanding this inadequacy of precise information, an approximation of the amount of change may be made. In the case of elevation, the base of a wave-cut escarpment or cliff, the flats of marine terraces, and wave-cut grooves on sea cliffs, may be assumed to represent approximately former sea level. Approximate measures of the amount of subsidence may be based upon the depth of drowned valleys, the depth below sea level of the bottoms of submerged solution wells and

---

1 For discussions of this subject see as follows:

2 The fundamental principle of this criterion is discussed on p. 250, under the caption “Solubility of calcium carbonate in sea water.”
caverns, and the depth to which peat or swamp deposits that were formed at or above sea level are submerged. Where there are recognizable submerged wave-cut scarps, the depth of the base of the scarp below sea level is nearly a measure of the amount of submergence; the depth in the West Indies in some instances probably exceeds the amount of submergence by about 6 fathoms. In the case of islands that rise from a common platform and which biologic and other data show were once parts of one land mass, the depth of water on the common platform may be assumed to be an approximate measure of the amount of the rise of sea level with reference to those islands.

The criteria for determining the relative ages of elevated terraces with reference to each other and for determining the amount of deformation to which they have been subjected are as follows: (a) Relative height; (b) relative amount of dissection; (c) relative degree of inclination and direction of the slope of the terrace flats; (d) presence or absence of a succession of higher and lower terrace flats on promontory tips and in places protected from vigorous marine cutting; (e) stratigraphic relations of terrace deposits.

Estimates of the endurance of the present relation of sea level to strand line are based upon recognizing the stage of physiographic development of the shore line. Among the important features to be observed are the presence or absence and the character of sea cliffs bordering the shore; the amount of delta and alluvial plain building at the mouths of stream ways; the character of beaches, bars, and spits; the nature and extent of the alluvial deposits back from the shore; the profiles of valley sides; and the axial profiles of the streams.

CRITERIA FOR ASCERTAINING THE RÔLE OF CORALS AS CONSTRUCTIONAL AGENTS.

The failure correctly to evaluate corals as geologic agents has been a defect of nearly all investigations of the so-called coral-reef problem; in fact, usually no attempt has been made to make such an evaluation. This evaluation may be made in several ways, which are as follows: (a) In studying fossil reefs exposed to view, the relative proportion of coral to other constituents of the rock should be estimated; (b) in studying marine bottom samples, percentage estimates of the proportion of the different ingredients should be made; (c) for submerged platforms on which reefs grow, the area of the reefs should be compared with the total area of the platform, an effort should be made to ascertain the nature of the rock underlying the sea floor between the reef and the shore, and the continuity in outline of the platform should be compared with the extent and position of the reefs; (d) knowledge of the growth rate of corals,
when the relative frequency of specimens is known, permits an
estimate of the rate of their constructional work.

This subject as a part of the problem of the formation of coral reefs
possesses an importance that can scarcely be overestimated, for it
comprises critical tests of both the Darwinian and the glacial-control
hypotheses. The topics in the foregoing list will be discussed seriately.

(a) Estimate of the relative quantity of coral to other constituents
in emerged formations containing reefs, if they have not been exten-
sively recrystallized, is relatively simple, although great precision in
quantitative expression is not to be expected. This topic will be
further considered in discussing the Caribbean, Floridian, and Bah-
man fossil reefs.

(b) Percentage estimates of material according to source are
difficult, but the results are of great value. The technique of making
such estimates is described in a memoir recently published by the
Carnegie Institution of Washington.¹

(c) Here it should be emphasized that one of the postulates of the
Darwinian hypothesis is that the prism of material included between
three surfaces, namely, (1) the sea-bottom landward of the barrier,
(2) a surface assumed as an extension of the land slope under sea until
it intersects (3) a surface projected downward from the landward
face of the reef, is due to the presence of the reef (see figure 4, page
242). Proof that a barrier has formed during or after submergence
does not carry with it proof that the prism of material above indi-
cated is due to the presence of the reef.

There are at least three criteria that can be applied in deciding
whether or no the flat between the reef and the shore exists inde-
pendently of the reef. They are as follows: (1) If the flat is de-
pendent on the presence of the reef, where there are breaks in the
barrier tongues of deep water should extend landward across the
shallow bottom of the flat behind the reef; and where there is no reef
there should be either a normal profile of equilibrium or an approach
to such a profile, showing a deeper flat than that behind the reef, be-
cause of the absence of an off-shore wall behind which sediment
could accumulate; but if the flat is independent of the reef, in general
it should be continuous irrespective of the presence of the reef and
should in places extend beyond the reef limits. (2) If the formation
of the flat is dependent on the presence of the reef, the reef should
stand on the seaward edge of the flat, that is, the flat should not project
seaward beyond the reef. (3) It is often possible to discover the
nature of the rock forming the sea floor between a barrier and the

¹ Vaughan, T. W., in collaboration with Cushman, J. A., Goldman, M. I., Howe, M. A., and others,
Some shelf-water bottom samples from Murray Island, Australia, and comparisons of them with samples
especially the article by M. I. Goldman, Composition of two Murray Island samples according to source of
material, pp. 249-262.
shore. Such a floor if formed by agencies associated with the presence of the reef will not be composed of rock demonstrably older than the reef, and will not exhibit geologic phenomena that in age clearly antedate the reef; but if it can be shown that the rock of the floor is older than the reef and that the floor has had a geologic history antecedent to the formation of the reef, it is demonstrated that the reef is merely growing on the surface of a flat whose formation is entirely independent of the reef development.

(d) The growth rate of corals, which furnishes one of the checks to be applied to the Glacial-control hypothesis of the formation of living reefs, is further considered on pages 253, 254.

SOLUBILITY OF CALCIUM CARBONATE IN SEA WATER.

As the formation of lagoon channels behind barrier reefs and of atoll lagoons by the solvent action of carbon dioxide (CO₂) dissolved in sea water is a part of the coral-reef hypotheses of Semper, Murray, A. Agassiz, and Gardiner, if lagoons and lagoon channels have been formed in the way indicated, in the Tropics the surface waters of the ocean should contain an excess of carbon dioxide (CO₂) and should exercise a demonstrable solvent effect on calcium carbonate (CaCO₃). If it should be found that there is no excess of carbon dioxide (CO₂) in such water and that the water is saturated with reference to calcium carbonate (CaCO₃), the hypothesis of the formation of lagoons and lagoon channels in the manner postulated by Murray and others must be definitely abandoned.

In 1913, Mr. R. B. Dole undertook at Tortugas, Florida, certain examinations that were intended to solve this problem, if possible. In 1914 I summarized in the following words the results I had obtained from a study of the bottom samples along the Florida reef tract, those of Drew on dentrifying bacteria, and those of Dole on the chemistry of the waters.¹

There are two rival hypotheses for the formation of atolls: One of these attributes them to the submarine solution of the interior of a mass of limestone, the other accounts for them by constructional agencies. In order thoroughly to test the solution hypothesis the results of four lines of investigation were brought to bear upon it, and all are accordant. (1) All the bays, sounds, and lagoons within the Florida reef and key region are filling with sediment; (2) Drew's investigations of dentrifying bacteria show that chemical precipitation of calcium carbonate is taking place in the lagoons; (3) the chemical examination by R. B. Dole of samples of sea water flowing into and out of Tortugas lagoon, collected twice daily for a lunar period, show that although both carbonate and bicarbonate radicles are in solution uncombined carbon dioxide is not present, and that the water possesses no capacity for further solution of calcium carbonate by virtue of its content of free carbon dioxide; (4) the determinations by Dole of the salinity of the water within the Tortugas lagoon and at the southern end of Biscayne Bay show a higher concentration than that in the open sea water on the outside, indicating that tidal inflow and outflow are not sufficient completely to mix the water in the lagoons with the water of the surrounding

sea and that concentration by evaporation is taking place. As the results of these lines of inquiry are so positive, the formation of lagoons by submarine solution may be definitely eliminated from consideration.

Since the publication of this statement other investigators have made important contributions to this subject, noteworthy among whom are John Johnston, H. E. Merwin, and E. D. Williamson, of the Geophysical Laboratory of the Carnegie Institution of Washington, and Roger C. Wells, of the United States Geological Survey. Wells says:

In other words, sea water [from the Florida reef] appears to contain so much carbonate that in contact with the atmosphere at 1°C it neither has nor acquires an appreciable solvent action on calcite.

As I have considered the subject in detail in my paper on the Murray Island bottom-samples and in a paper on "Chemical and organic deposits of the sea" I will merely say that sea water in shoal-water areas within the Tropics can not dissolve calcium carbonate, and that lagoon channels and atoll lagoons are not formed by solution, but are flattish areas more or less completely inclosed by built-up walls.

As lagoons are areas of sedimentation and not of removal of material, their formation by submarine scour may also be discarded.

EFFECTS OF WIND-INDUCED AND OTHER CURRENTS IN SHAPING CORAL REEFS.

This is an old topic; in fact, considerable bibliographic work would be needed to ascertain the names of all the investigators who have contributed to it and who deserve mention. That Darwin at least had an adumbration of the importance of these agents is indicated by his statement regarding Keeling atoll:

That they [the waves] beat against it in the same peculiar manner in which the swell from windward now obliquely curls round the margin of the reef, was evident from the conglomerate having been worn in to a point projecting from the beach in a similarly oblique manner.

Among recent investigators Hedley and Griffith Taylor, as noted on page 245, Wood Jones, and I, in a number of my papers, two of which are cited below, have devoted attention to this subject. During the field season of 1914 I had numbers of Ekman meter current-measurements made around Tortugas and at other places along the Florida reef tract. The measurements to a certain degree

---

4 Structure and distribution of coral reefs, ed. 3, p. 22, 1889.
5 Coral and atolls, pp. 233-261, 1910.
give quantitatively the relations of currents to land forms, and completely confirms the more qualitative generalizations of Hedley and Griffith Taylor, which in brief are the axis of elongation of linear reefs is parallel to the direction of the dominant current while the bow of a crescentic reef is directed toward the direction whence the dominant current comes. These relations of reef form to current direction are most striking where the reefs rise above comparatively shallow platforms, as along the Great Barrier reef of Australia and along the Florida Keys. In atolls that more or less encircle the flat tops of submarine peaks, although currents are undeniably important in shaping sections of the reefs, they are not of so great importance as reefs that rise above shallow, long, wide platforms.

**Criteria for Determining the Effect of Glaciation and Deglaciation on the Development of Living Reefs.**

Daly's elaborate paper on the Glacial-control theory of coral reefs has been cited on page 245. If the Glacial-control theory is true the following conditions should prevail: 

(a) There should be evidence of geologically Recent submergence of most of the shore-lines of the earth; 

(b) the average amount of submergence should be equal to the amount of lowering of the ocean-level during Pleistocene glaciation; 

(c) the position of the strand line during Pleistocene glaciation should be indicated by scarps separating flats, and the amount of submergence indicated by their present position below sea level should agree with the amount of raising ocean level due to deglaciation; 

(d) rate of growth corals should be such that since the disappearance of the continental ice sheets coral reefs could grow to a thickness equal to the amount sea level was raised as a result of the deglaciation; 

(e) living barrier coral reefs and atoll reefs should be superposed on antecedent basement flats or platforms. It should here be stated that the fact that there has been local differential crustal movements does not at all invalidate the importance of the Glacial-control theory in its application to the explanation of the modern coral-reef development.

Of the criteria stated in the foregoing list only the amount of vertical change in the position of sea level because of glaciation and deglaciation, the length of time since the disappearance of the great continental glaciers, and the rate of growth of corals need discussion at this place. After their consideration some attention will be given to other criteria of less determined value.

**Amount of Vertical Displacement of Strand Line by Glaciation and Deglaciation.**

It is entirely obvious that the withdrawal of water from the ocean to form the Pleistocene continental glaciers would lower sea level, and that the return of the waters so locked up to the ocean upon the melting of the continental glaciers would raise sea level back to where
it stood previous to the formation of the continental glaciers, unless
crustal changes in the earth counterbalanced the effects of such with-
drawal and return of oceanic water. Reference here will be made
to only the two latest computations.

W. J. Humphreys, as part of a symposium before the Geological
Society of Washington, on March 24, 1915, said: 1

The fact that the average thickness of the ice cap during the last glaciation can be
only roughly estimated renders any calculation of its effect on ocean level corre-
spondingly doubtful. It does not seem probable, however, that they should have
averaged much if any thicker than the present caps of Greenland and of Antarctica,
which a number of good observers have estimated to be about 1,000 meters. Taking
this value and assuming the deglaciated area to be equal to one-fifteenth the area of
the ocean, or, roughly, twice the glaciated area of North America, we estimate the
change in sea level to have been about 67 meters. As already stated, this is only
an estimated change, but perhaps it is a conservative estimate.

Daly in his paper on the Glacial-control theory of coral reefs sum-
marizes his discussion in the following words: 2

Combining results, it is seen that, at the time of maximum glaciation, the tropical
seas probably had an average level which was 60 to 70 meters (33 to 38 fathoms) lower
than at the present time.

The estimates of Humphreys and Daly are essentially the same.
As maximum glaciation was probably not of long duration the
greatest effect of submarine terracing would be expected in some-
what shallower depths, probably between 20 and 30 fathoms.

RATE OF GROWTH OF CORALS AND LENGTH OF POST-GLACIAL TIME.

Recently I have published two summaries of the results of my
experiments and observations on the growth rate of Floridian and
Bahaman corals, and compared my results with those obtained by
investigators in the Pacific. 3 The following statements are taken
from the second of the papers referred to in the footnote:

As has been stated, the primary object of this investigation was to get an approxi-
mate measure of the rate at which corals might build reefs. In order to make this
estimate the true reef corals must be considered separately from those which live in
other habitats. The reef species par excellence in the Recent and Pleistocene reefs of
Florida and the West Indies is Orbicella annularis; after it in importance are Maen-
dra strigosa, M. labyrinthiformis, and Siderastrea siderea. Other corals, the most im-
portant of which is Porites astreoides, with Agaricia and Favia fragum of secondary
importance, occur in the areas intermediate between the prominent heads. In some
areas Acropora palmata is the dominant species. The massive heads form the strong
framework of the reef, with infilling by other corals and other organisms. Therefore
the upward growth rate of Orbicella annularis on the reef is critical. * * *

1 Humphreys, W. J., Changes of sea level due to changes of ocean volume, Washington Acad. Sci.
3 Vaughan, T. W., Geologic significance of the growth-rate of the Floridian and Bahaman shelf-water
shelf-water corals, in On Recent Madreporaria of Florida, the Bahamas, and the West Indies, etc.,
Using these figures [in the paper referred to] as the basis of a further computation, a reef by the continuous upward growth of corals [Orbicella annularis] might attain at a rate of 6 mm. a year a thickness of 25 fathoms = 150 feet in 7,620 years; and at a rate of 7 mm. a year it might attain the same thickness in 6,531 years.

Should the growth rate of Acropora palmata be taken as a measure, the time to accumulate such a thickness would be considerably less. This species forms spreading, palmate fronds, rising from stout bases. As age advances the fronds thicken and can withstand the pounding of surf and breakers. The average upward growth is between 25 and 40 mm. per year, but as the interspaces between the fronds are considerable in volume, comparisons with Orbicella annularis must be based upon relative increases in weight for a known period. * * *

These two estimates [as shown in the paper cited] give a measure of the limits of reef formation under continuously favorable conditions for upward growth. Such corals as Orbicella annularis might form a reef 150 feet thick in between 6,500 years and 7,600 years; while such corals as Acropora palmata might form a similar thickness in 1,800 years.

The data available for the Pacific corals are not so abundant as those for the Atlantic, nor have the records, with few exceptions, the same degree of precision. However, they are sufficient for some general comparisons. The general growth rate of branching corals is nearly the same for both regions; but the growth of the massive forms in the Pacific appears to be appreciably more rapid than that of similar forms in the Atlantic. Therefore it seems probable that in the coral reef regions of the Pacific and Indian oceans a reef 150 feet thick may form under favorable conditions in less than 6,000 years. According to Gardiner such a reef might form in 1,000 years.

As the disappearance of the last continental ice sheets is estimated to have been between 10,000 years ago in Scandinavia and Alaskas and 40,000 years ago at Niagara, the data presented show that there has been ample time for the development of any known living reef since deglaciation.

EFFECT OF LOWERING OF MARINE TEMPERATURE ON REEF CORALS DURING GLACIATION.

Daly in his paper on the Glacial-control theory devotes much attention to the probable extinction of reef corals over large areas and their restriction to only the hotter parts of the ocean during glaciation.1 Daly’s discussion of this subject is interesting and suggestive, but not really convincing. It is one on which far more research is needed. I rather hope that the data I have recently presented in my paper on the temperature of the Florida coral-reef tract2 will aid in furnishing a basis for such a computation. That there was a lowering of the vitality of corals over large areas marginal to tropics can scarcely be doubted, but that reef corals thrived throughout Pleistocene time appears more than merely probable.

In this connection this following list of corals from the elevated reefs of Barbados is pertinent. Professor Jukes-Browne sent the collection to me after Prof. J.W. Gregory had published his paper on the Barbadian elevated-reef corals,3 making the statement that great care had been taken in determining the height above sea level at which

3 Gregory, J. W., Contributions to the paleontology and physical geography of the West Indies, Geol. Soc. London Journ., vol. 51, pp. 255-310, pl. 11, 1895.
each lot was obtained. The collection is now the property of the United States National Museum.

Corals from the elevated reefs of Barbados submitted by Prof. A. J. Jukes-Browne.

Elevation 1,043 feet. Horse Hill, St. Joseph.  
Orbicella annularis (Ellis and Solander).
Elevation 845 feet. Cutting side of road, Parris Hill, St. Joseph.  
Orbicella annularis (Ellis and Solander).
Elevation 747 feet. Cutting side of road, Market Hill, St. George.  
Orbicella annularis (Ellis and Solander).
Elevation 720 feet. Russia Gully, St. Thomas.  
Orbicella annularis (Ellis and Solander).  
Maeandra labyrinthiformis (Linnaeus).
Elevation 707 feet. Haynesfield, St. John.  
Stephanocoenia intersepta (Esper)  
Orbicella annularis (Ellis and Solander).  
Manicina gyrosa (Ellis and Solander).
Elevation 700 feet. St. Johns Church, St. John.  
Maeandra strigosa (Dana).
Elevation 480 feet. Locust Hall, St. George.  
Stephanocoenia intersepta (Esper).  
Orbicella annularis (Ellis and Solander).  
cavernosa (Linnaeus).  
Siderastrea siderea (Ellis and Solander).
Elevation 362 feet. Ridge, Christ Church.  
Siderastrea siderea (Ellis and Solander).
Elevation 360 feet. Small Ridge, Christ Church.  
Orbicella annularis (Ellis and Solander).
Elevation 300 feet. Skeens Hill, near Lower Greys, Christ Church.  
Orbicella annularis (Ellis and Solander).  
Siderastrea siderea (Ellis and Solander).
Elevation 300 feet. Dayrells Hill, St. Michael.  
Manicina gyrosa (Ellis and Solander).
Elevation 180 feet. Codrington Quarry, St. Michael.  
Orbicella annularis (Ellis and Solander).  
Manicina gyrosa (Ellis and Solander).
Elevation 160 feet. Cutting side of road, Charles Rose gully, St. George.  
Maeandra labyrinthiformis (Linnaeus).
Elevation 100 feet. Chelston Quarry, St. Michael.  
Meandrina maeandrites (Linnaeus).  
Manicina gyrosa (Ellis and Solander).  
Siderastrea siderea (Ellis and Solander).  
Acropora muricata (Linnaeus).
Elevation 80 feet. Prospect, St. James.
   *Stephanocenia intersepta* (Esper).
   *Orbicella annularis* (Ellis and Solander).
   *Maeandra labyrinthiformis* (Linnaeus).
   *Acropora muricata* (Linnaeus) s. s. (as pebbles).

Elevation 70 feet. Grazettes, St. Michael.
   *Stephanocenia intersepta* (Esper).
   *Orbicella annularis* (Ellis and Solander).
   *Maeandra labyrinthiformis* (Linnaeus).
   *Siderastrea siderea* (Ellis and Solander).

Elevation 40 feet. Sandy Lane, St. James.
   *Orbicella annularis* (Ellis and Solander).
   *Maeandra labyrinthiformis* (Linnaeus).

Elevation 40 feet. Colleton, St. Lucy Parish.
   *Maeandra strigosa* (Dana).

Elevation 20 feet. Black Rock.
   *Acropora muricata* (Linnaeus) s. s.

Just how much of Pleistocene time is represented by this collection I can not say, but it is certainly a considerable part of it.

Mr. O. E. Meinzer, in the vicinity of Guantanamo Bay, Cuba, obtained living species of reef corals on Pleistocene terraces between 400 and 500 feet, at 275 feet, 200 feet, 125 feet, and 50 feet above sea level.

It is unfortunate that Daly should have attempted to account for the disappearance in the West Indies of so large a percentage of genera that now persist in the Indo-Pacific by appeal to the lowering of the temperature in the western Atlantic Ocean through Pleistocene glaciation. In a recently published paper¹, as well as the present one, I have shown that the genera had disappeared previous to Pliocene time.

It is at present my opinion that not enough is known regarding the effect of lowering of marine temperature during glaciation to serve as a basis for very strong arguments for or against the validity of the Glacial-control hypothesis.

**Valley-in-Valley Arrangement and Clipped Spurs.**

Professor Davis says in his Shaler Memorial study of coral reefs:

Furthermore, if the embayments of a central island within a barrier reef result from the drowning of valleys that were eroded with respect to lowered sea level of a relatively short glacial period, then each valley must be entrenched in the floor of a preglacial valley; and above the head of each embayment resulting from the drowning of a new-cut valley, there should be a “valley-in-valley” landscape, unless the preglacial valley was so young and narrow that its sides were undercut and destroyed by the deepening and widening of the glacial valley.²

---

The character of the entrenching within an established valley after lowering of sea level will depend upon the off shore slope of the sea bottom previous to the lowering of sea level. As any acceleration of headward erosion by a stream depends upon increase in steepness of the longitudinal profile of the stream bed, unless the gradient of the lower course of the stream is considerably increased there will be no visible valley-in-valley landscape after submergence following deglaciation. Subsequently I will show that in the West Indies there is abundant evidence of another kind that during Pleistocene time sea level was lowered, and that at the close of Pleistocene time it was raised. Valley-in-valley arrangement is a criterion of very doubtful value.

Professor Davis also insists that if the Glacial-control hypothesis is correct, the spurs of islands within barrier reefs should be cliffed—the cliffs cut during Pleistocene glaciation. As promulgated in print by Professor Davis, I doubt the validity of this criterion. Perhaps the following hypothetical explanation may apply in some instances:

Around volcanic islands, the centers of which are far enough from the shore for the surface profile of the ejecta to have assumed the theoretic catenary curve, marine planation may proceed without at first cutting pronounced cliffs. If the material on the higher slopes is not greatly consolidated, alluviation and surface creep may deliver detritus more rapidly than the sea can remove it by marginal cutting and by undertow and other transporting agents. The sea may thus be held back from the interiorly situated harder volcanic rocks and the development of well-marked sea cliffs may thereby be prevented while the sea bottom would be aggraded near shore and a submarine flat produced. Should sea level then fall so that the shore line would shift to the outer edge of the previously formed flat, erosional processes might obliterate the low scarp carved into unconsolidated colluvial and alluvial material. Under such circumstances, should the sea-bottom gradient be less than that of the stream profiles, the lowering of sea level would not lead to the development of valleys-within-valleys, and alluvial plains might be pushed forward beyond the ends of the interstream spurs. Should sea level rise back to its former stand reef corals might establish themselves on the submerged flat at any place where the proper ecologic conditions might be found and develop into a barrier reef, off a land area on which there would be no valley-in-valley arrangement of stream courses and along whose shores there would be no cliffed spurs. This is an hypothetical instance, but that it is possible is apparently shown by the island of St. Christopher, West Indies, where such an arrangement of central volcanic mountains and relatively flat areas underlain by volcanic ejecta and colluvial and alluvial material intervene between them.
and the shore. In other volcanic islands the sea may not be held back from the harder rocks and may cliff them.

There are numbers of possibilities which deserve consideration, but the actual explanation of how present conditions were brought about is possible only through detailed field work in each area.

Some other kinds of shore lines may be mentioned. It is well known that one of the important factors in determining the amount of cliffing and the character of the cliffing of some shores is geologic structure. In an uplifted island composed of bedded sediments which have been moderately tilted the highest cliffs will be on the up-dip side along the line of the strike; the cliffs will decrease in height from the up-dip exposure along the line of the dip, and on the side of the island where the rocks pass beneath sea level there may be almost no cliffs. These relations are well illustrated in Anguilla and other islands in the West Indies. After such an earth block has been outlined there may be oscillation of strand line without further local crustal deformation.

The island of St. Croix is interesting in this connection. Just south of its north shore, which is determined by a fault, are maturely dissected mountains which attain an altitude of about 1,000 feet. Off the south foot of the highland is a sloping, slightly undulating plain, underlain by limestone, which extends to the south coast, (See pl. 70, fig. D). If this island were submerged 120 feet the limestone plain would form a submarine flat from one to about three sea-miles wide. Corals might grow on such a flat and form a barrier reef inside which there would be no strongly cliffed spurs along the shore, while the mountains would be in a stage of mature dissection.

**American Tertiary and Pleistocene Reef Corals and Coral Reefs.**

Most investigators of the genesis of coral reefs have considered only the modern; but the ancient, or fossil, reefs in many instances afford better opportunities than the living reefs to determine the geologic character of the basement on which the reefs have been built, the change in the relation between the reef basement and sea level, and the importance of corals as constructional agents. The southeastern United States and near-by West Indian Islands furnish numerous examples of both ancient and modern coral reefs, and these have been the subject of investigation for many years. The location of the Tertiary fossil reefs in the southeastern United States, their associated faunas, the inclosing sediments, including in most instances both the overlying and underlying strata, the stratigraphic relations of the successive geologic formations, the geologic structure, and the geologic history, have been ascertained with a fair degree of accuracy. The coraliferous beds range in age from the base of the Eocene to Recent, and the coral fauna of each geologic formation is
known with approximate completeness. The total coral faunas have yielded some hundreds of species.

Eocene Reef Corals of St. Bartholomew.

The corals obtained from the St. Bartholomew limestone are listed on page 194. Although there are many specimens and species of reef facies, they scarcely form a reef properly speaking. However, the stratigraphic relations are interesting. The best collecting ground is on the northeast face of the northwestward projecting limb of the island, between Anse Lézard at the northwest and Jean Bay at the southeast. Anse Écaille lies between the two bays mentioned. Cleve's account of the geologic succession is correct, perhaps with some modification of his dates of a part of the igneous rocks. The base of the section is composed of volcanic agglomerate, above which there is interbedded agglomerate or sandstone, conglomerate composed of volcanic material, and limestone, succeeded by massive, hard, blue limestone. Most of the corals occur in the lower part of the sedimentary formation, in the limestone or in the softer, more rapidly weathering layers of calcareous sandstone, in which there is rehandled volcanic material. In conglomerate at the base of one exposure I observed boulders of volcanic material as much as 8 inches in diameter. Although, as Cleve stated, there is some interbedding of the limestone and agglomerate in the lower part of the sediments the upper formation rests unconformably on the lower.

The gradation upward into purer, more massive limestone has been mentioned. The presence in the higher limestone of a few corals of the same species as those in the lower beds and the abundance of calcareous algae in some places, indicate a shoal-water deposit; and, as the area of the deposit is relatively extensive, the evidence is in favor of its having been laid down on a submerged flat.

The Jamaican Eocene corals are shoal-water forms but they are really not of reef facies.

West Indian Middle Oligocene Reefs.

Antigua.

That the bedded volcanic tuffs underlying most of the Central Plain of Antigua dip under the Antigua formation toward the northeast is indicated by the general structure of the island, and is confirmed by a well record, kindly furnished me by Dr. H. A. Tempany, government chemist of the Leeward Islands. The record mentioned is of a well bored on Fitches Creek, half a mile northeast of the southwest boundary of the limestone. Compact, noncalcareous rock was struck below the limestone. In the Central Plain patches of

gravel and cobbles overlie the surface of the bedded tuffs at a number of places, two of which are Casada Gardens and Gunthorpe sugar-factory. At Morris Looby Hill, near the head of Willoughby Bay, conglomerate immediately underlies the limestone; and the basal contact of the formation is also exposed on the north side of Willoughby Bay, where it is underlain by conglomerate, mostly composed of basic volcanic material. The main reef occurs within the Antigua formation at or near its base and is exposed along a southwest-northeast line from Willoughby Bay to near Wetherell Point. The Antigua reef therefore grew upon a basement that had been subaerially eroded and was later depressed below sea level. The reef and the limestone of which the reef forms a part were formed during or after the submergence of their basement. Associated with the corals are many specimens of several species of Lepidocyclina, which are organisms characteristic of shallow, tropical water. The areal extent of these sediments, coupled with the fact that the deformation of the water-bedded tuffs that lie below the Antigua formation is not much greater than that of the Antigua formation, indicates that they were deposited on a submarine flat. In the northeastern part of the island both the tuffs and the limestone, according to J. W. Spencer, dip northeastward at a rate of 12° to 20°. My own measurements show dips of about 20° toward the north or northeast for the volcanic tuffs and dips between 10° and 15° in amount, and ranging from N. 60° E. to N. 70° E. in direction, for the Antigua formation. The rocks are more disturbed in the Central Plain, where the dips of the volcanic tuffs were measured. Therefore, according to the available evidence the Antigua formation was a relatively extensive formation deposited in shoal water on a flattish floor.

The main reef-coral bed is about 60 feet thick and is near the bottom of the formation. Above it corals are scarcer, but appear to be too sparingly distributed throughout a thickness of about 300 feet of limestone above their profuse development nearer the base, or the Antigua formation seems to have a total thickness of a little more than 350 feet.

**PORTO RICO.**

The middle Oligocene coral fauna, as has been stated on page 204, occurs in the geologic formation to which Hill applied the name Pepino. This is a hard, calcareous marl, full of coral heads, with occasional indurated strata of white porous limestone. It is well exposed north and northwest of Lares in the Pepino Hills, whence the name for the formation is derived and where the collection of corals submitted to me by Mr. Hill was obtained. This is the for-

---


mation to which C. P. Berkey later applied the name Arecibo formation.¹ I have no field acquaintance with the formation but from some notes on it made by Cleve, before it had been named, from the descriptions of Hill and Berkey, and from some of the corals collected by members of the New York Academy Porto Rican investigations, I am inclined to the opinion, that there is not a "formation" but a group of formations of similar lithology, for the "formation" contains both middle Oligocene (Antiguan) and upper Oligocene (Anguillan) fossils, and probably also some Miocene species. Ultimately the "formation," as Berkey also has suggested, will probably be split into several formations; it seems to me that there will be at least three and perhaps more. Only the stratigraphic relations of the base of the formation particularly need consideration here. These relations are those of unconformity according to Berkey, who says:²

Above it [the Arecibo formation] in all cases lie the recent alluvial deposits and the San Juan formation. and below it lie the older and more complicated igneous and sedimentary rocks. The break between these two represents the chief unconformity in the whole geological column.

An excellent illustration of the unconformity below the "Arecibo" is given on page 16, figure 3, of Berkey's paper.

Berkey says in his summary of the geologic history of the island:³

Where more simple marine conditions came into control, as would happen when submergence or planation had masked or destroyed the more elevated source of supply, the deposits became almost wholly reef limestones and shell limestones, with only minor amounts of strictly detrital material irregularly distributed.

The middle Oligocene reef-coral development of Porto Rico, therefore, took place after its basement had been subaerially eroded and then depressed below sea level, and it seems that the basement prior to its submergence had been almost reduced to a peneplain surface.

CUBA.

Reef corals of middle Oligocene age were first collected in Cuba, on Rio Canapu, by Arthur C. Spencer, who obtained three species, all of which also occur in Antigua; but the only at all extensive collection is from the vicinity of Guantanamo, and was made by O. E. Meinzer, who studied in detail the stratigraphic relations of the coraliferous formation. I am taking the following note from a manuscript by Mr. Meinzer, now awaiting publication. That there is a pronounced unconformity is indicated by a conglomerate at the base of the formation. Previous to the submergence, during which the coral reefs were formed, there was a long period of subaerial erosion, but geologic investigations have not been prosecuted over large

² Idem. p. 3.
³ Idem. p. 59.
enough areas in Cuba to draw inferences as to the physiographic features of the land surface resulting from the erosional activities.

WEST INDIAN AND PANAMANIAN UPPER OLIGOCENE REEFS.

ANGUILLA.

Basic igneous rock above which in places there is some sandstone is exposed below the coralliferous limestone at Crocus Bay and Road Bay. The contact is very clearly one of erosion unconformity. The following is a composite of the sections exposed at Crocus Bay:

Geologic section at Crocus Bay, Anguilla.

3. Hard cavernous limestone, with few or no corals.................. 60 feet.
2. More or less argillaceous limestone with some beds of harder, purer limestone; contains fossil corals from bottom to top, some coral heads as much as 2 feet in diameter; this member subdivisible into subordinate beds about............................................. 200 feet.
1. Yellowish and brownish clay underlain by dark blue-black clay, or sandstone and conglomerate of igneous material overlying basic igneous rock (exposed at Pelican Point).............................. 5 feet±.

The exposure at Road Bay is essentially the same as that at Crocus Bay.

The Anguillan reef was evidently formed during submergence after the subaerial erosion of its basement.

It should be emphasized that the richly coralliferous limestone is overlain by more massive, harder, limestone in which there are few or no corals; and that the areal extent of the shoal-water limestone indicates a submarine flat.

CANAL ZONE.

The Emperador limestone, according to Doctor MacDonald, lies unconformably on several of the beds belonging to the underlying Culebra formation, and supplies another instance of a fossil coral reef with an unconformable basal contact.

The stratigraphic relations of the important West Indian and Canal Zone reef corals and coral reefs are summarized in the following table:

Stratigraphic relations of West Indian and Canal Zone Eocene and Oligocene reef corals and coral reefs.

<table>
<thead>
<tr>
<th>Age</th>
<th>Locality</th>
<th>Basal contact</th>
<th>Overlying rock</th>
<th>Surface of base ment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Oligocene</td>
<td>Canal Zone (Emperador Is.)</td>
<td>Unconformable on Culebra formation</td>
<td>Limestone without or with few corals</td>
<td>Submerged flat</td>
</tr>
<tr>
<td></td>
<td>Anguilla</td>
<td>Unconformable on igneous rock or on sandstone and conglomerate</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Middle Oligocene</td>
<td>Antigua</td>
<td>do</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Porto Rico (Pepino formation)</td>
<td>do</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>Upper Eocene</td>
<td>Cuba (Guantanamo)</td>
<td>do</td>
<td>Limestone without or with few corals</td>
<td>Not known. Submerged flat</td>
</tr>
<tr>
<td></td>
<td>St. Bartholomew</td>
<td>do</td>
<td>do</td>
<td>do</td>
</tr>
</tbody>
</table>
All of the fossil reefs discussed in the foregoing remarks were formed during periods of subsidence that followed subaerial erosion of their basements. The basal contacts might be interpreted as supporting Darwin’s hypothesis, but in four of the six instances the reefs are buried under later nearly pure limestones in which there are few or no corals. What caused the change in the character of the sediments, and coincidently led to the extermination of the reefs is not known; but the organisms in the overlying sediments indicate shallow, tropical waters, and as the geologic formations are areally extensive (relatively speaking), they were evidently formed on submarine flats. The corals began to grow on such flats and were ultimately killed. So long as the ecologic conditions were favorable, the corals flourished, but died when the conditions changed. The formation of the flats can scarcely be attributed to the corals.

**WEST INDIAN MIOCENE REEF CORALS.**

Meager developments of reef corals during the Miocene occur in Cuba and Santo Domingo, but at present no Miocene reefs are known unless the name reef be applied to the corals found in the La Cruz marl, eastward from La Cruz to the intersection of the railroad with the highway from Santiago to the Morro. The La Cruz marl is a bedded formation in which there are a few reef corals. The presence of pebbles in the basal part of the formation at the south end of Santiago Harbor suggests an erosion unconformity with some older Tertiary formation.

No Pliocene reef corals are at present known in the West Indies. The erroneous suggestion, that a coralliferous limestone exposed in a quarry on Calle Infanta, opposite Castillo de la Punta, Habana, might be Pliocene, has been corrected on page 224. This limestone seems to represent very nearly the same horizon in the Miocene as the Bowden marl of Jamaica; it may be stratigraphically somewhat higher. It contains some corals of reef facies but it can not appropriately be called coral-reef rock. The stratigraphic relations of the base of the deposit are not known.

**WEST INDIAN PLEISTOCENE REEFS.**

The West Indian Pleistocene reefs, whose stratigraphic relations have been critically investigated and can be discussed here are those of Jamaica and Cuba. Mr. R. T. Hill has placed in my hands a manuscript describing the Pleistocene reefs of Barbados, and Doctor MacDonald will discuss those of Costa Rica and Panama in his memoir on the geology of the Canal Zone and adjacent areas.

The basal contacts of the Jamaican Pleistocene reefs, as has been elaborately presented by R. T. Hill in his account of the Jamaican

reefs, at least usually show unconformable relations. Although that Agassiz was aware of the unconformity at the base of the Cuban Pleistocene reefs can be inferred from his descriptions, he did not emphasize the stratigraphic relations; however, he does say regarding the living Cuban reefs: "In Cuba they [the coral reefs] abut upon the Tertiary limestone of its shores." I observed the unconformable relations at Baracoa, and stated that "Upper Oligocene yellowish calcareous marls or limestone are found in the vicinity of Nuevitas; also at Baracoa, where they immediately underlie the Pleistocene coastal soborruco." On page 32 of the same report it is stated: "It should be added here that all of the elevated Pleistocene coral reefs as seen by us and all of those recorded by those whom we consider competent observers, are plastered on the surface of the upper Oligocene [mostly Miocene] formations, or in some instances upon older geologic formations."

Unconformable relations between the elevated Pleistocene reefs and the underlying Miocene limestone or marl are observable at Matanzas, Habana, and Santiago. The rock in the left foreground (pl. 71, fig. A,) is the slightly elevated soborruco (coral-reef rock) that extends into the mouth of Santiago Harbor, clearly showing that the harbor was outlined as a drainage basin previous to the formation of the particular reef now under consideration. The bluff and slopes in the background and on the right side of the illustration are formed in the Santa Cruz marl.

The known unconformable relation at the base of the Pleistocene elevated reefs was the basis of inferred "subidence of 80 to 100 feet" during the Pleistocene; this subidence was followed by elevation and channeling in the mouth of the harbor; and this was followed by Recent submergence. I have recently prepared a revised account of the shore-line phenomena of Cuba, and present the following summary for the vicinity of Habana:

1. Stand of land high enough for the subaerial erosion of the basement of a reef that seems to be about 30 feet above sea level at present, and for the outlining by erosion of Habana Harbor.
2. Submergence in Pleistocene time to a stand about 30 feet lower than at present.
3. Emergence in Pleistocene time sufficient to permit the cutting of a channel, now submerged 100 feet in Habana Harbor; the amount of this emergence would be about 100+ feet = 130 feet.
4. Submergence, assigned to Recent time, to a depth of about 100 feet.

1 Hayes, C. W., Vaughan, T. W., and Spencer, A. C., A geological reconnaissance of Cuba, made under the direction of General Leonard Wood, Military Governor, p. 23. The upper Oligocene in this quotation is now considered Miocene. The italicized part of the sentence is in Roman letters in the original.
2 Idem., p. 34.
5. There may have been minor oscillations, for instance the 5-foot soboruco may represent slight elevation subsequent to the last submergence.

Mr. O. E. Meinzer, in his manuscript, "Geologic reconnaissance of a region adjacent to Guantanamo, Cuba," referred to on page 204, gives the following summary of events for the vicinity of Guantanamo:

1. (Previous to the formation of the terraces) "Erosion, resulting in the excavation of the principal valleys now in existence, some of them probably below present sea level.

2. Submergence sufficient in amount to bring the land at least 750 feet below the level of the present shore line.

3. Successive stages of emergence and perhaps slight tilting of the land, alternating with stages of quiescence, the emergence being about 850 feet in amount so that the land area stood about 100 feet higher than at present, thereby permitting stream erosion below the present sea level; during the stages of quiescence sea benches and cliffs were formed at different, successive stands of the land.

4. Submergence to the present level, resulting in the drowning of the lower parts of the stream valleys and in the production of innumerable small estuaries, bays, and coves.

5. Filling of the submerged valleys and development of a new sea bench by destructive and constructive processes."

The reefs considered in this section are fringing reefs. They rest unconformably upon their basements, but were formed during pauses in emergence.

TERTIARY AND PLEISTOCENE REEF CORALS AND CORAL REEFS OF THE UNITED STATES.

SOUTHEASTERN UNITED STATES.

In the United States Tertiary reef corals first appear at the base of the Eocene in the Midway group in Alabama, but these are not sufficiently abundant to entitle the deposit to the designation "coral reef."

The oldest Tertiary coral reefs in this province are of middle Oligocene age, and have been studied at Salt Mountain, near Jackson, Alabama, and near Bainbridge, Georgia. The basal contact of the reef at Salt Mountain is not exposed, and its nature is, therefore, unknown. The reef in the basal part of the Chattahoochee formation at Bainbridge, Georgia, rests on the surface of the upper Eocene Ocala limestone, which shows evidence of subaerial erosion, and is exposed from place to place along Flint River throughout a distance of 8 or 9 miles. It is relatively thin, perhaps only 10 to 15 feet thick, and contains a fauna of about 30 species of corals, mingled with which are many specimens of Lithothamnion and large Lepidocyclina.

The next younger development of reef corals is in the upper part of the Chattahoochee formation and its stratigraphic equivalent,
the "silex" bed and limestone of the Tampa formation. Corals are sufficiently abundant to justify being designated "reefs" at several localities, the most important of which are 18 miles south of Tallahassee, Florida, in several counties in southern Georgia, and at Tampa, Florida. Coralliferous limestone of the same or nearly the same age is exposed one-half mile south of River Junction, Florida, and at old Jacksonboro, Georgia. Well borings in Tampa show that beneath the coralliferous limestone is a variable thickness of clay which overlies the irregular surface of the Ocala limestone, indicating subaerial erosion, followed by submergence. The coralliferous beds are stratigraphically below the next younger set of deposits grouped under the Alum Bluff formation, indicating the continuation of subsidence after the formation of the reefs. The thickness of the reefs and coralliferous beds is not great, perhaps between 10 and 20 feet. The fauna comprises about 20 species of corals. Where not silicified and its character may be studied, the limestone associated with the corals is of complex origin. It is partly organic, probably in part a chemical precipitate, and contains terrigenous impurities. This indicates that the reefs and corals of this period grow during subsidence on a previously formed platform, but possess greater value for their aid in stratigraphic correlation than as constructional agents.

The Alum Bluff formation, which, in my opinion, is of Miocene age, according to the usage adopted by the United States Geological Survey is subdivided into three members, which named from the bottom upward are the Chipola marl, Oak Grove sand, and Shoal River marl. The basal Chipola marl member was known only in an area extending from Alum Bluff on Apalachicola River westward to Chipola River until it was recently identified by Miss Julia Gardner from a collection made by Dr. E. H. Sellards at Boynton Landing on Choctawhatchee River, in Washington County. The bed on Chipola River seems conformably to overlie the Chattahoochee formation, it is conformably overlain by higher beds of the typical Alum Bluff formation, and is between 15 and 17 feet thick. Of the four or five species of corals found at this horizon, one is of reef facies, a massive species of Goniopora. Subsidence was in progress while these coralliferous beds were being deposited.

Before completing the discussion of the Alum Bluff formation certain events antecedent to its deposition in central peninsular Florida should be stated. Previous to the deposition of Chattahoochee and Tampa sediments, the Ocala limestone was deformed with the production of a low, elongate dome, the axis of which extends from near Gainesville to near Ocala. On both the east coast and the west coast along an east-west line through Gainesville the surface
of the Ocala is below sea level and is overlain by younger forma-
tions, while along the axis of the dome its surface rises from 80 to
a little more than 100 feet above sea level. This low dome formed
in the upper Oligocene sea an island or a group of islands to which
I have applied the name "Orange Island." The Chattahoochee
and Tampa formations were deposited on the western slope of this
island but they are not known in central Florida. The subsidence
which brought about the deposition of these two formations con-
tinued until the Alum Bluff sea advanced entirely across central
Florida, where deposits of Alum Bluff age rest on the surface of the
Ocala limestone apparently without the intervention of deposits of
intermediate age.

The portion of the Alum Bluff formation above its basal member
contains in central Florida at numerous localities heads of corals of
reef facies belonging to the genus Siderastrea. At a place near
Nigger Sink, about 8 miles north of Alachua, Florida, there is a
Siderastrea reef, which, according to aneroid barometer measurement,
is about 35 feet thick. The sediments associated with the Alum
Bluff reef corals are greenish, usually phosphatic sands and clays, and
impure phosphatic, in places magnesian limestone. The corals are
decidedly subordinate in importance to other constructional agents,
although they grew on a subsiding basement.

Alum Bluff sedimentation was succeeded by uplift and subaerial
erosion preceding the depression initiating the deposition of the
Choctawhatchee Miocene. Although the Miocene Choctawhatchee
and Chesapeake faunas comprise about a dozen species of corals of
distinctive facies, no reef corals are known as the temperature of the
water was evidently too low.

No Pliocene coral reefs are known, but corals of reef facies are well
represented in the Caloosahatchee marl, which is largely composed of
molluscan shells. The stratigraphic relation of the Caloosahatchee
marl to the Miocene has not been definitely ascertained, but available
evidence suggests separation by an erosion unconformity. Whatever
this relation may be, the formation was deposited during subsidence.
Corals are of slight importance as contributors of material to the
formation, as Heilprin long ago pointed out.

The following table, which is a slightly revised copy of a table
previously published,1 shows the stratigraphic distribution of coral
reefs and reef corals from Oligocene to Recent time, and their rela-
tion to changing sea level.

1 Vaughan, T. W., and Shaw, E. W., Geologic investigations of the Florida coral reef tract, Carnegie
Stratigraphic distribution of coral reefs and reef corals in the southeastern United States from Oligocene to Recent time, and their relation to changing sea level.

<table>
<thead>
<tr>
<th>Series</th>
<th>Geologic formations, members, unconformities.</th>
<th>Distribution of reef corals and coral reefs.</th>
<th>Change in relation of basement to sea level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent</td>
<td>Erosion unconformity.</td>
<td>Coral reefs.</td>
<td>Submergence.</td>
</tr>
<tr>
<td>Pleistocene</td>
<td>Key Largo limestone.</td>
<td>Coral reefs.</td>
<td>Subsidence.</td>
</tr>
<tr>
<td></td>
<td>Choctawhatchee marl. Erosion unconformity.</td>
<td>No reefs, a few corals.</td>
<td>Subsidence.</td>
</tr>
<tr>
<td></td>
<td>Chattahoochee formation. Lower.</td>
<td>Coral reefs (Bainbridge, Ga.).</td>
<td>Subsidence.</td>
</tr>
<tr>
<td>Eocene</td>
<td>Ocala limestone.</td>
<td>No coral reefs.</td>
<td>Subsidence.</td>
</tr>
</tbody>
</table>

The table shows, besides the stratigraphic distribution of the reefs and reef corals, that, with possibly one exception, each development occurred during subsidence which followed subaerial erosion.

To consider the basement of these fossil reefs: The geographic extent and composition of the limestones of upper Eocene age, which form the basement of the Floridian plateau, have been ascertained with considerable exactness. The surface outcrop has been mapped in Georgia and Florida, and well borings have revealed the presence of limestone of this age and character under younger formations in west Florida, at Panama City, and in Peninsular Florida, at Tampa, Key West, Key Vaca, and Palm Beach. The limestone is largely composed of the remains of Foraminifera, including myriads of *Nummulites* and orbitoidal Foraminifera, Bryozoa, and some mollusks and echinoids, with which is an undetermined proportion of chemically precipitated calcium carbonate and some terrigenous material. Corals are always rare and are usually absent. The organisms occurring in the formation are characteristic of tropical, shoal water, 50 fathoms or less in depth. As the 100-fathom curve delimits the submerged border of the Coastal Plain, it is evident that the Floridian plateau was a part of the Coastal Plain and had essentially its present outline back in upper Eocene time before the formation of the oldest Chattahoochee reef, which was therefore superposed on a subsiding platform not produced by corals. The paleogeographic development of the Floridian plateau shows that each successive development of Tertiary reefs was on an antecedent platform which was formed by agencies other than those dependent on the presence of coral reefs. In all instances the volume of coral as compared with material from other sources is of minor and usually of negligible importance.
The accompanying map (fig. 7) shows the location of the Oligocene reefs with reference to the Plateau surface.

That Pliocene deposition was followed by uplift, erosion, and depression, is shown by the fact that the Pleistocene shell marls along Caloosahatchee River rest on the eroded surface of the Pliocene. The Pleistocene reefs, the location of which is shown on the map (fig. 8), were formed during subsidence which followed uplift at the close of Pliocene deposition. At the base of the reef, which is 105 feet thick, is a calcareous deposit, 55 feet thick, of undetermined age. Beneath it are 450 feet of sand, mostly quartz, of Miocene age, below which follow in descending order, limestones of Chattahoochee and Ocala age, but without any development of reef-corals. Planimeter measurements indicate an area of 66 square miles for the Pleistocene reef against an area of 1,670 for the chemically precipitated calcium carbonate of the Miami and Key West oolites. I have already published
the statement that in Pleistocene time the calcium carbonate chemically precipitated probably predominated over that secreted by corals in the ratio 100:1.\(^1\)

The theory advanced by Louis Agassiz\(^2\) for the building of peninsular Florida is familiar to most geologists through the writings of LeConte. Agassiz says: * * * "the peninsula itself has once been a reef at least as far as the 28th degree of north latitude, as is shown by the investigation of the Everglades, and by the examination

---


\(^3\) Elements of geology, ed. 4, p. 163.
accepted the results of Smith and Heilprin but contended that the southern end of the peninsula is composed of wind-blown coral sand. Later investigations have established that the material comprising this part of the peninsula is neither coral sand nor is it wind-blown. Antecedent to the Recent reef out of an area of between 25,000 and 30,000 square miles, perhaps as much as, but probably less than, 66 square miles may now be attributed to coral.

The data on the fossil reefs of the Southeastern States may be summarized as follows:

1. Corals have played a subordinate part, usually a negligible part, in the building of the Floridian plateau.

2. Every conspicuous development of fossil coral reefs or reef corals took place during subsidence.

3. In every instance the coral reefs or reef corals have developed on platform basements which owe their origin to geologic agencies other than those dependent on the presence of corals.

**Pliocene Reef Corals from Carrizo Creek, California.**

Mendenhall 1 has described in detail the relations of the coralliferous beds at this locality, and I have republished his statements in my account of the collection of corals made by him and Dr. Stephen Bowers. 2 There is here another instance of a richly coralliferous formation with an erosion unconformity at its base.

**Living Coral Reefs of the West Indies, Florida, and Central America.**

No general account of the position and general features of the living reefs within the region above mentioned will be given here, as the subject has been fairly well treated by Alexander Agassiz for the West Indies and Central America, 3 and during the past eight years I have published a number of papers, listed in the footnote, 4 on the

---


[Footnote continued on page 272.]
Floridian, Bahamian, West Indian, and Central American reefs.

In addition to my studies in the field and my work on charts and maps in the office, I have compiled all available information on Pleistocene and Recent strand-line movement along the Atlantic coast between Argentina on the south and New England on the north.

The discussion to follow will present evidence on Recent change in the position of strand line, on the amount of change, and on the relations of the living coral to the basements on which they have formed for the West Indies from Antigua along the Caribbean arc to Cuba, the Bahamas, the Bermudas, Florida, and Central America. Accounts of these areas will be followed by remarks on some other West Indian Islands, on the Brazilian reefs, on the Argentine shore line, and on the shore line of the United States between Florida and Cape Cod.

[Footnote continued from page 271.]


Memorandum on the geology of the ground waters of the Island of Antigua, B. W. I., West Indian Bull., vol. 14, No. 4, 42 pp., 1915. Imperial Dept. of Agri. for the West Indies.


The islands of Antigua and Barbuda rise from a bank which is bounded by the 100-fathom curve and is 50 miles in length along a north-south line, and from 13 to 20 miles in width. Antigua is near the southern and Barbuda near the northern end, with water from 15 to 18 fathoms in depth between them. (See text fig. 9.)

The shore line of Antigua is deeply indented by numerous bays and harbors, as St. John, Five Islands, and Falmouth harbors, and Willoughby, Nonsuch, and Belfast bays (pl. 68, figs. A, B, and text fig. 10). The absence of terraces and elevated wave-cut cliffs is especially noteworthy. The discovery in St. John Harbor, at a depth of 20 feet below sea level, of a 4-foot bed of peat, which
is not composed of marine plants (according to Mr. C. A. Davis), adds confirmation to the inference from the indented shore line and the absence of elevated terraces and wave-cut cliffs that the last important movement of the strand line was one of submergence. Present sea-level relations have persisted long enough for the development of sea cliffs, in places 100 feet or more high, for the alluvial fillings at the heads of the bays, and for the extension inland of alluvial deposits along the streamways. There is some evidence of a slight upward movement of the land, a few feet, less than 10, since the submergence.

Fig. 10.—Chart of part of east coast of Antigua. From U. S. Hydrographic Chart No. 1064.

Barbuda, which is composed of limestone and has a maximum height of about 200 feet, has no marked indentations of its shore line; but Dr. H. A. Tempany informs me that fresh-water springs emerge below sea level in the lagoon about one-half mile south of Codrington village, a fact of significance in probably indicating submergence.

The similarity of the land mollusca of Antigua and Barbuda lend support to the inference from physiographic data that these islands were part of one land mass in Pleistocene time and have been severed by submergence, and as the water between the islands is 18 fathoms deep, the sea level must have risen at least that amount. A submerged steep slope off the southeast side of Antigua at depths between 100 and 150 feet accords with submergence to a depth of at least
18 fathoms, and indicates submergence of about 120 feet or 20 fathoms. (See fig. 11 below.)

Barrier coral reefs occur around Antigua off the mouth of Nonsuch Bay, off the southwest angle of the island, and there is a discontinuous barrier off the west side of the island. There are other reef patches, some of which are almost barriers. Barbuda has barrier reefs, Cobb and Goat reefs, off its northern end.

These reefs of Antigua and Barbuda occur on a platform which has been submerged. That the platform or flat lying between Antigua and surrounding Antigua is in origin independent of the corals growing on its surface is shown not alone by its continuity irrespective of the presence of corals. That a land area existed between Antigua and Barbuda in Pleistocene time is clearly shown by the land mollusca; while the submerged steep slope or scarp shows that the flat existed and was marginally cut by the sea while it stood about 120 feet higher than at present.

ST. MARTIN PLATEAU.

J. W. Spencer has applied this designation to the plateau on which St. Bartholomew, St. Martin, and Anguilla stand. This plateau, as bounded by the 100-fathom curve, is irregular in shape and is 75 miles long by 45 miles wide. The maximum depth of water between St. Bartholomew and St. Martin is 16 fathoms and between St. Martin and Anguilla 14 fathoms. (See text fig. 12.)

The shore line of St. Bartholomew is indented, the indentations are usually divided by beaches into an inner or lagoon part and an outer bay or harbor part (pl. 68, figs. C, D). The beaches may have been elevated between 3 and 5 feet. The lagoons behind the beaches
are the salt ponds of the island. There is an entire absence of elevated terraces, unless some apparent shoulders on outlying islets, not actually visited by me, should be slightly elevated sea-cut benches. Wave-cut cliffs margin the rocky shores, and alluvial flats occur around the heads of the bays.

The shore line of St. Martin is indented. Each reentrant into the land is usually divided by a transverse beach into an inner lagoon or

---

**Fig. 12.—A Chart of St. Martin Plateau.** From U. S. Hydrographic Chart No. 2318. Scale, one inch=about 12.8 nautical miles.

salt pond and an outer bay portion; and alluvial flats margin the heads of the reentrants and project inland between the hills. The spurs along the shore are truncated by wave-cut cliffs (see pl. 69, fig. A) and exhibit no definite terracing. Older beach rock was seen at the northeast end of Blanche Point, perhaps indicating slight differential uplift for that locality.

The shore line of Anguilla (see pl. 69, figs. B, D), although not so conspicuously indented as that of St. Bartholomew and St. Martin.
is indented, and a number of instances, Road Bay, for example, of the separation by beaches of an inner lagoon from an outer bay are present. Three instances of inclosed basins having underground communication with the sea were noted (pl. 69, fig. C). No definite terraces are present and wave-cut cliffs are greatly developed.

That the last important change of sea level was by submergence of the land is evident from the character of the shore line in St. Bartholomew, St. Martin, and Anguilla; and in Anguilla additional evidence is afforded by the underground communication between inclosed basins in the limestone and the sea. Stable condition of the shore line for a considerable time is attested by the wave-cut cliffs, the development of the beaches, the alluvial fillings at the heads of reentrants into the landmass, and in St. Martin by the presence of unvegetated flood plains along the streamways.

In my paper on the littoral and sublittoral physiographic features of the Virgin and northern Leeward Islands, referred to in the footnote on page 272, I have shown that on the windward side of the St. Martin plateau there is an outer deeper flat, 26 to 36 fathoms below sea level, with a maximum length east and west of over 30 miles, and that this flat may be subdivisible into two subordinate terrace flats. The scarp on the landward side of the deeper flat in places is about 50 feet high, in depths between 20 and 28 fathoms; above the deeper flat is a shallower one, whose outer edge is about 20 fathoms under the sea (see text-fig. 11, p. 275). Other submarine evidence of submergence in this area is given in my paper cited. At the time the shore line around the St. Martin Plateau was about 20 fathoms lower than at present, Anguilla, St. Martin, and St. Bartholomew must have been united. The biologic evidence at present available is not sufficient to be decisive, but all that is known accords with this interpretation. Notches on the outer edge of the plateau simulate hanging valleys and may represent the outer ends of valleys cut while the sea stood about 40 fathoms lower than now; but the information on these is too scant to justify more than a suggestion.

The hydrographic chart does not show well the reefs of these islands, nor does the British Admiralty West India Pilot give a good description of them. Because of rough weather most of my own observations were made from the shore. Coral reefs occur across the entrances to most of the bays on the northeast and southeast sides of St. Bartholomew; reefs are well developed on the east side of St Martin, off North Point, and on the southeast side of Tintamarre Island; and there are dangerous reefs off the southeast coast of Anguilla and on the north coast of the east end of the island. Seal Island reefs occur on a ridge extending westward from the northeast end of Anguilla. Some of these reefs are of the barrier type, as navigable channels lie between them and the shore, one at Forest Point is an instance.
The reefs of the St. Martin Plateau are superposed on an antecedent platform that was brought into its present relations to sea level by geologically Recent submergence to an amount of about 20 fathoms.

Fig. 13.—Chart of virgin islands and St. Croix. From U. S. hydrographic chart no. 2318. Scale, one inch = about 12.8 nautical miles.

ST. CROIX ISLAND.

This island rises above a bank about 30 miles long and 10 miles wide. The distance from the shore to the 100-fathom curve is usually
less than three-quarters of a mile on the west end; and on the north side west of Sugar Bay the distance ranges from one-quarter to one-half mile. Off the south shore the distance to the 100-fathom curve in places slightly exceeds 3 miles; off the east end for 7 miles the water is less than 40 fathoms deep, while off the north coast the platform gradually narrows westward until near Salt River Point its width is less than one-half mile.

There is a long, disconnected barrier reef off most of the south coast, and barrier reefs are present off the north coast to a short distance west of Christiansted. The indented, ragged coast line and the depth of water on the platform so clearly point to the same conclusion as that already drawn from a study of Antigua, St. Bartholomew, etc., that reiteration is not necessary.

**Virgin Bank.**

The Virgin group of islands consists of about 100 small islands and keys (text fig. 13). The bank above which they rise is an eastward prolongation of that on which Porto Rico stands. The chart shows the indented coast line and the extensive, relatively shoal platform above the surface of which the islands project. The maximum depth of water between the islands is about 17 fathoms. St. Thomas well exhibits the coastal phenomena to which attention has already been so often directed—reentrants with alluvial fillings at their heads, unterraced alluvial bottoms along streamways, and wave-cut cliffs on the unterraced promontories (pl. 70, figs. A, B, C).

In my paper on some littoral and sublittoral physiographic features of the Virgin and northern Leeward Islands, already referred to, it has been pointed out that there are three terrace flats under the sea off St. Thomas, St. John, Tortola, and Virgin Gorda (see text fig. 11, p. 275). On the leeward side the deepest lies between 26 and 30 fathoms in depth and is separated by a scarp or steep slope on its landward side from a flat ranging from 14 to 20 fathoms in depth, which in turn is separated by a steep slope from a flat ranging from 6 to 10 fathoms in depth. On the windward side the respective depths are 26 to 34 for the deepest flat, 14 to 20 fathoms for the intermediate flat, and 7 to 10 fathoms for the shallowest one. The intermediate flat is narrow or absent on the promontory tips on the windward side, while it is preserved on the leeward side, strongly suggesting, if not actually proving, that the intermediate flat is older than the deeper one and was cut away in exposed places while the deeper one was forming. This evidence necessitates the deduction that in recent geologic time the Virgin Islands, except minor differential crustal movement in the vicinity of Anegada, have been submerged to a depth of about 20 fathoms, and that they were previously joined to Porto Rico, a deduction completely corroborated by bio-

37149—19—Bull. 103—7
logic evidence, for Dr. L. Stejneger says in his herpetology of Porto Rico that "St. Thomas and St. John form only a herpetological appendix to Porto Rico," and Dr. P. Bartsch informs me that the testimony of the land mollusca is the same as that of the reptiles and batrachians. Indentations at depths of about 40 fathoms in the outer edge of the submarine bank simulate hanging valleys that may have been formed while the sea level was 40 fathoms lower than at present.

In the Virgin Islands there are three tiers of coral reefs, namely, (1) on the outer edge of the deepest flat, (2) on the outer edge of the intermediate flat, (3) within depths of 10 fathoms or less. The reefs could not have been formed on the deepest flat while the scarp on the landward side of the flat was being cut, and the other reefs are clearly younger than the basements above which they rise, for their basements existed and had had a complicated history prior to the formation of the living reefs. In fact, the basements were dry-land surfaces during at least a part of Pleistocene time.

CUBA.

The principal contributors to the literature on the shore-line phenomena of Cuba are W. O. Crosby, Alexander Agassiz, R. T. Hill, Vaughan and Spencer, and Hayes, Vaughan, and Spencer. I have in papers cited on pages 271, 272 referred to some of the features of the Cuban shore line as bearing on the conditions under which the living coral reefs off the shores of the island have formed. W. M. Davis has recently alluded to the origin of the pouch-shaped harbors, and here it may be well to direct attention to a criticism made by him in his article cited in the foot note. He says:

It is, however, worth noting that the embayments here considered have a quite different relation to the adjacent coral reefs from that found, according to Hayes, Vaughan, and Spencer, in the pouched-reef harbors of Cuba: All the embayments I saw inside of sea-level barrier reefs in the Pacific islands occupy valleys older than the reefs; but in Cuba the valleys, and still more the subsidence which drowned them in producing the pouched harbors, are described by the above-named authors as younger than the elevated reefs which inclose them; and such valleys do not bear on the origin of the reefs, as appears from the following extract:

The extract is followed by comment, then by a quotation from Crosby and one from Hill, after which he says: "Without additional

---

7 "Pouched-reef harbors" are words not used in the publication under discussion by Professor Davis.
field study it is impossible to say which one of these views is correct, but the features of the Pacific reefs that I have seen support Hill's explanation." I have twice published the statement that "Hayes, Vaughan, and Spencer have shown, as is evidenced by the pouch-shaped harbors of the Cuban coast and filled channels, such as the submerged filled channel in Habana Harbor, that the last movement of the Cuban coast has been downward with reference to sea level," and that "the platform on which the Cuban reefs grow has been brought to its present position by subsidence." These remarks apply to the present living coral reefs and not to the elevated reefs, and the conditions presented by the pouch-shaped harbor is only a part of the evidence showing recent submergence of the Cuban shore line.

Professor Davis's remark that "all the embayments I saw inside the sea-level barriers in the Pacific occupy valleys older than the reefs" has no application whatever to the protecting effect a fringing reef may have on the shore of a land during elevation subsequent to the formation of a fringing reef, thereby permitting erosional agencies to operate more rapidly on the softer rocks lying back from the shore. The words in the Cuba report are: "Wherever the conditions are favorable for the growth of corals a fringing reef is built * * * ."

On preceding pages of this paper I have shown that there were coral reefs in Cuba in middle Oligocene time; that there were reef corals in both upper Oligocene and Miocene time (this Miocene is called upper Oligocene in the Cuba report); and that there are Pleistocene as well as living reefs. In the Miocene La Cruz marl in the vicinity of Santiago the greatest abundance of reef corals is not at the present head of Santiago Harbor, but it is seaward of the town of Santiago, east of La Cruz. (For a view seaward through the mouth of Santiago Harbor, see pl. 71, fig. B.) Whether the coral heads are sufficiently abundant to have retarded erosion toward the mouth of the harbor, while it was more rapid on the landward side, I am not prepared to say. This, however, was not a fringing reef, should it be appropriately considered a reef.

As to whether the elevated Pleistocene fringing reefs extended up to the sides of the outflowing water at the harbor mouths, thereby maintaining restricted outlets, or whether channels have been cut across the reefs after uplift, either of the alternatives is possible. Off the mouths of bays in Antigua, channels are maintained across living barrier reefs, which are tied to the shore at one end; while off Virgin Gorda, a barrier reef extends perpendicularly across the axis of the mouth of a submerged valley. These are living reefs; which have grown up during or after submergence and are younger

---

1 Not italicized in the original. Note use of present tense, "grow."
than the valleys landward of them. However, as the elevated Cuban reefs under consideration are fringing reefs, it seems to me more probable that they never extended across the harbor mouths; and I will add that the harbor basins had been formed, at least in large part, before the development of the now elevated fringing Pleistocene reefs.

Crosby, in 1883, seems to have been the first one to recognize the significance of the pouch-shaped harbors of Cuba. He says:¹

* * * During this period of elevation, Cuba, like most rising lands, had few harbors, but when subsidence began the sea occupied the channels and basins which had been excavated and cleared out by the rivers, and thus a large number of harbors came into existence. * * * They are half-drowned valleys filled to a considerable depth with land detritus, conditions which could not exist if the land was rising or had risen.

There are very many pouch-shaped along the Cuban coast. The following table presents information on 15 of them:

**Principal Cuban harbors.**

<table>
<thead>
<tr>
<th>Name</th>
<th>Shape</th>
<th>Maximum width, sea-miles</th>
<th>Maximum known depth in channel or harbor, Feet.</th>
<th>Channel length, sea-miles</th>
<th>Channel within narrowest part, Feet.</th>
<th>Height of adjacent land, Feet.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NORTH COAST.</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahia Honda</td>
<td>Palmately digitate</td>
<td>3.00</td>
<td>2.59</td>
<td>1.50</td>
<td>2,180</td>
<td>30-40</td>
</tr>
<tr>
<td>Cabañas</td>
<td>Trilobate</td>
<td>6.00</td>
<td>7.90</td>
<td>5.00</td>
<td>1,825</td>
<td>160</td>
</tr>
<tr>
<td>Mariel</td>
<td>Irregularly digitate</td>
<td>1.50</td>
<td>1.72</td>
<td>0.50</td>
<td>900</td>
<td>420</td>
</tr>
<tr>
<td>Habana</td>
<td>Trilobate</td>
<td>2.00</td>
<td>3.60</td>
<td>7.50</td>
<td>470</td>
<td>150</td>
</tr>
<tr>
<td>Nuevitas</td>
<td>Bilobate</td>
<td>7.00</td>
<td>137</td>
<td>4.38</td>
<td>1,400</td>
<td>Flat</td>
</tr>
<tr>
<td>Padre</td>
<td>Irregularly bilobate</td>
<td>7.50</td>
<td>75</td>
<td>1.75</td>
<td>900</td>
<td>Flat</td>
</tr>
<tr>
<td>Banes</td>
<td>Palomately digitate</td>
<td>3.35</td>
<td>65</td>
<td>1.50</td>
<td>450</td>
<td>400</td>
</tr>
<tr>
<td>Nipe</td>
<td>Unequally bilobate</td>
<td>108</td>
<td>124</td>
<td>2.00</td>
<td>4,900</td>
<td>100</td>
</tr>
<tr>
<td>Livisa and Cabonico</td>
<td>Palmately digitate</td>
<td>8.38</td>
<td>108</td>
<td>5.30</td>
<td>1,300</td>
<td>60-75</td>
</tr>
<tr>
<td>Tanamo</td>
<td>Irregularly bilobate</td>
<td>5.38</td>
<td>120</td>
<td>63</td>
<td>600</td>
<td>120-176</td>
</tr>
<tr>
<td><strong>SOUTH COAST.</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Báltiquier</td>
<td>Trilobate head</td>
<td>6.00</td>
<td>12</td>
<td>33</td>
<td>1.18</td>
<td>300</td>
</tr>
<tr>
<td>Guantánamo</td>
<td>Irregularly dumb-bell shaped</td>
<td>5.00</td>
<td>59</td>
<td>3.75</td>
<td>6,550</td>
<td>436</td>
</tr>
<tr>
<td>Santiago</td>
<td>Unilateral</td>
<td>1.00</td>
<td>65</td>
<td>3.87</td>
<td>675</td>
<td>230</td>
</tr>
<tr>
<td>Ensenada de Mora</td>
<td>Unilateral</td>
<td>1.00</td>
<td>58</td>
<td>3.87</td>
<td>675</td>
<td>230</td>
</tr>
<tr>
<td>Cienfuegos</td>
<td>Unilateral</td>
<td>4.25</td>
<td>139</td>
<td>2.13</td>
<td>1,200</td>
<td>130</td>
</tr>
</tbody>
</table>


It is important to note that where the harbors are digitate in shape, Bahia Honda for instance, one or more streams enter each digitation, and that the mouths of the streams are either embayed or, in places, swamps and delta plains have formed. The pouch-shaped harbors are not the only indentations of the shore line, for the lower courses of all the larger streams are more or less embayed.
FIG. 14.—PLAN AND CROSS-SECTION OF FILLED CHANNEL IN HABANA HARBOR. AFTER HAYES, VAUGHAN, AND SPENCER.
How are the harbors to be explained? Doctor Hayes and I believed we found the answer in the conditions at present existing along Yumuri River, near Matanzas. The river here empties into the sea through a narrow gorge cut through Miocene limestone and marls (see pl. 71, fig. C). The top of the gorge is 200 feet above sea level, while farther back from the stream altitudes of 400 feet or slightly more are attained. Above the gorge, the Yumuri and its tributary, Rio Caico, have sunk their courses through the limestone, have removed it, and have developed wide, almost base-level valleys (see pl. 71, fig. D), on the underlying softer sandstone and shale. If this basin were depressed sufficiently to let the sea into it through Yumuri gorge a pouch-shaped harbor would result.

Additional evidence bearing on the problem of the origin of these harbors was obtained from records of borings. Mr. C. A. Knowlton, an engineer at Santiago, reported to us that in boring wells in the valley of San Juan River, 3 miles southeast of Santiago, he found at a depth of 70 feet below sea level what appeared to be stream gravel. Even more convincing evidence was obtained in Habana Harbor. In the preparation of plans for a sewerage system the Military Governor had a series of borings made across the harbor. This harbor occurs in a rather wide valley surrounded by sides which slope upward from sea level to an altitude of about 200 feet. The borings revealed a submerged terraced valley within the wider valley and in the middle of the inner valley a channel reaching a depth of more than 30 meters (about 100 feet) below sea level (see text-fig. 14). The depth of the first flat above the sides of the channel is about 13 meters (about 42 feet) below sea level. This flat is now covered with sand and the submerged channel is filled with sand and clay. There are at present no known processes whereby such a channel and terrace could be developed and then buried, except by a higher stand of the land enabling a stream to cut a trench and develop a terrace, followed by a lower stand of the land which submerged both the channel and the terrace and resulted in their burial by sediment deposited over them.

It appears to me that there is no escape from the interpretation, made first by Crosby, that the pouch-shaped harbors are drowned drainage basins. Before the accumulation of the data by Hayes, Spencer, and me, Hill endeavored to explain them without a shift in height of strand-line, but after the additional information was presented to him he abandoned his interpretation and accepted ours. There is a statement to this effect in a manuscript by him now in my possession, and this citation is made with his authority.

The factors producing the peculiar form of the harbors will now be briefly considered. According to Crosby, Hill, and the account in our report on Cuba, fringing reefs are supposed to have restricted
the mouths of the streams, either by growing up to the edges of the outflowing water, a channel thereby being maintained, or because of their greater hardness they offered greater resistance to erosion than did the softer rocks on their landward side. It is my present opinion that the hypothesis of the reefs having more than a secondary importance in the development of these features must be discarded for the following reasons: First, that such physiographic forms are in no wise dependent on the presence of coral reefs is shown by their frequency in areas underlain by Cretaceous limestones in Texas. Hillecoat Valley in the southwest quarter of the Nueces quadrangle, Texas, is such a basin, with a narrow outlet into Nueces River. This is only one of a number of instances that might be given. In physiographic form this basin and its outlet resemble the pouch-shaped harbors of Cuba. Second, there is no evidence that corals had any more influence in Cuba than in Texas, for instance, Yumuri gorge at Matanzas is about 200 feet deep. The highest important elevated coral reef rocks occur at an altitude of about 35 feet above sea level off the sides of the stream mouth. The stream has cut and maintained a gorge through about 165 feet of limestone and marl which are topographically above the reef and which are not coral reef rocks, but which are bedded and were formed by other agencies. Other instances of these relations might be given.

The conditions around the Habana Harbor are interesting in this connection. Limestone of upper Oligocene or Miocene age occurs at the Morro and forms the higher land along the shore east of the city, and it outcrops at lower altitudes in the western part of the city; but the drainage at the south end of the harbor has cut through the limestone and exposed the underlying rocks, serpentine, rotten diorite, etc.; and that underground solution is active is indicated by the presence of springs along the serpentine contact. The conditions are here favorable for erosion by both mechanical cutting and solution in the area lying behind, while a channel has been maintained across the limestone on the sea front. This basin after it was outlined was submerged.

It is intended to give a much fuller discussion of the Cuban harbors in a paper now almost ready for press. The differences in form, and the causes to which the differences are due, are worthy of far more detailed treatment than is practicable in this place. I will end this part of the present discussion by saying that corals have in certain instances played a subordinate rôle by narrowing the mouth of a harbor and by preserving a constricted outlet. That the outlets of the basins here considered were constricted by reef rocks, now elevated, is shown by the conditions in Habana and Santiago harbors, and that similar constriction is now taking place by similar agencies.
is exemplified in many of the West Indian Islands. As the coral rock is usually harder than the rocks on which it rests, after its emergence it protects the narrow exit behind which erosion is more rapid and enlarges the basin.

From the remarks already made it appears unnecessary to discuss specially which are the older—the drainage basins occupied by the harbors or the coral reefs now elevated about 30 feet. However, that the Santiago basin is older than the coastal soborruco is shown by finding the soborruco within the harbor mouth; and as I found recent species of reef corals, apparently in place, on the east side of Habana Harbor, south of the Morro, at a height of 30 feet above sea level, the 30-foot reef seems to extend into the mouth of Habana Harbor. The valleys are clearly older. On page 264 of this paper a special point was made of the unconformity between the elevated Pleistocene reefs and the underlying Miocene material and the inference was drawn that the reefs were formed during subsidence after erosion of the basement under them. This is precisely the interpretation Professor Davis had made of the relations in the elevated reefs of the New Hebrides, but it seems such relations may develop in the same cycle, and, in my opinion, they are of slight importance in their bearing on the general theory of coral-reef formation.

The Isle of Pines furnishes important information on changes in sea level around Cuba. This island is nearly opposite Habana, 60 miles south of the south coast of Cuba, from which it is separated by water less than 10 fathoms deep. It comprises two parts, a southern which is mostly swamp, and a northern which is topographically higher. The surface of the northern division is mostly a plain, really a peneplain (see pl. 72, fig. A), above whose surface stand monadnocks of harder rocks (pl. 72, fig. B). This island is very different from the main island for, as no Tertiary or Cretaceous marine deposits are known to occur on it, it appears to have remained above sea level during these periods, but it has experienced the later changes of sea level which affected the larger island and during Pleistocene time it was joined to Cuba. The peneplain was formed at a lower level than that at which it now stands, it was then sufficiently uplifted to permit streams to cut into it, and has then been depressed, thereby drowning the mouths of the streams, but not bringing the plain surface so low as it formerly stood (pl. 72, fig. C). The coast line of the Isle of Pines and that of Cuba immediately north of it both are indented by the embayment of stream mouths through geologically recent submergence.

That the Isle of Pines was joined to Cuba during Pleistocene time is shown convincingly by its land fauna. Every species of reptile, except one, found on it, Dr. L. Stejneger informs me, is known to occur in Cuba, and two species of the mammalian genus Capromys
are common to both. Dr. Paul Bartsch tells me that the Isle of Pines is only "a chunk of Cuba" and that its land Mollusca represent a faunal area as closely related to the faunal areas of Cuba as are the different faunal areas in Cuba to one another; that is, faunally, the Isle of Pines is simply a portion (a faunal area) of Cuba. Therefore, it is clear that the Isle of Pines has been severed from Cuba in the latest Pleistocene or Recent geologic time.

Practically all the Cuban shore line has now been considered except that on the north side of the Province of Pinar del Rio, within the Colorados Reefs. Guadiana Bay is a nearly typical estuarine embayment, while slighter embayment of other stream mouths is indicated, and lines of islands extend seaward from some headlands. The shore line clearly indicates submergence. Mr. J. B. Henderson and Doctor Bartsch, however, tell me that there is positive evidence of minor uplift west of Guadiana Bay. ¹

The Cuban shore line as a whole shows evidence of Recent or latest Pleistocene submergence, and this submergence has influenced the modern coral-reef development.

Regarding the amount of Recent submergence of the Cuban shore line, reference to the table on page 282 shows that there is close accordace in the depths of the channels or harbors, except certain ones that will be discussed later. These indicate that prior to the last submergence the land stood about 100 feet or slightly more, about 20 fathoms, higher than at present. The amount of emergence would establish a broad land connection with the Isle of Pines.

The discrepant harbors are Nuevitas Bay, which shows an excess of only about 27 feet, Nipe and Tanamo bays, and the channel leading from Livisa and Cabonico bays, on the north coast, and Cienfuegos on the south coast. The harbors with the discrepant depths on the north coast all occur on the north side of the Province of Oriente and at the eastern end of the Province of Camaguey. They seem to indicate deeper submergence than at other places and that the submergence has not been uniform in amount for the entire coast. However, the depths do not contradict a Recent rise of sea level to an amount of about 20 fathoms. The harbor of Cienfuegos would be expected to be abnormal, for the fault line which runs northward from Cape Cruz intersects the shore line at its mouth (see text-fig. 15). It is possible that structural relations have also influenced the depths in the other harbors and channels that are discrepant. Regarding these it will be said that except Nuevitas Harbor they occur within a linear distance of 31 miles. Nipe Harbor, the westernmost of the group, lies on the north side of Loma de Mulas, while it, Livisa, Cabonico, and Tanamo harbors all are on the north side of Sierra Cristal.

The great extent and relatively uniform height of a coral-reef terrace between 30 and 40 feet above sea level favors the interpretation that the geologically Recent shift in position of strand line has been without pronounced crustal deformation.

The relations of the off-shore reefs to the platforms on which they grow will now be briefly considered. A detailed description of the reefs is unnecessary here, as it would be only a repetition of that already given by A. Agassiz\(^1\) and the accounts contained in the West Indies Pilot.\(^2\) It need only be stated that the best developed off-shore reefs on the north coast are the Coloradoes Reefs, between Bahia Honda and Cape San Antonio; and that off the south coast the best are those between Trinidad and Cape Cruz and those east and west of the Isle of Pines. Mr. John B. Henderson has devoted attention to the Coloradoes Reefs in his "Cruise of the Tomas Barrera." Have the reefs off the south coast grown up on the surface of preexistent platforms or are the platforms due to infilling behind a reef during subsidence?

The area between Trinidad and Cape Cruz will be considered first. The fact that the reefs form disconnected hillocks or mounds, sometimes of mushroom shape, above a plain surface, which in places is 50 miles wide along a line perpendicular to the shore, while on the seaward side of the reefs there are large areas of shallow platforms, without any margining reefs, seems conclusive evidence against the platform having been caused by infilling behind reefs.

The following, in my opinion, is the correct explanation: The littoral geologic formations from Cape Cruz to Trinidad are mostly upper Oligocene or Miocene marls and limestones which dip under the sea at relatively low angles. They dip into the Cauto Valley, which is a gently pitching syncline, and into its seaward continuation, the Gulf of Guacanayabo. The embayment northeast of Boca Grande passage is probably also synclinal in structure. The abrupt undersea termination of the platform is most reasonably explained by a submarine fault which runs from Punta Sabanilla, at the mouth of Cienfuegos Harbor, to Cape Cruz. The coral reefs have grown up on the surface of a plain underlain by geologic formations that were gently tilted seaward and faulted along the line indicated.

That the Isle of Pines was joined to Cuba during Pleistocene time has, I believe, been shown in a convincing manner. As the Miocene and upper Oligocene formations from Batabano to Pinar del Rio dip under the sea at low angles they must underlie the flat bottom of the Gulf of Batabano. That the submarine slope from East Guano Key to off Cape San Antonio is determined either by a fault or by a very steep flexure is clearly indicated, as off the south shore of the

Fig. 15.—Chart of south coast of Cuba, showing submerged flat and inferred fault lines. From U. S. Hydrographic Chart No. 1290.
Isle of Pines the descent from the shore in 9 sea-miles is 13,080 feet, a slope of about 1 in 4. The Gulf of Cazones appears to have been outlined by faulting. This shelf differs from the one considered in the preceding paragraph, in that the Isle of Pines, whose area is about 1,200 square miles, stands on its outer margin, and apparently has affected the course of the fault. However, there was here also an undersea flat, which was produced by the gentle seaward tilt of low-lying geologic formations, and its outer margin was also deter-

The Colorados reefs (text-fig. 16) grow as patches of barrier reefs or upon a shelf, which, according to Henderson, largely consists of coral rock that had been uplifted above the sea and then depressed. The conditions under which the Cuban offshore reefs are growing can be very easily summarized, as follows: (1) They are superposed

---

on flats submerged in geologically Recent time; (2) the amount of the submergence of Cuba was about 100 feet.

**BAHAMAS.**

Alexander Agassiz has in his reconnaissance of the Bahamas\(^1\) the following very significant statement:

May we not to a great extent measure the amount of subsidence which must have taken place at certain points of the Bahamas by the depth attained in some of the so-called ocean holes, as marked on the charts? Of course we assume that they were due in the aeolian strata to the same process which has on the shores of many islands formed potholes, boiling holes, banana holes, sea holes, caverns, caves, sinks, cavities, blowholes, and other openings in the aeolian rocks. They are all due more or less to the action of rain percolating through the aeolian rocks and becoming charged with carbonic acid, or rendered acid by the fermentation of decomposed vegetable or animal matter or by the action upon the limestone of sea water or spray under the most varying conditions of elevation and of exposure. None of them have their upper openings below low-water mark, though some of them may reach many feet below low-water level. Ocean holes were formed in a similar way at a time when that part of the bank where they exist was above high-water mark, and at a sufficient height above that point to include its deepest part. The subsidence of the bank has carried the level of the mouth and of the bottom of the hole below high-water mark.

From the description of the strata which crop out upon the banks in the vicinity of some of the ocean holes at Blue Hole Point, there seems to be little doubt that the stratification characteristic of the aeolian rocks has been observed.

The deepest of the holes mentioned by Agassiz has a depth of 38 fathoms, "in the extension of the line of Blossom Channel leading from the Tongue of the Ocean up on the bank."

I have had opportunities to study such "holes" or solution wells, above sea level in Florida and have examined many of them, both above and below sea level, in the Bahamas. Mr. E. W. Forsyth sounded other "holes" and reported the results to me.\(^2\) The depths of the holes range from about 2 fathoms to as much as 33 fathoms, the deepest hole in Fat Turtle Sound, North Bight, Andros Island, sounded by Mr. Forsyth. As in my opinion Agassiz's deduction as to the origin of these holes is incontrovertible, they indicate a stand of the land during Pleistocene time at least 228 feet higher than at present. Shattuck\(^3\) and Miller accept a higher stand of 300 feet, followed by submergence of 300 feet, and conclude that this movement in strand-line position was followed by emergence, to an amount between 15 and 20 feet. From my own experience in the Bahamas the last change in the position of strand line was accompanied by minor differential crustal movement. For instance, at Nicollstown Light, Andros Island, a sea cave stands at such a height above the sea as to show conclusively an elevation of 18 feet above the position

---

\(^3\) Shattuck, G. B., and Miller, B. L., Physiography and geology of the Bahama Islands, The Bahama Islands, pp. 19, 20, 1905.
at which it was formed; but 4,000 feet southeast of the cave the elevation is only about 4 feet in amount. I have given more information on this minor uplift in the paper referred to in the footnote.¹

Agassiz, Shattuck, and Miller, and I agree as to the geologically Recent submergence of the Bahamas.

The accompanying diagram (text-fig. 17) indicates the relations of the barrier reef off the west side of Andros Island to the platform on the edge of which it is growing. This reef is growing on the edge of a platform that had stood above sea level at least as much as 192 feet. It was perforated by solution wells and then submerged. The perforations in the platform show that it antedates the barrier reef, and that its formation is not dependent on agencies associated with the presence of the reef. There is here another instance of a reef formed during or after submergence, and superposed on the surface of an antecedent platform.

![Diagrammatic section across the barrier reef, Andros Island, Bahamas.](image)

FIG. 17.—DIAGRAMMATIC SECTION ACROSS THE BARRIER REEF, ANDROS ISLAND, BAHAMAS.

The relative importance of the constructional rôle of the living reef will be briefly mentioned. The Pleistocene oolite of the Bahamas is not coral-reef rock, as was contended by A. Agassiz. It is composed of calcium carbonate chemically precipitated on extensive submarine flats.² I have several times published the estimate "that on Andros Island, Bahamas, the ratio of the constructive work of the present reef to that of agencies that previously resulted in the formation of the Pleistocene oolite is approximately as 1 to several thousand, or, as a constructive agent, chemical precipitation has been several thousand times more effective in forming limestone than corals."³

Before passing to the discussion of the next area it should be pointed out that the amount of submergence of the Bahamas, 228

² For the most recent discussions of this subject, see Vaughan, T. W., Some shoal-water bottom samples from Murray Island, etc., Carnegie Inst. Washington Pub. 213, pp. 277-280, 1918; Chemical and organic deposits of the sea, Geol. Soc. Amer. Bull., vol. 28, pp. 933-944, 1918.
feet, is greater than that, about 120 feet, indicated for the areas already considered, unless the notches in the outer edges of the St. Martin Plateau and the Virgin Bank really indicate a position of sea level 40 fathoms lower than present sea level.

BERMUDAS.

Alexander Agassiz has given a good account of proto-Bermuda, that is of the extent and general physical character of the Bermudas previous to the submergence that has left the group in very nearly the form in which we now know it.\(^1\) Recently Prof. L. V. Pirsson has contributed two highly valuable articles to the literature on the geology of the islands, basing his interpretations largely upon a study of samples from a well bored in Southampton Parish, on the slope of a hill about a mile west of the lighthouse on Gibbs Hill, from a height of 135 feet above sea level to a depth of 1,413 feet below the surface, or to a depth of 1,278 feet below sea level.\(^2\)

There were penetrated in the well mentioned three major classes of material, as follows: (1) From the surface to a depth 383 feet below it, limestone; (2) from 383 feet to 600 feet, oxidized volcanic material; (3) below 600 feet to 1,413 feet, with one slight exception, basaltic, usually black lava. Pirsson concludes the first of his two articles with the following statement:

It appears to the writer that what has been learned regarding the history of the Bermuda volcano has an important bearing on the question of the way in which the platforms on which coral islands, barrier reefs and atolls are situated, have been formed. There is of course nothing new in the idea that these may be volcanic in origin, only in Bermuda we have once more a positive demonstration of the fact. We have also seen that, provided the volcanic masses are of sufficient antiquity, they may, even though of great size, have been reduced to sea level, furnishing platforms of wide extent. As mentioned above, such masses reduced to sea level would continue to project from the ocean abysses indefinitely and many of them may be of great geologic age. There is nothing in the mere size of any of the atolls of the Pacific which would preclude their being placed on the stumps of former volcanic masses; it is not intended to assert by this that the foundation in every case is necessarily a volcanic one. If such masses have once been brought down to sea level and continue to exist and that level changes within limits from time to time by warpings in different places of the sea floor, or by an accumulation of ice on the lands and its melting, as suggested by Daly, then conditions of shallow water over them may be established suitable for their colonization by those organisms concerned in the production of the so-called coral reefs, which may be formed under the conditions postulated by Vaughan.

It was the understanding between Professor Pirsson and me that I should prepare a report on the calcium-carbonate samples. The following is a preliminary statement, accompanied by determinations of the Foraminifera by Dr. Joseph A. Cushman.

---

### Preliminary description of the limestone samples and list of species of Foraminifera from the Bermuda well.

<table>
<thead>
<tr>
<th>No. of specimen and depth below surface</th>
<th>Description.</th>
<th>Species of Foraminifera.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (0-6 feet)</td>
<td>Light cream-colored limestone; mixture of calcite and aragonite; most of the constituent particles angular; largely or mostly broken remains of organisms; occasional small round grains 0.10 mm. or less in diameter, may be aggregates of chemically precipitated calcium carbonate. Largely of mostly an organic limestone.</td>
<td>Textularia agglutinans d'Orbigny. Poly polymella striatopunctata Fichtel &amp; Moll. Amphistegina lessonii d'Orbigny. Quinqueloculina reticulata d'Orbigny. Q. oblonga Montagu. Q. auberiana d'Orbigny. Peneroplis pertusus Forskål. Orbulina advena Fichtel &amp; Moll.</td>
</tr>
<tr>
<td>2 (61-110 feet)</td>
<td>Light cream-colored limestone; mixture of calcite and aragonite; constituent particles mostly angular, Foraminifera and broken tests of other organisms present; a few rounded grains 0.04 mm. or less in diameter, may be aggregates of chemically precipitated material. Largely of mostly an organic limestone.</td>
<td>Textularia agglutinans d'Orbigny. Poly polymella striatopunctata Fichtel &amp; Moll. Poly polymella species. Amphistegina lessonii d'Orbigny. Quinqueloculina reticulata d'Orbigny. Q. auberiana d'Orbigny. Orbulina advena Fichtel &amp; Moll.</td>
</tr>
<tr>
<td>3 (110-216 feet)</td>
<td>Light cream-colored limestone; mixture of calcite and aragonite, apparently but little aragonite; largely a recrystallized limestone, without conspicuous grains; some small pebbles contain pulverulent calcium carbonate; some pieces granular. A few grains 0.05 to 0.8 mm. in diameter resemble small oolite grains. The rock is mostly a foraminiferal limestone, the Foraminifera embedded in a cryptocrystalline matrix.</td>
<td>Clavulinella angularis d'Orbigny. Planorbulina larvata Parker &amp; Jones. Truncatulinu species. Poly polymella striatopunctata Fichtel &amp; Moll. Amphistegina lessonii d'Orbigny. Triloculina cf. T. circularis Borneymann. Orbulina advena Fichtel &amp; Moll.</td>
</tr>
<tr>
<td>4 (216-241 feet)</td>
<td>Whitish limestone, very slight yellowish tinge, some blackish particles; mixture of aragonite and calcite; specimen consists mostly of broken rock fragments; an occasional small pebble, one 2.5 mm. as maximum diameter; constituent material largely organic, Foraminifera, fragments of mollusks, shells, etc. Most small particles angular; a few less than 0.12 mm. appear oolithic. One 0.09 by 0.17 mm. in size had form of an oolitic ellipsoidal. Mostly an organic limestone.</td>
<td>Truncatulinu species. Pulvinulina canariensis d'Orbigny. Poly polymella striatopunctata Fichtel &amp; Moll. Poly polymella species. Amphistegina lessonii d'Orbigny. Triloculina limeena d'Orbigny. Orbulina advena Fichtel &amp; Moll.</td>
</tr>
<tr>
<td>5 (241-286 feet)</td>
<td>Whitish, faintly yellowish, pulverulent limestone; mixture of calcite and aragonite. Comparatively few tests of organisms, some Foraminifera, many small rounded grains and cryptocrystalline material. Some of the round grains appear oolithic; one of these is 0.11 by 0.15 mm. in size. It appears that a considerable proportion of this bed is a chemical precipitate.</td>
<td>Bolcastina species. Truncatulinu species. Discorbis cilindrodes d'Orbigny. Amphistegina species. Quinqueloculina reticulata d'Orbigny. Biloculina species.</td>
</tr>
<tr>
<td>6 (286-331 feet)</td>
<td>White, pulverulent limestone; mixture of calcite and aragonite. No organic tests were observed. Round grains up to 0.1 or 0.2 mm. appear to be oolite; small round grains 0.04 mm. in diameter. Much cryptocrystalline material. This bed appears to be largely a chemical precipitate.</td>
<td>None reported.</td>
</tr>
<tr>
<td>7 (331-341 feet)</td>
<td>White, friable limestone; mixture of calcite and aragonite. Round grains which range in diameter from 0.22 to 0.45 mm., may be oolitic. Small grains, 0.09 mm. in diameter seem definitely oolitic. Besides the rounded, there are broken angular grains and much cryptocrystalline material. Few of no organic tests. This appears to be largely a chemical precipitate.</td>
<td>Amphistegina species.</td>
</tr>
<tr>
<td>8 (341-383 feet)</td>
<td>Light-colored, earthy, yellowish-gray, impure limestone; some iron pyrites; mostly calcite, if aragonite is present the proportion is small. Many Foraminifera, Nummulites, fragments of coral, Bryozoa, etc.; many rounded grains which may be detrital; no definitely oolitic grains were observed. A thin section shows many Foraminifera embedded in a cryptocrystalline matrix. This bed is an impure, foraminiferal, shool water limestone. It may contain some chemically precipitated material.</td>
<td>Nummulites species.</td>
</tr>
</tbody>
</table>
This examination reveals three kinds of limestone, the uppermost of which subsequently may be subdivided. The three divisions are as follows:

Specimens 1–4 (0–241 feet) represent a limestone which is largely or mostly of organic origin, but which may contain a few grains of chemically precipitated material. This corresponds to the upper faunal division recognized by Cushman.

Specimens 5–7 (241–341 feet) represent a pulverulent limestone, composed of rounded grains imbedded in finely crystalline material. The grains in their size and shape resemble oolite, and some grains showed with greater or less distinctness suggestions of oolitic structure. The foraminiferal fauna is meager, but it differs from that of specimens 1–4 and the underlying bed represented by specimen 8. It seems safe to draw the inference that this division of the limestone is in part, at least, a chemical precipitate.

Specimen 8 (341–383 feet) represents an impure, foraminiferal, earthy limestone, or a calcareous marl, in which there may be some chemically precipitated material. This bed is the uppermost in which the Nummulites reported by Cushman occur. It was also found in the underlying bed No. 9, 383–393 feet.

Probable geologic age of the limestone in the Bermuda well.

[Height of well mouth above sea level, 135 feet.]

<table>
<thead>
<tr>
<th>Samples</th>
<th>Probable geologic age</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 1–241 feet</td>
<td>Recent and Pleistocene</td>
</tr>
<tr>
<td>From 241–386 feet</td>
<td>Pliocene or Miocene</td>
</tr>
<tr>
<td>From 331–341 feet</td>
<td>Nothing determinable</td>
</tr>
<tr>
<td>From 341–485 feet</td>
<td>Oligocene or Eocene (Nummulites)</td>
</tr>
<tr>
<td>From 393–485 feet</td>
<td>Eocene? (no Nummulites)</td>
</tr>
</tbody>
</table>

An outline of the geologic history of the Bermudas subsequent to the volcanic activity seems to be as follows:

Doctor Cushman's identification of the Foraminifera from the Bermuda well shows the presence of an undetermined species of Polystomella between 393 and 480 and between 480 and 485 feet. These depths are well down in the oxidized zone and indicate marine conditions which persisted throughout the deposition of the superincumbent material. Other Foraminifera occur between 383 and 393, one of them being a species of Nummulites, which was also obtained from the basal bed of limestone at a depth of 341 feet. As the genus Nummulites is, according to our present knowledge, confined to the upper Eocene and Oligocene formations in the southeastern United States and the West Indies, the inference may be drawn that the Bermuda samples between 341 and 393 feet probably represent a geologic formation of either Eocene or Oligocene age, and that those from 393–485 feet represent a formation of probably Eocene age.

37149—19—Bull. 103—8
Until the specimens of *Nummulites* from the Bermuda well have been identified with species of known stratigraphic position a more definite statement can not be made. It appears safe to assign an Eocene or pre-Eocene age to the Bermudian volcanic activity. The calcareous sediments, therefore, began to accumulate on a submerged volcanic basement in Eocene or lower Oligocene time, and the submergence progressed until the basement, in probably Miocene time, was entirely blanketed by calcareous deposits 100 feet thick, which differ in their physical aspect both from the underlying nummulitic rock and the overlying organic limestone. This rock is probably in considerable part a chemical precipitate. The well samples indicate no stratigraphic break at either its top or its base.

The limestone from a depth of 241 feet to the surface is a shoal-water, organic deposit, in which living species of Foraminifera are abundant. Its age is probably Pleistocene, although the lower part may prove to be Pliocene. The shoal-water nature of the limestone indicates continued slow subsidence.

The subsidence which apparently had been interrupted by no period of emergence since Oligocene time was succeeded in Pleistocene time by uplift to an amount of probably more than 100 feet. All the surface rock of the Bermudas except some in areas of low elevation is considered by the geologists who have visited the islands to be eolian deposits. However, certain of the published illustrations suggest that in some exposures there are in the bedding horizontal planes intersecting the inclined layers. Cross-bedding between horizontal planes is a structure characteristic of shoal-water or beach deposits but not of eolian deposits. A more critical study of the bedding of the Bermudian rocks may discriminate elevated cross-bedded water-laid and eolian deposits. However this may be, the period of uplift under consideration was the time of the Greater Bermuda, which has been admirably described by William North Rice, A. Agassiz, and A. E. Verrill. According to the latter, the area of Greater Bermuda was somewhat more than 230 square miles, or about 11 times that of the present land surface, which is estimated as having an area of 19 1/2 square miles.1 The evidence indicates that the elliptical area inclosed by the outer reefs was entirely above sea level, as perhaps also were the surfaces of Challenger and Argus banks.

The last important change in the relations of sea level was, as Verrill has so ably shown, submergence to an amount of about 100 feet, reducing the land area from that of 230 square miles during the period of Greater Bermuda to that of 19 1/2 square miles, the present

---

area. The evidence is not decisive as to there having been a slight emergence, of 6 to 10 feet, since the great submergence.

As Verrill has shown, the Bermuda limestone is composed not of coral débris, except in a subordinate proportion, but is made up of broken, more or less triturated, calcareous tests, largely of mollusks. He designates the material as "shell sands." The Bermudas are, therefore, inappropriately called "coral islands." The recent corals are growing on a foundation of older lime rock, brought into its present relation to sea level by submergence.

In that the last dominant change in the position of its strand line was by submergence, Bermuda accords with the Florida coast, the Bahamas, Cuba, and most of the smaller West Indian islands.

**FLORIDA.**

Strand-line oscillation in Florida has attracted the attention of many geologists, among whom may be mentioned Shaler, Heilprin, and Dall of the earlier investigators, and Matson, Sanford, Sellards, Shaw, and myself of the later ones. Shaw and I have recently reviewed the subject.¹ That subsequent to formation of the Pleistocene barrier reef of Florida, the reef tract was elevated to a height about 50 feet above its previous stand and that this elevation was followed by submergence to an amount of about 30 feet is shown by (1) a submerged cave at Miami; (2) submerged solution well below sea level, near East Bahia Honda Key; ² (3) submerged peat bed at Key West; (4) submerged indurated, cemented, recrystallized oolite under the Marquesas; (5) submerged wave-cut terrace front at Tortugas.

In addition to this evidence Shaw and I say in the paper cited:

Additional deductions of importance may be made from the submarine physiography at depths beyond 10 fathoms. Although the investigations are at present only in a preliminary stage, it may be said that along the sides of the Gulf Stream from opposite Miami to Satan and Vestal Shoals, just west of Sand Key, the Coast and Geodetic Survey charts indicate fairly uniform slopes from 10 to 100 fathoms, but there may be narrow terraces which are not brought out by the soundings. West of Vestal Shoal the sea bottom drops suddenly from 10 to 20 fathoms, with a flat or gently sloping surface between 21 and 28 fathoms. South of Coalbin Rock there is an escarpment between 10 and 30 fathoms, a flat or gentle slope between 30 and 40 fathoms, and another flat or gently sloping area between 40 and 50 fathoms. The soundings are not sufficiently numerous to trace surfaces with a feeling of confidence, but the scarp from 10 to between 25 and 30 fathoms is clear cut and can be followed for 25 miles to the west end of the Quicksands. Westward in the vicinity of Tortugas there are, besides, the bottom of Tortugas lagoon and the surface of the shoal 7 to 10 miles west of Loggerhead Key, two undersea terrace plains, one at a depth of 15 to 17 fathoms, the other, which is a large plain west of Tortugas, ranges in depth from 28 fathoms on its landward to 36 fathoms on its seaward edge, and has an east and west width of 10 miles. The 15 to 18 fathom flat is especially well developed south and southwest of Tortugas. It is

² Oral communication of Mr. Samuel Sanford.
separated by a scarp from the 28 to 36 fathom flat, and by another scarp from the shallower levels in Tortugas. The presence of the continuous scarp from Coalbin Rock to off the west end of the Quicksands, with a depth of 25 to 30 fathoms at its foot, and the presence of a terrace 28 to 36 fathoms deep, 10 miles wide, and bounded on its land-

ward margin by a similar scarp, suggest that the portion of the Florida reef tract west of Key West at one time stood some 20 fathoms higher than now, while the 15 to 18 fathom terraces suggest another, shallower stand of sea level.

Although the tracing of the oscillations of the Florida reef tract can not now be made in detail, it seems probable that it at one time stood more than 120 feet higher
than at present (and has been submerged to a similar amount). Besides the suggested larger swing there have been intermediate stands of sea level and numerous minor oscillations. The last movement of importance was one of submergence, but subsequent to it there has been a minor uplift of some 10 feet or slightly more in the vicinity of Miami.

The accompanying figure (fig. 18) shows that the flat that the living barrier-reef margins or above which coral-reef patches rise extends beyond the northern reef limits, near Fowey Rocks. The living barrier reef has developed seaward of the Pleistocene barrier near the edge of a previously prepared platform, for the continuity of the platform irrespective of the presence of the reefs shows that its origin is independent of them.

**Campeche Bank.**

The best known reef on the Campeche Bank is Alacran Reef, which was described by A. Agassiz in considerable detail in 1888.¹ (See pl. 73, photograph of model.) Heilprin in 1891² said regarding Yucatan, "the evidence is all but conclusive that there has been recent subsidence"; but I am unable to discover in his article the basis of this opinion. Dr. C. W. Hayes orally informed me shortly before his deeply lamented death that there is clear evidence of recent submergence around Terminos Lake at the base of the peninsula on its west side. The lagoons between Progreso and Holbox Island are strongly suggestive of submergence. There is a steeper slope between about 20 and 28 on the outer edge of the bank, indicating change in position of sea level by submergence, similar to the change already recorded for St. Thomas and other West Indian islands.

In this connection the following quotation from Alexander Agassiz will be introduced:³

In fact, what I have seen so far in my exploration of the coral reefs of the West Indies would show that wherever coral reefs occur, and of whatever shape, they form only a comparatively thin growth upon the underlying base, and are not of great thickness. In Florida they rest upon the limestones which form the basis of the great peninsula. On the Yucatan Bank they are underlain by a marine limestone. In Cuba they rest upon the Tertiary limestones of its shore. Along Honduras, the Mosquito Coast, and the north shore of South America they grow upon extensive banks or shoals, parts of the shore plateau of the adjoining continent, where they find the proper depth.

I doubt if there is any one bold enough to claim that Campeche Bank has been formed by infilling behind a barrier reef, for it is too obviously due to a large gentle flexure of the earth crust or some other kind of broad structural uplift, and that in suitable places coral grows on the surface of the submarine plateau formed in the manner indicated. E. W. Shaw⁴ collected a few bottom samples 6 to

¹ Agassiz, A., Three cruises of the *Blake*, vol. 1, p. 71, 1888.
⁴ Shaw, E. W., Oral communication.
8 miles off shore at Progreso, and in these he found only two fragments of coral, the main mass of the samples being shell fragments.

**HONDURAN REEFS.**

Although this is an important barrier reef, its length being 125 sea-miles, I know of no adequate published description of it, nor of any published account of the shore line or of the oscillations of the strand line behind it. The configuration of Honduras Bay and of the Gulf of Dulce, which lies inland from it and is connected with it by a waterway, as well as that of Chetumal Bay, points clearly to submergence. The reef occupies the outer edge of a platform 10 to 22 miles wide and is separated from the shore by a channel from 11 to 33 fathoms deep. This is a remarkably continuous barrier reef, but it shows discontinuity at its southern end and therefore evidence of superposition.

**MOSQUITO BANK.**

Hayes, although he was not giving particular attention to coral reefs, has made one of the finest studies of a shore line in a coral-reef area as yet published.\(^1\) The following is quoted from his article:\(^2\)

7. In middle Tertiary time the region was elevated and subjected to long-continued subaerial degradation, and the narrower portion of the isthmus was reduced to a peneplain, with monadnocks at the divide near the axis. There is no evidence that open communication has existed between the two oceans across this portion of the isthmus since the middle Tertiary uplift.

8. In post-Tertiary time the region was again elevated and the previously developed peneplain deeply trenchcd.

9. A recent slight subsidence has drowned the lower courses of the river valleys, and the estuaries thus formed have subsequently been filled with alluvial deposits.

J. E. Spurr furnished me a note\(^3\) confirming Hayes's deduction regarding the submergence of the lower courses of the streams on the east coast of Nicaragua. Subsequently I had profiles drawn across Mosquito Bank (see text fig. 11, page 275).\(^4\) These indicate submergence to an amount of about 20 fathoms. As on Mosquito Bank there is a submerged terrace front between about 20 and 25 fathoms in depth, the bank had to exist previous to formation of that feature, and as the living reefs grow on the shallower flats, which according to available evidence was out of water during at least a part of Pleistocene time, they are necessarily superposed on an antecedent basement. Furthermore, the enormous area of the flat and the relatively small areas occupied by living reefs, lead to the same conclusion—that is, the living reefs are merely growing on parts of a submarine plateau where conditions favor their life.

---

2 Idem, p. 348.
The shore-line phenomena of Panama and Costa Rica have been carefully described by D. F. MacDonald in his forthcoming report on the physiography and geology of the Canal Zone and adjacent areas. His conclusions in general accord with those I have expressed for other areas.

SOME OTHER WEST INDIAN ISLANDS.

R. T. Hill in 1899 1 pointed out "that Jamaica was once a more extensive land than now, with bennched and terraced margins which were submerged by subidence," and that "similar submerged plains are now occupied by the growing reefs around the island." Hill appears to hold the view that the reefs were formed during uplift, after submergence, and as regards the elevated fringing reefs I believe he is correct. In fact, Mr. Meinzer and I make a similar interpretation of the conditions under which the coral-reef terraces of Cuba were formed. But, it seems to me that the barrier reef of Morant Point, Jamaica, has been formed after an episode of submergence. The pouch-shaped harbors of Jamaica suggest that considerable stretches of the Jamaican shore line have undergone recent submergence.

I have compiled information on the shore lines of other West Indian islands, but to present more seems unnecessary. Possibly except a reef off the southeast side of Barbados, all the off-shore West Indian reefs on which I have obtained information have formed on preexisting flats or plateaus during or after an episode of submergence.

BRAZIL AND ARGENTINA.

Herbert M. Smith, 2 it seems, was the first to recognize evidence of submergence on the east coast of South America, and Rich 3 has made a pertinent application of Smith's observations and deductions to the coral-reef problem. Smith says:

Such an estuary as I have described could only have been formed by the subidence of the land over a great area, and the encroachment of the sea on some former Amazons and its tributaries.

During late geologic time there is in the region of the Amazon evidence of a higher followed by a lower stand on the land.

Branner has made the most careful study of the shore line of Brazil, and summarizes his conclusions as follows: 4

8. Although no changes of level are known to have taken place within the historic period, there are evidences of both elevation and depression of the Brazilian coast in late Geologic times.

2 Smith, Herbert M., Notes on the physical geography of the Amazon Valley, Amer. Naturalist, vol. 19, pp. 27-37, 1885.
9. The evidences of depression consist of:
   (a) The open bays: Río de Janeiro and Bahia.
   (b) The partly choked-up bays, such as Santos and Victoria.
   (c) The coast lakes formed by the closing of the mouths of estuaries such as Lagoa Manguaba, Lagoa do Norte, Jiquía, Sinimbu, etc.
   (d) Embayments altogether filled up.
   (e) The islands along the coast are nearly all close in shore and have the appearance of having been formed by depression of the land.
   (f) The buried rock channels at Parahyba, now filled with mangrove swamps and mud, show a depression of at least twelve metres since these channels were cut.
   (g) Wind-bedded sand below tide level on Fernando de Noronha.

10. The evidences of elevation consist of:
   (a) Elevated sea beaches especially well shown about the Bay of Bahia, and along the coast of the State of Bahia.
   (b) Marine terraces about Ilheos in the State of Bahia. These are about eight metres above tide level.
   (c) Horizontal lines of disintegration about one metre above high tide in granites and gneisses at and about Victoria, State of Espírito Santo.
   (d) Burrows of sea urchins so far above low tide that sea urchins can not now live in them. These are well shown at Pedras Pretas on the coast of Pernambuco.

11. Of the two movements the depression has been much the greater and was the earlier.

12. The great depression probably took place in early Pliocene times.

Additional evidence in support of the submergence of the Brazilian coast is given by O. P. Jenkins.¹

That the last dominant shift in the position of the strand line in eastern Brazil was by submergence, it seems to me, is incontrovertible, and that the Brazilian reefs are merely growing on the surface of a submerged continental shelf is too obvious to need defense. In these relations the Brazilian reefs accord with all other American offshore reefs, perhaps with the exception of the Barbadian reef specially mentioned on page 301. Professor Branner dates the submergence whereby the Brazilian harbors were brought into being, as Pliocene; whereas the submergence in the other areas discussed is clearly Recent. Without definite evidence I should not be justified in giving the drowning a later date than that assigned to it by Professor Branner; but I now know that I assigned too great antiquity to some physiographic features I considered about the same time that he was engaged on his work on the Brazilian stone reefs; for instance, the higher Cuban terraces are Pleistocene and not Pliocene, as I said in the Cuba report previously cited. May not the antiquity of the submergence of the Brazilian coast be less than Professor Branner inferred? May not both the submergence and the minor uplift following it be post-Pleistocene in age? Should the two events mentioned be geologically Recent, the shore-line history of Brazil would parallel that of eastern Central America.

Willis has directed attention to two areas of submergence by downwarping along the Argentine coast, namely, the embayment of the Rio de la Plata and Bahia Blanca;¹ but Barrell is of the opinion, from the character of the submarine profiles, that there has been submergence of the coast subsequent to the warping.² That there has been in late geologic time a rising of ocean level on the Argentine coast seems a justified deduction.

** ATLANTIC COAST OF THE UNITED STATES NORTH OF FLORIDA. **

That the last shift in position of strand line from the Georgia-Florida line at least to Narraganset Bay has been by submergence is so clearly shown by drowned stream mouths, resulting in estuaries and harbors, is so well known to geologists that no detailed presentation of evidence is necessary. Northward from near Boston there has been subsequent to submergence, emergence, probably due to crustal rebound after deglaciation and relief of the pressure exerted by the superincumbent continental glaciers.

**TYPES OF WEST INDIAN AND CENTRAL AMERICAN LITTORAL AND SUBLITTORAL PROFILES AND THEIR RELATIONS TO CORAL REEFS.**

In my paper on littoral and sublittoral physiographic features of the Virgin and northern Leeward islands,³ I pointed out that there are four types of sublittoral profiles in the West Indies (see fig. 19) as follows: (1) That found off volcanic islands, such as Saba, into the sides of which the sea has cut relatively narrow platforms; (2) fault plane profiles, such as the north side of St. Croix; (3) wide undersea flats, where planation agencies have long been active, as off Anguilla and north of St. Thomas; (4) submarine banks, such as Saba, Pedro, and Rosalind, which have no bordering land, and whose upper surfaces lie between 9 and 30 fathoms below sea level. All of these areas have undergone geologically Recent submergence. Where do the offshore reefs occur?

There is no barrier reef on the fault slope on the north side of St. Croix. No reef started as a fringing reef, then increased in thickness and grew seaward so as to form a prism of coral-reef rock and material caught behind the reef, so as to become converted according to the Darwinian hypothesis into a barrier reef; but there is a barrier off the south side of the island, where gently dipping limestones pass below the sea and produce a platform on the surface of which at the proper depth a barrier reef has formed. Off the fault shore of the south side of Oriente province, Cuba, there is no barrier reef, but farther west, between Cape Cruz and Trinidad where there

---

is a submerged flat underlain by gently dipping limestones there are offshore reefs, some of which have the barrier form. Where there are extensive offshore flats at the proper depths, if the other ecologic conditions are favorable, reef corals grow upon the surface of the flats and form either patches, stacks, or barriers.

It seems that no one would try to explain Saba, Rosalind, or Pedro Bank as the result of infilling behind barrier reefs. They are subma-

rine plateaus, leveled by planation agencies, which almost certainly were both subaerial and submarine, and they have been submerged in Recent geologic time. There is a rather meagre growth of reef corals on their windward sides; but these banks are scientifically of great importance, for, except that the coral growth is not so luxuriant, they essentially duplicate the great atolls in the Pacific.
SUBMERGED BANKS NORTH OF THE CORAL REEF ZONE IN THE WESTERN ATLANTIC OCEAN.

That there are off the Atlantic coast of Central and North America, north of the temperature zone in which coral reefs now exist, submarine banks at suitable depth below sea level for the growth of reef-forming corals, has been stated in several of my papers. There are six submarine banks projecting seaward from the eastern part of Central and North America. Named in order from the south northward these banks are, first, three on which there are coral reefs, namely, Mosquito Bank off Nicaragua and Honduras, Campeche Bank off Yucatan, and the Floridian Plateau; and, second, three on which there are no coral reefs, namely, Georges Bank, the banks off the coast of Nova Scotia, and the Grand Banks of Newfoundland. The presence of such banks is entirely independent of corals, but corals will grow on the surface of such banks where the necessary ecologic conditions prevail.

SUMMARY OF THE CONDITIONS UNDER WHICH THE AMERICAN FOSSIL AND LIVING CORAL REEFS FORMED.

1. The elevated Pleistocene fringing reefs of the West Indies are separated by erosion unconformities at their bases from the geologic formations that they overlie, but they were usually, if not invariably, formed during intermittent uplift following considerable depression.

2. The offshore reefs, whether forming parts of more or less bedded formations or forming patches, stacks, or barriers of living reef, were formed during or after submergence, as is shown in the case of the fossil reefs by unconformable basal contacts wherever basal contacts could be studied, and in the case of the living reefs by a great variety of evidence indicating geologically Recent submergence.

3. The offshore reefs grew upon or are growing upon antecedent flats, only a small part of the surface of which was or is covered by reefs. The flats existed prior to the submergence during or after which the reefs developed. Corals are constructional geologic agents and help build up the sea bottom, but the large flats on which they grow would exist were there no corals. Such flats are not confined to the temperature zone in which corals live.

4. The submergence of the basements of the fossil reefs seems more reasonably explained as the result of differential crustal movement; but the development of the living reefs seems in large part a result of geologically Recent rise in the stand of ocean level, for nearly the entire eastern shore of the Americas from Argentina on the south to Cape Cod on the north exhibits evidence of Recent submergence, after which there has been in some places minor emergence by differential crustal movement. The amount of the submergence usually seems

to be about 20 fathoms, but in places some facts indicate that the maximum is between 30 and 40 fathoms. Although more accurate investigations of the amount of the submergence are needed, the available evidence accords with the hypothesis that glacial control is one of the important factors in bringing about the formation of living coral reefs.

**Coral Reefs of the Pacific Ocean.**

It is manifestly impracticable to consider in this chapter more than a few of the important reefs of the Pacific Ocean. Those selected for discussion are the Great Barrier of Australia, the barrier reef off New Caledonia, and those off the Fiji and Society islands. Finally a few paragraphs will be devoted to atolls.

**Great Barrier Reef of Australia.**

The literature on the Great Barrier Reef is very extensive, and includes contributions from numbers of investigators, among whom Jukes, Saville-Kent, H. B. Guppy, Alexander Agassiz, A. C. Haddon, Wood Jones, E. C. Andrews, C. Hedley and Griffith Taylor, Edgeworth David, W. M. Davis, and A. G. Mayer may be mentioned. R. A. Daly and I have based statements regarding it upon cartographic studies. No attempt will here be made to review all the literature, and attention will be mostly confined to those papers that, in my opinion, correctly interpret the relations of the reef.

Andrews in 1902 published a remarkable paper ¹ on the shore line of Queensland and the platform on which the Great Barrier Reef stands. This paper contains an excellent account of the physiography of the Queensland coast, applying the deductions based upon the physiographic study to the conditions under which the reef developed, and in it is recognized the significance of a continuous platform and an interrupted reef. Because of the embayed shore line Andrews correctly inferred submergence of the Australian continental shelf, and he makes the important statement:

* * * the continuance in width of the shelf southwards of the limits of reefs (coralline), and the great shoals thereon, points to a minor part only of the shelf being formed of coral growth.²

A few years later Hedley and Griffith Taylor published a valuable paper on the same subject.³ They accepted Andrews's deduction

---


² Idem, p. 177.

regarding submergence and devoted particular attention to the
effects of wind-induced currents in shaping atolls. They also say:

It may be allowed, though Darwin deprecated the idea, that the continental shelf
was ready prepared with numerous banks representing eroded islands, just reaching
to within the required distance of the surface, when the first coral builders came.¹

On a subsequent page they add:

Whatever the history of the Great Barrier Reef was, the reefs of the Coral Sea, such as
Lihou Reefs, Flinders Reefs, and Herald Cays, shared in it.²

I have stated in one of my papers:³

An inspection of the admiralty charts for the eastern coast of Australia shows con-
cclusively that the platform on which the Great Barrier Reef of Australia stands has

an existence independent of the Great Barrier Reef, and that corals have established
themselves on this platform where the conditions favorable for their life are realized.

Daly has given cross-sections of the Australian shelf both south of
and across the Great Barrier Reef in two of his papers,⁴ and I have
presented a series of cross-sections in one of mine,⁵ both of us basing
our profiles on the British Admiralty charts. There is one important
fact shown by both Daly’s and my profiles, but which Daly seems
not to have emphasized. It is that the platform not only continues

---

² Idem., p. 413.
southward from the reef limits, but in many places the barrier reef stands not on the margin of the shelf but miles landward from the edge. (See text-fig. 20.) There is also a significant terrace front at depths somewhat deeper than 120 feet. These profiles should be compared with those for the West Indies (fig. 11, p. 275). They tell essentially the same story. The platform can not be due to the presence of the Great Barrier Reef, for in many places it projects beyond the reef. I state in my paper cited:

The evidence in favor of a shore line between 25 and 30 fathoms below present sea level is strong, if not conclusive, and supports the deduction that the living barrier reef is growing on what was a land surface in Pleistocene time, an interpretation essentially that proposed by E. C. Andrews in 1902.¹

NEW CALEDONIA.

I have seen no good account of the coast of New Caledonia, off whose shores is one of the most important barriers known. According to P. Marshall, ² "the northeast coast is practically straight, but many inlets that form excellent harbours penetrate the southwest coast." The chart shows indentations in the north coast, although they are not so deep as those on the south. I find references to the shore-line features in two of Professor Davis's papers,³ and from them certain information may be obtained. The shore line is embayed, there are deltas mostly contained in the embayments between headlands that are strongly cliffed on the sea front. The present barrier reef has developed subsequent to the truncation of the headlands and subsequent to the submergence that has caused the embayment of the coast. Just how much of the platform surmounted by the

¹ W. M. Davis has published since the manuscript of this paper went to press an article entitled: The Great Barrier Reef of Australia (Amer. Journ. Sci., vol. 44, pp. 339-350, Nov., 1917), in which he criticizes me and others because we have not "satisfactorily explained" the origin of the form of "the continental mass." Among the statements of Professor Davis is "Vaughan's view is based on the physiographic investigations of parts of the eastern coast of Australia by Andrews (1903); ** *", after he had introduced two quotations from my paper on the littoral and sublittoral physiographic features of the Virgin Islands, etc., as given in abstract (Amer. Geol. Soc. Bull., vol. 27, pp. 41-45, 1916). Professor Davis has drawn an erroneous deduction regarding my cartographic studies of the Great Barrier Reef. They could not have been based on Andrew's work, because Andrews neither published nor made comment on a series of profiles across the Australian platform, such as those I had prepared. Furthermore, my emphasis of the fact, which it seems I was the first to point out—namely, that the present Great Barrier Reef in places stands some miles landward from the margin of the continental shelf—and my deduction therefrom, that the platform can not be attributed to infilling behind the reef, do not warrant the inference that "Vaughan ** * has excluded coral-reef agencies from any part in forming the platform itself ** *". I not only do not know how the Australian continental shelf was formed, but I do not know how any one of a number of hypothesis can be tested. I, therefore, endeavor to confine my discussion to matters on which evidence is procurable, and said nothing regarding the origin of the platform. Professor Davis advances the hypothesis that the platform on which the present Great Barrier is growing is a "mature reef-plain", formed in a previous physiographic cycle, and that it has been recently submerged. Whether reefs in past geologic time formed a rampart on the edge of the Australian continental shelf and a plain resulted from infilling behind the barrier can at present be neither proved nor disproved and on this subject I have expressed no opinion.

Caledonian barrier is due to the cut and fill process of marine planation at and below sea level during the cliffing of the promontories and to the sediment deposited in the sea, derived through the erosion of mature valleys, I can not say with certainty, but that so much material deposited in the sea would under the influence of waves and currents form a submarine plain is a warranted deduction; and as the barrier reef is crossed by gaps and is discontinuous at both the southeast and northwest ends, the deduction seems safe that it is superposed on a submerged platform of antecedent existence.

FIJI ISLANDS.

That the barrier reefs off the Fiji Islands have developed during or after submergence of their basements is obvious from an inspection of the charts to anyone familiar with the physiography of shore lines. The numerous reproductions of British Admiralty charts in A. Agassiz's volume on the Fiji Islands¹ is valuable and convenient for such a cartographic study. That the indentations of the shore line in the Fijis are due to the drowning of the lower parts of subaerially formed valleys has been pointed out by many geologists, the first of whom appears to have been Dana, who says:²

There is, further, not merely probable but positive evidence of subsidence in the deep coast indentations of the high islands within the great barriers. The long points and deep fiord-like bays are such as exist only where a land, after having been deeply gouged by erosion, has become half submerged. The author was led to appreciate this evidence when on the ascent of Mount Aorai on Tahiti, in September of 1839. Sunk to any level above that of five hundred feet the erosion valleys of Tahiti would become deep bays, and above that of one thousand feet, fiord-like bays, with the ridges spreading in the water like spider's legs; and this is a common feature of the islands and islets within the lagoons of barrier islands. The evidence of subsidence admits of no doubt. It makes the conclusion from the Gambier group positive; and equally so that for Raiatea and Bolabola represented on the charts in Darwin's "Coral Islands;" the Exploring Isles and others of the Fiji group; and that for islands, great and small, in the Louisade Archipelago and in other similar groups over the ocean.

This statement was misinterpreted by Davis as being confirmation of Darwin's theory of coral reefs,³ which, as is more than once pointed out in the present paper (see especially p. 249), carries with submergence an hypothesis of platform building. Evidence of subsidence does not prove that the flat lying between a barrier reef and the shore has been formed by infilling behind the barrier.

Daly made a definite statement in 1910 in a list of "maximum depths recorded for the drowned portion of these valleys," in which

---

² Dana, J. D., Corals and coral islands, ed. 3, pp. 273, 274, 1890.
he includes Mbengha and Moala of the Fiji group.† Subsequently Davis, in several of his papers, cited and others have similarly interpreted the estuarine character of the lower ends of the valleys.

Were the platforms on which the Fijian reefs stand, or which they margin, formed by infilling behind barriers or are the reefs merely superposed on antecedent platforms? In 1914 I published the following statement:

Having presented criteria for recognizing the relations of continental and large insular platforms supporting barrier reefs to the presence of the reefs, islands such as those in the Society and Fiji groups may be considered. * * * A study of the charts of barrier reef islands, as Viti Levu, Fijis, and Tahiti, Society Islands, shows that the platforms are independent of the presence of reefs, and therefore the relations in these islands are similar to those indicated for barriers off continental shores, for here the reefs are also superimposed on platforms antedating their presence.

Plate 7 of Agassiz’s work on the Fiji Islands, already cited, shows the continuity of the platform northward and westward from Ovalau without any margining barrier reef. In my opinion these relations clearly show that the reef, where it is present, is merely superposed on an antecedent platform, and that the suggestion of Davis, that the entire platform is due to infilling behind a reef which in places has ceased to grow, is farfetched.

Recently E. C. Andrews and W. G. Foye have published important papers on the Fijis. Andrews in his paper says:

The Viti Levu salt water arms, therefore, with their contained deltas, suggest the submergence of the Viti Levu coastal lowland in recent time, with the consequent drowning of the lower portions of the river courses.

The island is girt with a Great Barrier Reef, several hundreds of miles in length, broken here and there by passages. The present Great Barrier Reef, which rises to the level of the sea, has thus, in all probability, been built up by coral-reef organisms upon the submerged lowlands of Viti Levu.2

Andrews similarly interprets the conditions of development of the barrier reef off Vanua Levu. The interpretations advanced by Andrews essentially accords with mine; that is, the reefs are superposed on a depressed platform that was previous to its submergence a coastal lowland.

Foye3 makes the following statement regarding Viti Levu:

In general the present coral reefs are developing on platforms which originated during the deposition of the coastal series.4

Regarding Vanua Levu he says:

I visited only the eastern and central portions of Vanua Levu. The modern fringing reefs are here developing either along the shore line of recently submerged volcanic rocks or on coastal flats formed of the fine ash swept from the elevated hills of sub-

---

marine tuffs. The most recent movements have been differential, and while uplift has taken place at the southeastern side of the island, subsidence has occurred to the east and north. The modern barrier reef occurs where subsidence has taken place either due to tilting or faulting during uplift.¹

Concerning the Lau Islands, he states:

Within quite recent times the islands have subsided 50 to 90 feet and the modern coral reefs are developing on the eroded and submerged platforms.²

One paragraph of Foye's conclusions is as follows:

The data assembled by Daly and Vaughan convince the writer that Pleistocene platforms exist very generally throughout the coral seas. Yet while this is true, the platforms in Fiji are post-Pleistocene in their development. The writer was unable to discover any evidence of Pleistocene wave-cut platforms.³

The second one of Foye's papers ⁴ contains the following significant statement:

There is another method by which atolls develop. The limestone islands are rapidly eroded to sea level by atmospheric solution. Evidence of this process may be seen in the diminishing limestone masses within the lagoons of many of the Lau islands. By tidal scour and wave action platforms are developed slightly below sea level. Examples of such platforms may be seen about Fulanga and Ongea. It is significant, however, that most of these islands have lagoons 10 to 15 fathoms in depth. Such depths can not be ascribed to erosion, but must be the result of recent submergence. * * *

The information bearing on the Fijis may be summarized as follows:

1. The fringing reefs have unconformable basal contacts, as do those of the West Indies.
2. The barrier reefs are superposed on antecedent platforms of diverse origin during or after submergence.
3. The submergence is concomitant with, if not actually due to, differential crustal movement.
4. In that they were formed during or after submergence and are superposed on antecedent platforms, the offshore reefs of the Fijis accord with all others, perhaps except a Barbadian reef, so far considered.

SOCIETY ISLANDS.

TAHITI.

That Tahiti had undergone subsidence is implied in statements by Dana,⁵ the occasional harbors being mentioned in two places in his book. W. M. Davis says.⁶

The cliff-rimmed island of Tahiti, the largest and youngest of the group, has suffered moderate subsidence after its cliffs were cut, but its bays are now nearly all filled with delta plains; hence a pause or stillstand has followed its latest sinking.

² Idem, p. 309.
³ Idem, p. 309, 310.
⁵ Corals and coral islands, ed. 3, pp. 149, 158, 246, 217, 1890.

3749—19—Bull. 103—9
The condition of the reef between Taunoa Pass and Point Venus is interesting in this connection. Alexander Agassiz has given a good description of this part of the reef and reef platform and has reproduced the British Admiralty chart of it. Agassiz says:

Reef patches, the remnants of a former barrier reef, extend westward from Venus Point parallel with the shore of Matavai Bay, forming the chain of Toa Tea reefs, but they are merely patches of Nullipores, with here and there diminutive coral heads which have taken no part in the building of these reefs.

There is along the Toa Tea Reefs a great break in the continuity of the reef, but the platform continues, irrespective of the presence or absence of a margining barrier. The depths in Matavai Bay, 16 to 17 fathoms, seem to be the maximum, are about the same as in Papiete Harbor, outside which there is a well-developed reef crossed by Papiete Pass. These reefs, also, seem to me to have grown up disconnectedly on a submerged coastal flat.

SMALLER ISLANDS OF THE SOCIETY GROUP.

Alexander Agassiz has described each of these islands in his coral reefs of the Tropical Pacific, and P. Marshall has made the observations and deductions recorded in the following quotation:

This reef marks the edge of the platform of marine erosion as described by Agassiz, but the original margin of the land before depression as described by Darwin and Dana. * * *

It is evident that if the coral reef rises on the edge of a platform of marine erosion this very erosion would have worn the spurs back in such a way that they would terminate in steep cliffs. In no instance at Huaheine, Raiatea, or Tahiti that the author observed, did the spurs have an abrupt termination. The lower slopes of the islands are in all cases notably less steep than the upper slopes.

The deep inlets that intersect the coast line of Huaheine, Tahaa, and Raiatea are clearly due to stream erosion. Prolonged marine action would have shallowed or filled them up or at least would have built up bars of coastal débris across the entrances.

The author is therefore strongly of opinion that the absence of cliffs at the termination of radiating spurs, the presence of deep water in the lagoon, and of far-reaching inlets, prove that marine erosion has not had any influence on the form of these islands at the present sea level. * * *

Finally the deep inlets appear to be drowned stream valleys and their nature strongly supports the belief that they have been subjected to an important movement of subsidence.

Mehetia is interesting in that it is a young volcanic island, with a strongly cliffed shore, a very narrow or no platform, and no coral reefs around it, only a few coral patches. That the other islands, Murea, Huaheine, Raiatea, Tahaa, Bora-Bora, and Maupiti have undergone geologically Recent submergence and that the barrier reefs have developed during or after submergence, can not be controverted. Is the reef flat due to marine planation and to terrigenous sediments

---

2 Idem, pp. 140, 141, 156-167.
carried by the streams to the sea prior to the submergence after which the living reefs have formed? Unless sediment was delivered to the sea so rapidly that a coastal plain pushed forward beyond the interstream divides as to protect them from attack by the sea, their seaward ends should have been cliffed, should the flat have been formed in the manner suggested. What are the submarine profiles off the spur ends? Are there submerged cliffs at the divide tips? One of Agassiz's illustrations\(^1\) represents a cliff of considerable height at one place on the shore of Maupiti. In my opinion sufficient evidence is not available to establish how the reef flats of these islands were formed, and they may be made to accord with whatever theory of reef-flat formation an author may prefer. Should it ultimately be proved that these barrier reefs accord with the Darwinian hypothe-

![Fig. 21.—Diagram to show how a linear reef lying across the wind is formed into a horseshoe. (After Hedley and Griffith Taylor.)](image)

sis, a few instances in which that hypothesis applies will have been discovered.

**Atolls.**

There are two kinds of atolls: Those of the first kind rise above relatively shoal-water platforms, and are represented by the atolls of the Great Barrier Reef of Australia, those of the Floridian reef-tract, and the *faros* of the Maldives. That there was never any central land area for these atolls is perfectly obvious. Hedley and Griffith Taylor, in their paper, cited on pages 245, 251, have shown how the atolls along the Great Barrier have been shaped by the prevalent, mostly wind-induced, currents; and I have shown in my papers on the Marquesas and Tortugas atolls that precisely the same principles apply to them. The principles involved are illustrated by the accompany-

---

*\(^1\) The Coral Reefs of the Tropical Pacific, pl. 101, fig. 4.*
ing diagram (fig. 21), which is copied from Hedley and Griffith Taylor. Stanley Gardiner has given good descriptions of the faros of the Maldives. He says in a footnote on the page referred to:

The technical term atoll is derived from the Maldivan atolu, signifying a province for governmental purposes. There are 13 of these in the Maldives, and many consist of the islands on separate banks, most of which have distinct encircling series of reef reaching the surface. Many of the individual reefs are themselves ring-shaped with pools of water several fathoms deep in their centers. There are obvious disadvantages in using diminutives of the terms atoll and lagoon as applying to such. They are situated on shallow banks, and many are actually larger than some of the isolated ring-shaped reefs of the Pacific, which arise separately in the deep basin of that ocean. I therefore propose to borrow further the Maldivan terms, faro and velu, the former signifying such a small ring-shaped reef of an atoll or bank and the latter its central basin. I, further, following the Maldivan use of the term velu, apply it to deep pools even in the long, linear, circumscribing reefs of many of the banks, as I conceive that such pools have in all these reefs on banks the same mode of origin.

On page 171 of the same work, Gardiner says:

Each large reef on the bank is a separate entity that has grown up and pursued its history by itself, influenced it is true by the reefs in its vicinity but never directly connected with them. It is only now that the bank is at all approaching the condition of the perfect atoll. Having seen how small faro may be formed from their earliest beginnings, we now see in North Malhos the further fortune of such atolls. Their joining together where possible to form long linear reefs with the loss perhaps of the whole inner part of their own reefs.

The second kind of atolls more or less margin and more or less completely encircle the flat summits of eminences rising from oceanic depths. The Darwinian explanation of the formation of such atoll rings is illustrated by figure 5, page 242, of this paper. Have these atolls formed in accordance with the postulates of the Darwinian hypothesis, or have more or less perfect rings developed on the edges of submarine flats, with or without submergence?

The origin of the first kind of atolls has been ascertained with so high degree of probability that it amounts to certainty. They have been formed on relatively shoal submarine flats, during or following submergence, and have been shaped by the prevalent currents. But a basement platform for the second kind of atolls can not be traced beyond the atoll limits, at least in our present state of knowledge. However, in case of atolls of an area so large as Rangiroa, in the Paumotus, for instance, the presumption is against their derivation from barrier reefs according to the Darwinian hypothesis. They are too large, and, as Wharton long ago pointed out, their bottoms are too nearly level. If the Darwinian explanation were true, lagoon floors should be concave, more or less bowl shaped. That small, flat, summit areas may result from subaerial degradation and marine planation is known in many instances. That volcanic

Fig. 22.—Chart of Salt Key Bank. From U. S. Coast and Geodetic Survey Chart No. 15.
piles may be cut to wave base is known, and on page 311 of this paper Foye is quoted on a process by means of which reduction of limestone masses to sea level or slightly below sea level is accomplished.

In this connection Salt Key Bank, which lies between the Straits of Florida, Santaren Channel, and Nicholas Channel (text-fig. 22), is interesting, as it is 61 nautical miles long by 37 nautical miles wide. Except a few marginal islets and elongate keys, it ranges between 3½ and 8 fathoms in depth. Alexander Agassiz visited and described this bank and says that it is composed of eolian rock similar to the Bahamas. The bank looks as if it were once a part of the Bahamas and was dissovred by faulting between it and the Bahamas. Whether that suggestion is or is not true, there is here a large level bank, obviously not formed according to the Darwinian hypothesis, that might serve an atoll foundation. Saba, Pedro, and Rosalind banks in the Caribbean Sea have been mentioned on pages 303, 304. Figures 23–25 illustrate them.

It is not practicable to work out the geology of the foundations of the Paumotuan and the Maldive and Laccadive stolls, but the

---

probability seems distinctly in favor of their being submerged plateau surfaces, upon which coral reefs, mostly marginal, have established themselves during and subsequent to moderate submergence.

I will revert to Admiral Wharton's emphasis of the levelness of the floors of atoll lagoons (depth 24 to 26 fathoms), to his statement, "inside the low rim of growing coral which encircles their edges in various degrees," and to his question "What causes this remarkable similarity of depth and this extraordinarily even surface over these large banks?" As I believe this short article by Admiral Wharton is one of the truly great contributions to our knowledge of coral reefs,

the temptation to quote all of it is great. In it he points out one of the fundamental defects of the Darwinian hypothesis, namely, that the lagoon floor is not basin shaped as it should be if the atoll is due to the upgrowth of a reef that began on the slopes of a volcanic cone. He says: "I have no hesitation in saying that a flat floor is an invariable characteristic of a large atoll, and I can not find his 'deeply concave surface' in any large atoll. On the contrary, a flat surface is found in all of these, whether the rim be above or below the surface."

Daly in his two papers cited has made an elaborate study of the depths of atoll lagoons of the Pacific and Indian oceans and has compared the depths in them with the depths in the lagoon channels of the same region. As the data compiled by him can not be repeated
here, his later discussion in his paper on the Glacial-control theory may be consulted. Daly says:

"Since probably not more than 5 m. to 25 m. can be allowed for the thickness of the post-glacial calcareous veneer in the wider lagoons, the accordance of platform depth for the wider lagoons and reefless banks seems clear. Their range of 60-90 m. represents magnitudes of the same order as the depths computed for the Pleistocene wave-formed benches."

I have pointed out the similarity in the depths on Saba, Pedro, and Rosalind banks, to those on the atoll-lagoon floors of the Pacific and Indian oceans—that is, the depths are between 20 and 30 fathoms.

![Diagram of Rosalind and Serranilla Banks](image)

**Fig. 25.—Chart of Rosalind and Serranilla Banks. From U.S. Hydrographic chart No. 564.**

The possibility of the formation of atoll lagoons by submarine solution was eliminated in the discussion on page 250 of this paper. Atoll rims are formed by constructional processes. That the greater abundance and luxuriance of reef-forming organisms on the peripheries of atolls is due mostly, if not solely, to the intolerance of such organisms to sediment, is shown by certain of my experiments. If the colonies are protected from sediment, the growth of corals within a lagoon may exceed that of corals on the outside.

It is my belief that the coral reefs forming atoll rims are superposed on platforms that antedate the formation of the living reefs, and which have undergone a moderate submergence in Recent geologic

---

time. It is reasonable to ascribe this submergence to rise in ocean level because of deglaciation, because the order of magnitude of the submergence is the same as the order of magnitude expected from deglaciation. Marginal wave-cut benches should exist, or should have existed around the atoll banks. Perhaps more accurate hydrographic surveys and more detailed studies of the submarine profiles will discover them.

Conclusions.

The results of an examination of the Tertiary, Pleistocene, and living coral reefs and reef corals of the West Indies, Central America, and the Southeastern United States are as follows:

1. The fringing reefs have formed usually, if not invariably, during periods of intermittent uplift, following considerable submergence.

2. All the important offshore reefs, both fossil and living, possibly except the reefs off the southeast coast of Barbados, have developed during or following submergence after the subaerial erosion of their basements.

3. Most of the fossil offshore reefs, all of those on which information has been obtained, and all of these living reefs are superposed on antecedent flatish basements or platforms. Where there are no platforms, as off fault shore lines and young volcanic islands, there are no offshore reefs.

4. Although corals are constructional geologic agents, they are subordinate to other limestone forming agencies, and none of the American platforms were formed by infilling behind a barrier.

5. Submarine flats and plateaus at proper depths below sea level to have furnished basements for offshore reefs are not confined to the temperature zone suitable for coral growth. Such extralimital banks are Georges Bank, the banks off the coast of Nova Scotia, and the Grand Banks of Newfoundland. Reefs form on such banks where the proper ecologic conditions for the life of reef building corals prevail.

6. The submergences during and after which the fossil reefs were formed were almost certainly due to differential crustal movement; the submergence of the basement of the living reefs is probably due to complex causes, for there was differential crustal movement in the area under consideration during Pleistocene time, also at some places within it during Recent time, and, in addition to these more or less local movements, there seems to have been during Recent time a general submergence of the eastern coast of America from Argentina to New England. The amount of the general Recent submergence lies between 40 and slightly more than 20 fathoms; an amount of the order of magnitude that would be expected to result from the effect of deglaciation in raising sea level. The principal wave-formed Pleistocene plain now lies between 26 and 36 fathoms.
in depth, and is separated by an escarpment from a shallower plain that now ranges between 17 and 20 fathoms in depth. What appear to be marginal hanging valleys north of St. Thomas and on the St. Martin Plateau, and solution wells, in the Bahamas, 33 to 38 fathoms deep, suggest that there may have been a short stand of sea level about 40 fathoms below its present stand.

7. The fact that the terrace flat between 17 and 20 fathoms in depth is cut away on promontory tips on the windward side of St. Thomas, while it is preserved in protected areas, indicates that the higher flat is older than the lower, and that it has been resubmerged after the development of the lower flat. The general similarity of the submarine profiles off Antigua, on the St. Martin Plateau, and on Mosquito Bank favors the inference that there was in those areas a similar lowering and subsequent rise of sea level. The submerged channel within the channel at the mouth of Habana Harbor, and similar phenomena at other localities around the Cuban coast, show that during later Pleistocene time Cuba stood more than 100 feet higher than immediately previous to the cutting of these valleys within older valleys, and that after the valleys-within-valleys were formed there was submergence to an amount of about 100 feet. Fall of sea level during Pleistocene time and rise during Recent time is indicated for the Bermudas, the Bahamas, Florida, Central America, and the mouth of the Amazon, as well as for the areas just mentioned. These phenomena are in essential accord with the demands of the Glacial-control hypothesis.

8. The principal living West Indian and Central American reefs are superposed on submarine flats or plateaus of pre-Pleistocene age, that were dry-land areas during at least a part of Pleistocene time, and while they were dry land they were wave cut and remodeled around their margins by submarine planation.

9. There are two kinds of atolls, namely, (a) those that rise above relatively shoal-water platforms and were shaped by the prevalent currents, which are largely wind induced; (b) those that more or less completely encircle the flat summits of eminences that rise from ocean depths. These rings are formed by constructional geologic agencies, because, as submarine solution by sea water in such areas and at such depths is chemically impossible, a lower, flat area, surrounded by a higher rim can not be formed by submarine solution or by any other known destructive agencies. The depths on such banks as Saba, Pedro, Rosalind, etc., indicate that they were in large part, at least, above water during part of Pleistocene time, and that the flat summits are largely due to processes operative in pre-Pleistocene time. What the processes were that caused the leveling of the summits is a matter of pure speculation, but it seems probable that they were subaerial erosion and submarine planation.
The living coral rims on the banks enumerated have formed during and subsequent to Recent submergence.

A review of the conditions under which the principal barrier reefs in the Pacific Ocean were formed leads to essentially identical conclusions. Those of the Australian Great Barrier, of New Caledonia, the Fiji Islands, and Tahiti are superposed on antecedent platforms that have been submerged in Recent geologic time. The submergence of the Australian continental shelf apparently can be assigned to Recent rise of sea level because of deglaciation, as it seems that most of the surface of the platform was exposed as a dry-land area by withdrawal of water from the ocean during at least a part of Pleistocene time. The submergence of the Fijian platforms is concomitant with, if not entirely due to, differential crustal movement. The superposition of the barrier reefs off the shores of the smaller Society Islands on antecedent platforms is not proved. Evidence sufficient for the basis of an opinion is not available. The absence of reefs around Mehetia, where there is no shore platform, is significant. That the barriers off the other smaller islands were formed after the submergence of their basements is clear. The small cliffs at the spurs ends, in my opinion, do not constitute evidence against the presence of shore platforms, flats, or lowlands, antecedent to submergence. That ocean level in the Indo-Pacific, because of deglaciation, in Recent time has risen to an amount of about 60 meters (about 33 fathoms) as postulated by Humphreys and Daly, and that this rise of ocean level had influenced the development of living coral reefs, is, I believe, so well established as to be almost if not quite incontrovertible.

The rims of the large atolls, and perhaps of the smaller ones also, are growing, in my opinion, on the surfaces of, mostly the edges of, flat summit areas that have undergone geologically Recent submergence. These flats, I believe, were mostly formed in \textit{pre-Pleistocene} time, and it is my opinion that they were largely out of water, or were very near the surface of the water, during Pleistocene time. If they projected above the water for an appreciable time, they should have been wave cut around their edges by the lowered Pleistocene sea, and evidence of such benching should be sought. I believe the evidence will not be found on the hydrographic charts at present available, for the object of the published charts is to guide navigators rather than to serve as a basis for physiographic studies of the sea bottom in depths where navigation is safe.

From what precedes I believe it is clear that I consider that there are two factors that determine the vigorous development of offshore reefs, which under the most favorable conditions form barriers or atoll rims, the other proper ecologic conditions also being present. The first factor is the existence of an offshore flat, which may have
a land area on one side and open ocean on the other or which may be the top of an oceanic eminence. The second factor is gradual submergence. The vigor of offshore reefs where these conditions prevail can be correlated with certain ecologic demands of reef-forming corals.

Reef corals thrive on offshore flats, near or against ocean water, because they are there removed from the deleterious effects of both land-derived and other sediment. Some of these relations are well exemplified in the barrier reef off the east side of Andros Island, Bahamas. This reef grows on the outer, windward, edge of a small shallow flat, against the deep water of the Tongue of the Ocean. As the winds set landward across the reef no oceanic or land-derived sediment is deposited on the reef, it is bathed by the purest ocean water, and receives the largest amount of animal plankton that that part of the sea can supply. On the great shoals of the Bahama Banks and in the shoal waters of Florida behind the reefs the winds stir up the mud on the bottom; the sediment while in suspension kills the plankton; when it settles it kills those bottom-living organisms that can not endure being covered by mud. On such flats reef-forming corals can not live. On shallow banks coral reefs therefore thrive best on the windward sides. However, if the flat extends far enough offshore for land-derived sediment not to reach the reef and if the depth is sufficient for waves under ordinary conditions not to stir up the mud on the bottom, but not too deep for the growth of reef corals, barriers may develop on the leeward sides of islands. A land area to the windward may actually favor coral growth, as it breaks the force of the winds. A position on an offshore flat, particularly on the windward edge of a flat, insures a supply of the purest ocean water and an abundance of animal plankton.

The gradual submergence of an offshore flat perpetuates the favorable conditions for the life of reef-building corals, and gives an opportunity for continual growth upward. With upward growth during slow submergence of the basement the ecologic conditions for the life of reef-forming corals are made better, for the deleterious effects of sediment are minimized.

As regards the life of corals, the method of bringing about these conditions is of no importance. Whether the flat was formed by marine planation, by alluviation and the building of a coastal flat, by base-leveling through subaerial erosion, by the formation of a submarine plain of deposition, or by any other special process, is unimportant, provided the flat be formed. Whether the submergence be caused by differential crustal movement, local or remote, or by rise in ocean level due to the melting of glaciers, is unimportant, provided there be gradual submergence of the basement.
The manner of producing the result is subordinate to the result. However the conditions may be brought about, preexistent flats and gradual submergence are two factors needed to supply continuously favorable conditions for the growth of reef-forming corals. The importance of deglaciation on modern coral-reef development consists in its having caused a gradual and moderate increase in the depth of the ocean, thereby producing submergence both in rate and amount favorable for the growth of reef-forming corals.

The general conclusions here expressed are similar to those previously published in a number of my papers. Before discussing the bearing of my conclusions regarding the formation of coral reefs on the theories advanced by others, I will give brief attention to some remarks by Prof. W. M. Davis. The following paragraph is copied from a paper by him entitled: The origin of coral reefs. Similar remarks occur in others of his papers.

Reefs and Reef-Platforms. A modification of Darwin’s theory has lately been proposed by Vaughan, who regards recent submergence proved by the embayments of the central islands as the determining cause for the upgrowth of existing barrier reefs but who interprets the deeper and larger part of the entire reef mass as an independent “platform” of earlier origin. As this investigator has not yet published his views regarding the origin of the reef-platforms his modification of Darwin’s theory will not be here discussed further than to note that it seems inapplicable to many barrier reefs in the Fiji and Society groups; that the discontinuity of certain barrier reefs seems to be explicable on the assumption of imperfect upgrowth during and after a recent and rapid subsidence as well as on the assumption of independent origins for the reefs and their platforms; and that, while the extension of reef-platforms outside of the coral zone as in the case of the Great Barrier reef of Australia, truly suggests a dual origin of reef masses, this does not exclude the contemporaneous growth of platform and reef within the coral zone during long-continued but irregular or intermittent subsidence.

Most of the objections raised by Professor Davis have been answered on preceding pages of this paper. It will be obvious to those who have read what I have said that my inferences as to submergence are by no means confined to the evidence of embayments in shore lines. In fact, many submerged areas show no clear-cut shore-line embayments. It will also be obvious that the interpretation I am making did not originate with me. E. C. Andrews, in 1902, after his work on the Great Barrier reef of Australia, put forward in essential principles the same explanation.

In answer to Professor Davis’s statement "regarding the origin of the reef platform," I will say that the recognition of the fact of superposition does not require knowledge of the constitution or origin of the basement on which an object or structure has been superposed. We may recognize the fact that a book lies on a table without knowing the kind of material of which the table is composed or the process of its

---

manufacture; there is controversy as to the origin of the Sunderland terrace in Maryland and Virginia, but no geologist will deny that certain houses have been built on the surface of the Sunderland terrace flat; although the geologic history of the pre-Cambrian formations in Michigan and in other areas adjacent to the Great Lakes may be inadequately known, no one is justified in denying for such a reason that glacial deposits overlie the geologically old rocks, as it is obvious that the overlying material has in some way been placed on the underlying. The superposition of a geologic formation on another may be recognized without knowing the complete history of either the upper or the lower. The oligocene coral reef along Flint River near Bainbridge, Georgia, rests on the eroded surface of an upper Eocene limestone now designated the Ocala limestone. That knowledge of the Ocala limestone may not be adequate does not invalidate the recognition of the facts that the fossil reef overlies it and that an erosion period intervened between its deposition and the growth of the reef, which obviously formed during or after the submergence of its basement.

To ascertain the origin of the submarine flats on which offshore reefs stand is important in the advancement of our knowledge of geologic history, and I have acquired as much information on the subject as I could. I am completely convinced that there is no one explanation that can be applied to all of them. The following kinds have already been recognized: (1) Slightly tilted bedded tuff, as in the fossil reefs of Antigua; (2) slightly tilted bed of limestone, as off the south coast of St. Croix and Cuba; (3) submerged coastal flats, as in the Fiji Islands; (4) submerged peneplained surfaces, as in the fossil reefs of Porto Rico; (5) submarine plains due to uplift of considerable areas of the ocean bottom and to the deposition of organic deposits on such a surface, as the Floridian Plateau previous to the formation of the middle and upper Oligocene reefs of Florida and southern Georgia; (6) flats of complex and not definitely known origin, such as those of the Antigua-Barbuda Bank, the Virgin Bank, and the continental shelves of tropical America and Australia. Plains suitable for the growth of corals have been formed by subaerial and submarine deposition, and by both subaerial base-leveling and submarine plantation. Nearly every, if not every, plain-producing process operative in tropical and subtropical regions has taken part in the formation of plains on which corals have grown or are growing where the plains have been brought below sea level and where the other ecologic conditions for offshore reef formation obtain.

I will revert to this subject in discussing the Glacial-control theory and in making suggestions as to future research.
How do my results compare with the theories and hypotheses advanced by others? Before considering my conclusions in their relation to those reached by other investigators, I wish to make a few general remarks on the literature appertaining to coral reefs. It is a subject that, in order to be properly treated, requires a considerable diversity of knowledge, as biologic, oceanographic, and geologic problems are involved. Very rarely has it been practicable for a man to be a specialist in all of these fields. Usually, as any investigator has been specially qualified in only one or two of them, he has paid particular attention to those subjects with which he was familiar, and nearly always did good work in those subjects; but in those fields in which he has been only casually engaged, his work is nearly always amateurish, and his conclusions are in many instances erroneous. Should we expect a man who is primarily a biologist to be an expert in geology, especially when he attempts geologic work after he arrives at the place where he expects to conduct his investigations, without having had previous experience? Should we expect a man who has riveted his attention on dry-land physiography, and who has not thought of biologic problems or of the physiography of the sea bottom to take information from those branches of science? In reading the many publications on coral reefs, I am impressed with the particular, personal interests of the investigators, but what strikes me more forcibly is the excellence of nearly all the papers. I know no paper by a serious scientific man on a coral-reef area that does not contain records of valuable observations and correct conclusions. I have had the wish to write an account of the very gradual growth of the knowledge we now have of coral reefs, and point out how each of the successive workers has contributed toward making that knowledge what it now is. It would be a record of honorable achievement. In the short review to follow I trust I may point out some of the substantial additions to be credited to those whose opinions I shall discuss.

1. The Darwin-Dana hypothesis, in my opinion, is correct as regards the formation of offshore reefs during and after submergence; but as regards the formation of a prism of reef material, the upper surface of which forms a flat behind the barrier, their theory is wrong for every area on which we have definite information. Although the theoretic possibility of the conversion of a fringing reef into a barrier and a barrier into an atoll may not be denied, no instance of such conversion has yet been discovered. The inferences of Darwin as to areas of subsidence and of elevation, as shown on plate 3 of his work, are largely in error, for barrier reefs are present where there is not general crustal subsidence, as Foye points out in his paper on the
geology of the Fiji Islands, where "since the Pleistocene period the algebraic sum of the movements has been positive and uplift has resulted." Very many similar instances, the Bermudas, the Bahamas, Florida, and Cuba among them, can be given. The criticisms of the Darwin-Dana hypothesis apply to the recent publications of W. M. Davis.

2. Semper, Alexander Agassiz, and others, who have maintained that barrier coral reefs have formed in areas of uplift, are correct, if the sum total of the movements since some date back in Tertiary time be considered, and their observations and deductions are valuable in that they emphasize these facts; but they are in error in that they failed to take into account that in many areas there is incontrovertible evidence showing submergence of the basements of the now-living reefs. Semper made astute observations on currents, but his deductions as to the formation of lagoons by destructional processes are not warranted.

3. Sir John Murray invented a very stimulating hypothesis, and correctly emphasized the necessity of taking submarine planation into account in studies of the basements of coral reefs. He, however, overlooked important facts clearly proving Recent submergence in coral-reef areas, and his theory of the formation of atoll lagoons and lagoon channels through submarine solution by sea water is entirely disproved, and there are no other known destructional processes whereby lagoons may be formed, for lagoons are areas of sedimentation in which filling predominates over removal of material.

4. Guppy is correct in his interpretation of offshore reefs being superposed on submarine platforms or "ledges," and he made numerous valuable contributions to our knowledge of coral reefs, but he failed to take into account evidence showing Recent submergence.

5. Admiral Sir W. J. L. Wharton made one of the greatest contributions to our knowledge of atolls when he discovered the flatness of the floors and the uniformity of depth in atoll lagoons, and he pointed out the inadequacy of the Darwinian hypothesis to explain these phenomena. He emphasized the importance of submarine planation in leveling the top of peaks that reach or almost reach sea level, and definitely suggested the superposition of coral patches and atoll rims on flats produced in that way. He not only did not oppose the subsidence of such flats, but he thought that they frequently do "subside and that some of the deeper lagoons may owe their depths of 50 fathoms or so to such a movement, quite apart from subsidence of large areas which we know occurs." The only emendations of these statements that I can suggest is that the probable effects of glaciation and deglaciation might have been considered.

6. Alexander Agassiz correctly observed the superposition of the living coral reefs of the Bermudas and the Bahamas on older limestone foundations that stood above sea level previous to the submergence which made possible the formation of reefs in the places where they now grow. He also pointed out the superposition of the Floridian, Cuban, and Central American living reefs on antecedent platforms or older limestone. He showed that in several areas in the Pacific the sum total of local crustal movements since some time in the Tertiary period had been upward. But he failed to take account of Recent submergence in Florida, the West Indies, and Central America, and he advanced the hypothesis that the living offshore reefs of the Pacific are superposed on wave-cut platforms without change of sea level by submergence of the land. I believe Agassiz correct in his emphasis of the need of an antecedent platform for the vigorous growth of offshore reefs; but he did not recognize the clear evidence of Recent submergence of the shores of the reef-encircled islands, and unfortunately tried to explain the formation of lagoons by submarine solution and scour.

7. E. C. Andrews, I believe, is incontrovertibly correct in the essentials of his interpretation of the conditions under which the Great Barrier Reef of Australia has formed; that is, it is superposed on that part of the recently submerged Continental Shelf of Australia that lies within the temperature zone favorable for the life of reef-forming corals.

8. Stanley Gardiner, who has made great contributions to our knowledge of Indo-Pacific corals and coral reefs and whose work on the oceanography of the Indian Ocean is justly rated as classic, committed the same errors in interpreting the geologic relations of coral reefs as did Murray and Agassiz. He failed to infer submergence from shore line characters and advocated the formation of lagoons through submarine solution by sea water.

9. Hedley and Griffith Taylor agreed in all the essentials of Andrews’s interpretation of the conditions under which the Australian Great Barrier formed; they opposed Murray’s solution hypothesis for the formation of lagoons, and correctly emphasized the importance of currents, largely wind induced, in the shaping of the atolls along the Great Barrier.

10. Daly did not originate the Glacial-control theory of coral reefs, but he is its principal exponent. The following ascertained relations of living offshore coral reefs conform to the demands of this hypothesis: (a) They are superposed on antecedent basement flats; (b) the amount of recent submergence, between 30 and slightly more than 20 fathoms, without deducting the amount of Recent up-building of the sea bottom, which probably is as much as a few fathoms, is of the order of magnitude expected from deglaciation; (c) the
rate of growth of corals is known to be of such an order of magnitude as to account for the thickness of any known living coral reef by the growth of coral-reef organism since the disappearance of the last great continental glaciers. As Daly is not a specialist on corals, he has made some errors in his discussions of the geologic history and ecology of corals, but these errors do not affect the validity of glacial control being one of the dominant factors in modern coral-reef development. The only important point on which I am not in agreement with him is the evaluation of Pleistocene marine planation. I have shown that the Floridian Plateau has existed as a plateau at least since late Eocene time, and there have been extensive submarine flats in certain West Indian areas since late Eocene or Oligocene time. The submarine profiles that I have drawn for the West Indies, Central America, and Australia indicate Pleistocene benching in depths between 26 and 36 fathoms, without deducting anything for Recent upbuilding of the sea bottom. Certain West Indian and Central American reefs and the Australian Great Barrier, I, therefore, believe are growing on what were dry-land areas during at least a part of Pleistocene time. It, therefore, seems to me that many of the flats discussed by Daly are of pre-Pleistocene age, and that he has over-evaluated Pleistocene marine planation. Daly admits that there has been local crustal movement in some coral-reef areas.

11. Wood Jones is undoubtedly correct in attaching great importance to the effects of sediment on the formation of coral reefs. No one who has had actual experience with coral reefs can for a moment doubt it. He also correctly accepts the interpretations of Andrews and of Hedley and Griffith Taylor for the Great Barrier of Australia, joining with the latter two in their opposition to the solution hypothesis and in their emphasis of the effects of wind-induced currents in shaping the segments of a reef. He, however, appears not to have appreciated the importance that, in my opinion, should be attached to submergence as factor in coral-reef formation.

12. My own opinions can be very simply stated: (a) Fringing reefs seem always to have unconformable basal contacts; they may be formed after submergence that is not followed by uplift or during intermittent uplift that follows submergence; that is, they may form during periods of either emergence or submergence of land areas. Are the basal contacts really significant? Must not these contacts in the very nature of the case be unconformable? If the basement has moved up with reference to sea level and a reef begins along the strand line, the basement of the reef will certainly be different from the reef itself and there will be an obvious unconformity. If the land mass subsides and a fringing forms along shore, the base of the reef will surely exhibit unconformable relations. I am unable to imagine a fringing without an unconformable basal contact. I never saw one that did
not have such a contact. (b) Offshore coral reefs, barriers, and atolls, form on antecedent flattish basements during and after submergence in areas where the general ecologic conditions are suitable for coral growth, as stated on page 240. This generalization applies to fossil as well as to living reefs. (c) Recent rise of sea level because of deglaciation has made conditions favorable for coral-reef formation over enormous areas, and it is one of the important factors in causing the great development of coral reefs at the present time. But in some areas, as in the Fijis, the flats on which the reefs are growing are coastal flats that have been brought below sea level by tilting, as described by Andrews and Foye. (d) The theoretic possibility of the progressive change of a fringing reef into a barrier and later into an atoll, according to the Darwin-Dana hypothesis, may not be denied, but no instance of such a transformation has as yet been discovered. (e) The coral-reef investigation is of value to geology, not so much because of what has been discovered regarding corals as it is that it has led to the study of a great complex of geologic phenomena among which corals and coral reefs are only incident. Further investigations of the phenomena associated with coral reefs are among the great desiderata of geologic research.

Suggestions as to Future Investigations.

Before closing this discussion I will present a few suggestions that to me appear pertinent.

1. It is my belief that, although ecologic notes are of much value in systematic work, not a great deal more advantage will result from such ecologic investigations in areas where corals are luxuriant as those conducted by Gardiner, Wood Jones, and others, including myself. We need to know more of the physiology of corals, but such researches must be conducted by expert physiologists. There is great need for ecologic work in the waters northward and southward from the coral-reef zone. Within the coral-reef zone there are three faunas delimited by depth and temperature. What happens outside the coral-reef zone? Do the deeper-water forms live in shallower water as the high latitudes are attained? Is it depth or temperature that causes the vertical faunal distribution within the Tropics? More knowledge of the ecologic relations of the deeper-water faunas in the Tropics and of the faunas in both shoal and deep water in the temperate zones of the ocean is of great importance to geologists, for such knowledge would furnish a basis for interpreting the physical conditions under which some of the fossil faunas lived. For some years I have wished to make an investigation of the kind outlined, but other duties have prevented the fulfilment of my desire. There is a large amount of morphologic work needed, both on the skeletons and on the soft parts of corals, but particular consideration of this subject is scarcely in place here.
2. The study of sediments in coral-reef areas has scarcely been initiated. Accurate determination of the source of the constituents of calcium-carbonate bottom-deposits should be made, the deposits should be classified according to their constituents, at least the area occupied by each kind of deposit should be ascertained as nearly as is practicable, and an endeavor should be made to ascertain the rates at which the different kinds of sediments accumulate. The results from investigations of this kind are of vital importance to geology, for only by firmly basing our inductions on wide and accurate knowledge of what is now happening in the ocean can we hope to make reliable deductions concerning the origin of and the conditions under which older sediments were formed. The quantitative evaluation of the work done by the different agents cooperative in the production of the different kinds of sediments should be an object constantly in mind. Although this is essentially a new field of research, during the past few years a number of investigators have notable achievements to their credit.

3. Detailed studies of the general geology of tropical islands and continental areas adjacent to tropical and subtropical waters should be undertaken wherever possible. These investigations should include consideration of the stratigraphic and structural geology, the petrography of both the igneous and sedimentary rocks, very detailed work on the stratigraphic paleontology, and the physiography of the land areas. We now know that, by combining knowledge gleaned from the study of many relations, it is possible not only to recognize for an area the succession of rocks, their age equivalents in other areas, and their deformational history, but that it is also possible to ascertain the successive physiographic stages and other physical conditions throughout at least a considerable part of the history. The structural relations of the successive formations, the nature of the contacts of formations, and the character of the sediments, are among the criteria to be used in making the latter kind of deductions. Of how many tropical areas are there topographic maps on a scale of 1:62,500 or of 1:125,000? Many areas, where the geology is very complicated, should be mapped on a scale of at least 1:20,000. The very detailed studies of a few carefully selected areas would supply keys for other areas and thereby accelerate work in other areas. Detailed work of the kind suggested should be done in Antigua, St. Bartholomew, St. Martin, and Anguilla, in the West Indies, for each of these islands typifies certain phenomena that are critical in elucidating the history of the West Indies, Central America, the southern United States, and northern South America.

4. Biogeographic investigations supply a basis for deductions regarding former land connections and the dates of the separation of islands that may have been parts of large land masses.
3. Shore-line history is obviously an essential part of the study of coral reefs. But the entire story can not be deduced from the information furnished by all of the lines of investigation above suggested. The configuration of the sea bottom needs to be studied, both in plan and profile. Notwithstanding the great amount of work that has been done on oceanic hydrography, close attention to the minor configuration of the sea bottom and attempts to draw inferences from such studies are of very recent date. Since most hydrographic charts were not intended to serve as a basis for such researches, we are fortunate that we can extract so much information from them. Although it is probable that a much larger amount of data is on the charts than has as yet been utilized, that additional hydrographic research is needed is obvious. What are submarine slopes off the divide ends in reef-encircled islands? What is the character of the slopes off both the reefs and the breaks in the reefs? The problem of submerged terraces, flats and fronts, has barely been touched. How extensively are such features present, and what is their significance? These considerations lead to inquiries regarding wave base, the rate of motion of the water, the erosional and transporting power of the water while in motion at different rates, and the relations of erosion and transportation to depth. Although the factors mentioned are among those that determine the profile of subaqueous equilibrium and must be considered in their relation to it, there are other factors, among which are the initial slope of the bottom, the hardness and degree of consolidation of the material forming the bottom, and the attitude, height, and hardness of the rocks at the shore. More information on this complex of problems is urgently needed.

Sea level rises or falls with reference to the land, or the land rises or falls with reference to the sea level. That there have been many shifts in the position of the strand line since the beginning of Pleistocene time is known to every geologist. He also knows that in many areas shifts have been caused by tilting or flexing of parts of the earth's crust, and that there must have been lowering of sea level while there were great continental ice sheets, followed by rise of sea level when the ice sheets melted. How much of the geologically Recent change in the position of strand line is to be attributed to climatic causes and how much to differential crustal movement? More accurate and really more extensive studies of shore-line history should enable a more precise evaluation of the effects due to each than is now possible. Such investigations must not be confined to tropical and subtropical areas—they must be world wide.

Then there is the problem of Pleistocene wave cutting. I believe, for reasons stated elsewhere, that Daly has overevaluated the effects of Pleistocene marine planation. Has either of us really enough
information to be convincing? Should answers to the questions raised in the preceding two paragraphs be forthcoming, and if we can make reliable estimates of the duration of the Pleistocene, the amount of marine planation while sea level was lowered in the Pleistocene might be more nearly approximated.

In conclusion, I wish to say that the questions and suggestions contained in the foregoing remarks have grown out of a study of corals and coral reefs and the phenomena associated with them; and although it may have been shown, that corals are not so important as they were once considered to be, geologists should be grateful for the romantic interest inspired by these lowly animals, for this interest has led us into the presence of some of the profoundest problems of geology. Perhaps the interest will endure and it may lead us to a better understanding of the world of which we form a part.
SYSTEMATIC ACCOUNT OF THE FAUNAS.

Class ANTHOZOA.

MADREPORARIA IMPERFORATA.

Family SERIATOPORIDAE Milne Edwards and Haime.


In a recent publication I have stated that while I seriously doubted the propriety of placing *Stylophora* and *Pocillopora* in separate families, the traditional usage was followed. Additional study since that statement was written has convinced me that *Stylophora*, *Seriatopora*, and *Pocillopora* all belong to the same family. In fact, it seems that both *Seriatopora* and *Pocillopora* are derived from *Stylophora*, mostly through retrogression in the development of the septa. It is hoped to present in a future paper the evidence on which this suggestion is based.

Genus STYLOPHORA Schweigger (emend. Milne Edwards and Haime).

1819. *Stylophora* Schweigger (part), Beobacht. auf Naturf., pl. 5.

*Type-species.*—Madrepora pistillata Esper.

Duncan in his papers on the Fossil Corals of the West Indies either describes as new or lists the following species:

From the Eocene of Jamaica:

*Stylophora contorta* (Leymerie) + 1 var.

From the Eocene of St. Bartholomew, Cleve collection:

*Stylophora compressa* ² Duncan.

*distans* (Leymerie).

² Although I have studied the collection rom St. Bartholomew submitted to Duncan, I could recognize only one species which I have divided into our varieties.
Stylophora conferta Reuss.
    tuberosa Reuss.
    affinis Duncan (described from Santo Domingo).
    granulata Duncan (described from Bowden, Jamaica).

From Santo Domingo:
Stylophora affinis Duncan.
    var. minor Duncan (a valid species).
    raristella (Defrance).

From Bowden, Jamaica:
Stylophora granulata Duncan.

From St. Croix, Trinidad:
Stylophora minuta Duncan.
    raristella (Defrance).
    mirabilis Duncan (not Duchassaing and Michelotti).

I described in 1900 Stylophora ponderosa from the Oligocene of Salt Mountain, near Jackson, Alabama, and Stylophora minutissima from the Oligocene of Blue or Russell Spring, near Bainbridge, Georgia.

I recognize as valid the six species described as new by Duncan and the two later described by myself. Duncan's identifications of West Indian specimens with European species are all discarded as they are probably erroneous.

In addition to the six species here described as new, I have described six other species in manuscript not yet published, making a total of at least 20 species of Stylophora known to me from the American Tertiary formations. The stratigraphic range of the genus in America is from the upper Eocene to Miocene.

**STYLOPHORA IMPERATORIS**, new species.

Plate 74, figs. 1, 1a, 2, 3, 4, 4a, 5.

Corallum attaining a rather large size, the basal part of some colonies as thick as a man's wrist. The cross-section of branches ranges in form from subelliptical to curved lamellate. The following are the diameters of the broken ends of the specimen, which is 62.5 mm. long, represented by plate 74, figure 1.

**Diameters in millimeters of branches of Stylophora imperatoris.**

<table>
<thead>
<tr>
<th></th>
<th>Lesser diameter</th>
<th>Greater diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal end</td>
<td>14.5</td>
<td>27.0</td>
</tr>
<tr>
<td>Smaller branch</td>
<td>13.0</td>
<td>17.5</td>
</tr>
<tr>
<td>Wider branch</td>
<td>9.5 to 10</td>
<td>34</td>
</tr>
</tbody>
</table>

The branch terminals are compressed and often form sinuous plates. Thickness just below the summits about 3 mm.; width very variable, ranges from 6 or 7 up to 25 mm. Nodule-like growths are frequent on the sides of older branches.

Calices on older parts of the corallum from 1 to 1.3 mm. in diameter, therefore rather large and conspicuous; intervening walls from 0.75 to 2 mm. across, usually about 1.25 mm. Near and on the branch summits the calices are usually crowded and slightly less than 1 mm. in diameter. Upper margin of the calices usually more prominent than the lower, sloping slightly downward, externally finely costulate.

Septa, 6 primaries distinct, well developed, extending to the columnella, the directives more prominent than the other primaries; secondaries are small or obsolete, if they were present they usually have been destroyed in the type and paratypes of the species.

Columnella, a small, only slightly prominent style.

Coenenchyma dense; its surface beset with pointed granulations.

Localities and geologic occurrence.—Canal Zone stations 6016, in the Emperador limestone, quarry, Empire, where some hundreds of specimens were obtained; 6024b, lower end of culvert, Panama Railroad (relocated line), on Rio Agua Salud, in the upper bed, collected by T. W. Vaughan and D. F. MacDonald. Station 6026, in the Culebra formation, 2½ miles south of Monte Lirio, Panama Railroad (relocated line), collected by T. W. Vaughan and D. F. MacDonald.

Anguilla, station 6894, bluff, south side of Crocus Bay, in the lower 50 feet of the exposure, collected by T. W. Vaughan. (See pl. 74, figs. 4, 4a.)

Doctor MacDonald obtained the specimen represented by plate 74, figure 5, at station 1863 of the canal commission, on the west side of Gaillard Cut, between points opposite Cucaracha and Paraiso, station 5853 of the United States National Museum locality register. The specimen came from a layer, about 2½ feet thick, consisting of pebbles, gravel, and tuffs cemented with calcareous material; below the layer is gray, flaggy sandstone and tuff beds; above it is gray, flaggy sandstone, in thin layers separated by partings of carbonaceous black shale. The geologic horizon therefore seems to be in the Culebra formation, probably near its top. The specimen appears to be a form of *Stylophora imperatoris* in which the calices are more crowded than usual, as it agrees with that species in all other characters.

*Type.*—No. 324752, U.S.N.M.

*Paratypes.*—Nos. 324753, 324754, U.S.N.M.

**STYLOPHORA PANAMENSIS**, new species.

Plate 75, figs. 1, 1a.

Corallum, branches more or less contorted plates (see pl. 75, fig. 1). The thickness of the lower end of the type is 12.5 mm.; width, exceeds 28 mm.; length from base to summit, 38 mm.
Calices small, apertures from 0.5 to 0.75 mm. in diameter; crowded, maximum distance apart 1 mm., usually less than 0.5 mm.—that is, less than a calicular diameter apart. Margins very slightly or not at all elevated; upper wall in places forms an obscure upper lip.

Septa, the six primaries distinct, fuse in the calicular axis, directive plane well marked; secondaries not recognizable in the type-specimens and appear to be absent, but it is possible that they were present and have been destroyed by fossilization.

Columella a compressed style, not prominent.

Coenenchyma, surface badly worn in the type, but some granulations may be distinguished.

**Locality and geologic occurrence.**—Canal Zone, station 6016, in the Emperador limestone, quarry, Empire, collected by T. W. Vaughan and D. F. MacDonald.

**Type.**—No. 324763, U.S.N.M.

*S. panamensis* has smaller and more crowded calices than *S. imperatoris*.

**STYLOPHORA AFFINIS** Duncan.


**Original description.**—"Corallum branched, large; branches nearly cylindrical, leaving the stem at an acute angle, slightly flattened on one side. The largest stem is four-fifths inch in diameter. Blunt, aborted, branchlike swellings, exist on some of the larger stems. Corallites radiating from the center of the stem and branches, separated by about their own width of dense coenenchyma, which is seen, in the larger specimens, to be very slightly cellular. Walls not distinguishable from the coenenchyma in the substance of the mass, but slightly raised into a very shallow crateriform edge on the surface. Calices circular, a very little raised as crateriform elevations, very numerous, disposed irregularly, but very nearly equidistant in some places and less so in others; margins sharp. Diameter one-thirtieth inch [0.83 mm.], rarely larger. The calicular margin, when well preserved, looks like a little ring placed on the intercalicular space, and the small styliform columella renders the appearance very distinct. Intercalicular spaces marked by a continuous and rigid line, which, being in the part of the spaces at the base of the calicular elevations, and being continued round each calice, is, from its general straightness, formed into irregular polygons. The line is sensibly raised, convex, and now and then dentated. Between the line and the calicular margin there are distinct papillae, one row at the very
marginal edge, the other corresponding to it a little lower down the calicular wall; a third is sometimes seen; and in places where there is an unusual distance between the calices, and when the 'line' is wanting, the papillae are numerous, distinct, and a little smaller. The line and the papillae form a very marked distinction. Between some calices there are faint elevations. Septa whole, not exsert, but little visible in perfect calices, but very distinct when the coral is worn. Upper margin perfect and concave upward, the septa appearing festooned to the columella; they are delicate, very little thicker at the wall than elsewhere, and join the columella high up near its point. The papillae at the calicular edge extend a little on the wall, and may be considered as rudimentary septa and costae; if so, there is a second cycle, and also a third in half of each system. The persistence of six septa, nearly all of the same size, is very remarkable. Columella styliform, large and dense in the corallite, and forming a rounded-off cylinder with a sharpish rounded tip, which is very distinct halfway down the calice. Calicular fossa shallow, about half as deep as broad. Endothecal dissepiments stout, transverse, numerous. The walls and columella do not fill up the lower parts of the corallites. Increase by extracalicular gemmation.

"From the Nivajé shale. Coll. Geol. Soc."

Duncan reports the species from the Nivajé and Cerro Gordo shales, Santo Domingo.

I have received 22 specimens labeled Stylophora affinis from the Museum of Comparative Zoology, and 6 from the Philadelphia Academy of Sciences. I have separated four of the specimens belonging to the former institution and have described them as a new species. Six specimens are S. affinis, 9 are worn but probably are S. affinis, 2 seem to be different and possibly belong to a different species, 1 I refer to Duncan's S. granulata. I think that two of Philadelphia Academy are referable to S. affinis, the four others are probably worn specimens of the same species.

In the specimens that I have referred to S. affinis the upper margin of the calice is more prominent than the lower forming a small, projecting lip. Duncan's description in other respects is satisfactory. As the surface of specimens is easily worn by rolling, the upper lip of the calice and the surface ornamentation being destroyed, the positive identification of many specimens is rendered impossible. On the tips of the branches, which are blunt and rounded, the calices are crowded, with no development of intervening coenenchyma.

Miss Maury obtained in Santo Domingo a single specimen, a piece of a small branch, of this species, on Rio Gurabo, zone D, associated with Madracis decadis (Lyman), Pocillopora crassoramosa Duncan, Stephanocoenia intersepta (Esper), Orbicella limbata (Duncan), Orbicella cavernosa var. cylindrica (Duncan), and Syzygophyllia dentata (Duncan),
I collected at station 3446, in the La Cruz marl, first deep cutting east of La Cruz, near Santiago, Cuba, casts of the surface of a species of *Stylophora*. Squeezes of the surfaces of these casts agree completely with specimens from Santo Domingo identified by me as *S. affinis*. I am therefore attaching that name to the specimens. It is probable that similar casts from other localities in Cuba represent the same species.

**STYLOPHORA PORTOBELLENSIS,** new species.

Plate 76, figs. 1, 1a.

Corallum ramose, branches compressed, more or less contorted flabellate at the terminals. Growth form, therefore, similar to that of *Stylophora imperatoris*. The type is 37.5 mm. long; smaller diameter of basal end 10 mm., width of base about 13 mm.; maximum width of branch in horizontal plane about 22 mm., thickness at same level 10 mm.

Calices shallow, diameter averages about 0.75 mm. or slightly less; distance apart approximately equals the calicular diameter, in places less, 0.25 to 0.5 mm.; margins flush with the coenenchymal surface, in places slightly elevated on the upper side, but not enough to form a distinct upper lip.

Septa, six primaries distinct, rather thin, extend to the columella; no vestige of secondaries was observed.

Columella, a pointed style, moderately prominent, thickened below the bottom of the calice.

Coenenchyma dense or costulate with an intercalicular ridge and cells on its sides. The surface is worn, but vestiges of small granulations may be recognized. Axis of the corallum spongy.

**Locality and geologic occurrence.**—Panama, probably from near Porto Bello, collected by D. St. Clair; geologic horizon unknown.

**Type.**—No. 324762, U.S.N.M.

This coral has considerable resemblance to *Stylophora goethalsi*, but its calices are distinctly larger, and their upper margins are in some places slightly raised. *Stylophora imperatoris* has larger calices with distinct upper lips. *Stylophora portobellensis* appears most closely related to *Stylophora affinis* Duncan, from the Nivajè shale of Santo Domingo.

**STYLOPHORA GOETHALSIS,** new species.

Plate 75, figs. 2, 3, 4.

Corallum ramose, with branches subelliptical or much compressed in cross-section, in this character resembling *S. imperatoris*. Branch summits frequently or usually with digitiform protuberances (see pl. 75, fig. 2).

Calices shallow, decidedly small, 0.5 to 0.75 mm. in diameter; and relatively distant, from a calicular diameter up to 1.5 mm. apart.
Calicular margins obscurely or not at all elevated; without a pro-
tuberant upper lip.

Septa, six distinct primaries, about equal in size, extend to the
columella; secondaries much smaller, but can be distinguished in
the better preserved calices.

Columella a small, slightly compressed, fairly prominent style.

Coenenchymal surface closely set with pointed granulations.

**Locality and geologic occurrence.**—Canal Zone, at stations 6016,
 quarry in the Emperador limestone, Empire, Canal Zone, collected
by T. W. Vaughan and D. F. MacDonald; 6026, in the Culebra
formation, 2\(\frac{1}{2}\) miles south of Monte Lirio, Panama Railroad (relocated
line), collected by T. W. Vaughan and D. F. MacDonald.

**Cotypes.**—No. 324767, U.S.N.M. (3 specimens).

*Stylophora goethalsi* resembles the Santo Domingan species, *S. minor*
Duncan, which is ramose and has small calices, from 0.5 to 0.75 mm.
in diameter. The end of the branches in *S. goethalsi* are more com-
pressed than in *S. minor*, its calices are slightly larger, and its
secondary septa are better developed. Although closely related,
they appear to belong to distinct species.

**STYLOPHORA MACDONALDI,** new species.

Plate 75, figs. 5, 5a, 6, 6a, 7, 7a.

Corallum composed of elongate, slender, curved branches and
branchlets, with bluntish, rounded summits. The only branch
terminal that is perfect is represented by plate 75, figure 5. The
following are measurements of four broken branches:

<table>
<thead>
<tr>
<th>Branch No.</th>
<th>Length</th>
<th>Diameter of smaller end</th>
<th>Diameter of larger end</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.5</td>
<td>3.5 by 5.0</td>
<td>5.0 by 5.3</td>
</tr>
<tr>
<td>2</td>
<td>19.0</td>
<td>4.0 by 6.5</td>
<td>5.5 by 7.5</td>
</tr>
<tr>
<td>3</td>
<td>21.3</td>
<td>4.5 by 5.0</td>
<td>5.0 by 6.5</td>
</tr>
<tr>
<td>4</td>
<td>28.0</td>
<td>4.0 by 4.0</td>
<td>4.5 by 5.5</td>
</tr>
</tbody>
</table>

Just below the place of bifurcation the parent branch is consider-
ably compressed; in one branch the greater diameter below a fork
is 12 mm., while the lesser diameter is only 6.5 mm.

Calices rather shallow, but distinctly excavated; diameter, 1 mm.;
distance apart from 0.5 to 1.5 mm., usually less than the calicular
diameter; margins usually slightly or not at all raised, but knots
correspond to the outer ends of the septa. There is no upper lip to
the calices.

Septa, six well-developed, strong, subequal primaries extend to
the columella; secondaries small but usually distinct. Subequal
knots correspond to the outer ends of the two cycles of septa, and a
smaller knot with no corresponding septum usually occurs between each pair of larger knots.

Columella, a distinct, round, moderately prominent style, very slightly compressed in the directive plane.

Coenenchymal surface roughly granulated, from 1 to 4 rows of granules between calices, depending on their distance apart.

Localities and geologic occurrence.—Canal Zone, in the Emperador limestone at stations, 6016, quarry, Empire; 6024b, lower end of culvert, Panama Railroad (relocated line), on Rio Agua Salud in the upper bed, collected by T. W. Vaughan and D. F. MacDonald.

Cotypes.—No. 324769, 324770, U.S.N.M. (7 specimens).

Of other species of Stylophora with which I am acquainted S. macdonaldi seems to resemble most S. granulata Duncan from Bowden, Jamaica. S. granulata has deeper calices, less developed secondary septa, and in some specimens the upper lip of the calices is more prominent than the lower.

STYLOPHORA GRANULATA Duncan.


Original description.—"The corallum is ramose; the branches are nearly cylindrical, often flattened on one side, and leave the stem at an acute angle. The calices are placed irregularly, and are separated by a coenenchyma, which is sharply granular, and which has very rarely any grooves or continuous ridges on its surface. The calices are circular, not inclined, very deep, and are surrounded by a raised ring formed by the septa and costae. The columella is situated deeply; it is cylindrical below, and sharp where free, but it does not reach the level of the calicular margin; it is delicate, and six large septa are attached to it low down. The septa are in two sets. The superficial septa are from eighteen to twenty in number; six are continuous with the large septa, and the rest taper finely internally and externally, the spindle-shaped process being one-half septum and the rest costa. The processes are close, radiate, and horizontal. Diameter of calices, one-thirtieth inch [0.8 mm.].

"Localities: Bowden and Vere, Jamaica."

Duncan, in 1873, cites this species from St. Bartholomew, but this, I am convinced, is an erroneous identification.

There are two small broken branches of this species in the collection of Mr. T. H. Aldrich, obtained at Bowden, Jamaica, and presented to the United States National Museum.
Specimen No. 1.—Small branch, 16 mm. long, diameter of lower end 4 mm.; upper end flattened, bifurcating, greater diameter 5.5 mm., lesser 3 mm.

Diameter of calices very slightly less than 1 mm., separated by about the same width of coenenchyma. The margin is usually a very slightly elevated rim without an elevated lip around which are 12 to 18 small costae. In a few instances the costae continue from one calice to the next, but usually the intercalicular coenenchymal surface is merely granulate. There are from two to six indefinite zones or wavy lines of granulations between two calices. The granulations are subconical, round-pointed. Limits of zooids sometimes faintly indicated by a slightly raised granulated line. Calices moderately deep. Six principal septa, the second cycle represented by small short septa, variable number of rudimentary members of the third. The upper margins are slightly exert.

Columella does not reach to level of calicular margin, sharp-pointed.

Specimen No. 2.—A small somewhat compressed, broken branch, 16 mm. long; greater diameter of lower end, 6.5 mm., lesser, 5 mm.; greater diameter of upper end, 6 mm., of lesser, 4 mm. Diameter of calices very slightly more than 1 mm. Width of intervening coenenchyma averages about the same as the diameter of the calices. Calicular rim a little elevated, and slightly swollen around the base.

Costae longer than in No. 1. Granulations about the same in both specimens. Elevated line between zooids usually distinct.

There is in this collection a third specimen which is probably only a variation of the same species. It is a fragment of a branch 14 mm. long. The diameter of the calices is about 0.75 mm.; the calicular rims are not elevated but usually tend to be depressed. The coenenchymal surface is very densely and minutely granulate. The limits of adjoining zooids are indicated either by a very faint raised or by an impressed line.

Localities and geologic occurrence.—Besides occurring in the Bowden marl of Jamaica, Stylophora granulata is also found in Cuba at stations 3476, Baracoa, and 3461, gorge of Yumuri River, Matanzas, collected by T. W. Vaughan.

Santo Domingo, station 7781, Rio Cana, zone H, collected by Miss C. J. Maury.

STYLOPHORA CANALIS, new species.

Plate 76, figs. 2, 2a.

Corallum of type, a small, nodular mass, 42 mm. long, 23 mm. tall, and from 10 to 14 mm. thick (see pl. 76, fig. 2, for view, natural size, of the upper surface).
Calices shallow, fairly large, 1 mm. in diameter; usually 1 mm. apart. Margins not elevated; the walls barely distinguishable from the surrounding coenenchyma.

Septa in two distinct cycles; only the six primaries reach the columella, but the secondaries are well developed.

Columella, a pointed style.

Coenenchymal surface crossed by costules, along which are relatively coarse granulations. In places the coenenchyma appears cellular, as the costules are not solidly fused but have cellules developed between them.

**Locality and geologic occurrence.**—Canal Zone, station 6016, in the Emperador limestone, quarry, Empire, collected by T. W. Vaughan and D. F. Macdonald.

**Type.**—No. 324775, U.S.N.M.

This species most closely resembles a species from the base of the Chattahoochee formation, on Flint River, 4½ miles below Bainbridge, Georgia, but it differs from the latter species in two characters, namely, the outer ends of the principal septa are not produced into prominent teeth, and in places the coenenchyma is distinctly cellular.

**STYLOPHORA PONDEROSA** Vaughan.

1900. *Stylophora ponderosa* Vaughan, U. S. Geol. Survey Mon. 39, p. 132, pl. 13, fig. 16; pl. 14, figs. 1, 1a, 1b.

One of the specimens obtained by me in Antigua seems referable to this species. The upper surface has four nipple-shaped elevations on it; the largest is about 15 mm. in diameter at the base, about 5 mm. tall, and about 5 mm. in diameter just below the rounded summit. Except such protuberances, the surface is flattish, with some undulations. The size of the calices and the septal characters are as in the cotypes of *S. ponderosa*.

**Localities and geologic occurrence.**—Alabama, Salt Mountain, 6 miles south of Jackson, just above the top of the Vicksburg group, collected by T. W. Vaughan.

Antigua, station 6854, Rifle Butts, in the Antigua formation, collected by T. W. Vaughan.

**Genus POCILLOPORA** Lamarck.


**Type species.**—*Pocillopora acuta* Lamarck.

Duncan described two fossil species of *Pocillopora* from the West Indies, *P. crassoramosa* from the Nivaje shale of Santo Domingo, and *Pocillopora tenuis* from Antigua. I have seen good suites of

---

2 Idem, vol. 24, p. 21, pl. 1, figs. 5a, 5b, 5c, 1867.
specimens of *P. crassoramosa*, but have seen none of *P. tenuis*. *P. crassoramosa* has thickish branches on which verrucae may be well developed or obsolete; *P. tenuis* appears to be of more or less massive growth-form and has across the corallite cavities thin tabulæ, the spaces between which are not filled by stereoplasmic deposit.

I have specimens representing four additional American fossil species of the genus. They are all branching forms. I collected one of the species at Willoughby Bay, Antigua, in the Antigua formation; and another in the upper Oligocene marl at Baracoa, Cuba. The specimen at the latter locality was obtained in association with *Stylophora granulata* Duncan, which was originally described from the Bowden marl of Jamaica. Miss Carlotta J. Maury obtained *P. crassoramosa* in Santo Domingo in what she designates zone D, which is above the horizon of the Bowden marl. The geographic range of the genus in the West Indies is, therefore, from the Antiguan Oligocene to a horizon appreciably above that of the Bowden marl.

**Pocillopora Arnoldi, new species.**

Plate 76, figs. 3, 3a, 3b.

The type, which is a fragment of a branch, is 28 mm. long, diameter of lower end 6.5 by 12 mm., diameter of upper end 5.5 by 9 mm. The cross section of the branch is strongly compressed, and one side near and at a place of bifurcation is concave instead of being convex. There are no verrucae.

Calices slightly oblong, lesser diameter about 0.75 mm., longer diameter, parallel to the axis of the branch, from 1 to 1.25 mm. Cavities rather deep, about 0.5 mm., and steep-walled. Intercorallite areas flattish, arched, or slightly crested in profile, of unequal width, from 0.3 mm. to 1 mm. across. Coenenchymal surface granulocostulate, granulations fairly coarse.

Septa rudimentary, occur as low, blunt-topped, perpendicular ridges on the inside of the calicular walls. In some calices 12 of these ridges may be distinguished. The bottom of the calice is flat or very gently concave; no vestige of a columna could be found.

Coenenchyma solid; corallite cavities solidly filled except a few in the axis of the branch.

**Locality and geologic occurrence.**—Canal Zone, station 6444, quarry in the Emperador limestone, Empire, collected by Dr. Ralph Arnold, whose name I take pleasure in attaching to this well-marked species.

**Type.**—No. 324782, U.S.N.M.

Of the other five fossil species of *Pocillopora* known from the Tertiary formation of the West Indies and Central America, the unnamed species from Antigua, previously mentioned, is the most similar. The latter species is composed of small, more or less com-
pressed branches, it has no verrucae, the calices are rather deep, the septa are perpendicular ridges down the inside of the calicular walls, and there is no trace of a columella. In these characters the two are similar. The species from Antigua differs from *P. arnoldi* by having larger calices, lesser diameter 1 mm. or more, usually more than 1 mm., and the calicular margin is rather persistently marked by a slightly raised acute rim. A description of the species from Baracoa, Cuba, follows.

**POCILLOPORA BARACOENSIS**, new species.

Plate 77, figs. 1, 1a.

This species may be characterized as follows:

The corallum is branching; it has no verrucae and no columellar tubercle. The branch is regularly subcircular or broadly elliptical in cross section, 10.5 mm. in diameter at lower end. The calices are very shallow and are subcircular in outline, about 0.75 mm. in diameter, distance apart usually slightly more than the calicular diameter. Thick short septa join the columellar plug to the wall. Coenenchyma very dense.

These characters are different from those of any of the other known American species.

**Locality and geologic occurrence.**—Cuba, station 3476, in yellow, argillaceous marl, Baracoa, associated with *Stylophora granulata* Duncan, collected by T. W. Vaughan. The geologic horizon of this species is that of the Bowden marl.

**Type.**—No. 324783, U.S.N.M.

**POCILLOPORA GUANTANAMENSIS**, new species.

Plate 77, figs. 2, 2a.

Corallum composed of irregularly shaped, more or less compressed and contorted branches, among which there is considerable anastomosis. The branches may be as much as 27 mm. wide, 7.5 mm. thick near the summit, and 12 mm. thick at the base. The branch on which these measurements were made is 41 mm. long. Verrucae entirely absent on the type.

Calices from 0.75 to 1.25 mm. in diameter; usually less than or about their diameter apart. They are deep pits without any trace of septa, except that in a few calices what appear to be thick directives are recognizable on the plug forming the calicular floor. Calicular margins usually even with the coenenchymal surface; in some calices they are somewhat tumid and slightly elevated.

The columella is only a plug. Stout, horizontal tabulae present. Coenenchyma very dense. Surface in type worn, but apparently beset with spines or granulations and not costulate.

**Locality and geologic occurrence.**—Cuba, station 7514, about 5 miles nearly due east of Monument H4 on the east boundary of the
U. S. Naval Reservation, Guantanamo, altitude about 400 feet a. t., in beds of the age of the Antigua formation, collected by O. E. Meinzer.

Type.—No. 324784. U.S.N.M. This species differs so markedly from the other West Indian species of Pocillopora that comparisons with the other species seem unnecessary.

Genus MADRACIS Milne Edwards and Haimé.


Type-species.—Madracis asperula Milne Edwards and Haimé.

MADRACIS MIRABILIS (Duchassaing and Michelotti).

1861. Stylophora mirabilis Duchassaing and Michelotti, Mém. Corall. Ant., p. 62 (of reprint), pl. 9, figs. 6, 7.

A single fragment of a branch from Limon, Costa Rica, is 23 mm. long, 2 mm, in diameter at the lower end, and 3 mm. in diameter just below trifurcation at the upper end. The fragment is slightly arcuate in form, not quite straight, and is not so crooked as is usual in the specimens of M. mirabilis with which I have compared it. The septa are less exsert around the calicular margins then is usual in the species. Although there are the differences indicated, they are of the kind that may be produced by vegetative causes.

Locality and geologic occurrence.—Costa Rica, hills of Port Limon, No. 669 of H. Pittier collection; geologic horizon not known.

Cuba, station 3461, gorge of Yumuri River, Matanzas, 19 fragments collected by T. W. Vaughan in a marl of lower Miocene (Bowden) age.

These fragments perhaps should be referred to a new species; but they appear more probably to be only a variant of M. mirabilis.

Family ASTROCOENIIDAE Koby.

Genus ASTROCOENIA Milne Edwards and Haimé.


Type-species.—Astrea numisma Defrance.

Besides the five species of Astrocoenia recognized in the present paper, I have described one under the name of Stylocoenia duerdeni
from the Eocene of Jamaica, which also occurs in the upper Eocene of St. Bartholomew. I describe as new the species from Antigua (A. decaturensis), to which Duncan applied the name Astrocoenia ornata. This species is also found in the coral reef at the base of the Chattahoochee formation on Flint River, near Bainbridge, Georgia, and near Guantanamo, Cuba. More critical study may lead to the recognition of one or two additional species. The names of all European species applied by Duncan and others to West Indian forms probably should be dropped from the literature.

**ASTROCOENIA D'ACHIARDII** Duncan.

Plate 78, figs. 2, 2a.


Dr. C. W. Hayes obtained in Nicaragua, "on or near the Pacific coast," a specimen of Astrocoenia (pl. 78, figs. 2, 2a) that seems referable to A. d'achiardii.

The corallum is ramose; branch somewhat compressed, lesser diameter of lower end 10.5 mm., greater diameter only slightly more than the lesser.

Calices from 2 to 3 mm. in diameter, measured between thecal summits; the diameter of the largest calice is 3 mm. Maximum thickness of walls between adjoining calicular cavities, 1 mm. Depth of calices about 1 mm.

Eight prominent septa reach the columella, with a small septum between each pair of the larger. The large septa are narrow above the bottom of the calice, where they widen and fuse to the columella, around which they show decided thickening. The calicular cavity, therefore, is steep-sided and relatively flat-bottomed.

The columella is a slightly prominent, compressed style.

**Locality and geologic occurrence.**—Nicaragua, on or near the Pacific coast, in the Brito formation, collected by C. W. Hayes. Dr. Hayes says regarding the Brito formation.

The greater part of the Brito formation is apparently barren of organic remains. The only location at which fossils have been found are on or near the Pacific coast. This, however, may be due to the fact that the rock exposures are not elsewhere of such a character as to facilitate the discovery of fossils, and the latter may possibly be more generally distributed than present knowledge would indicate. The fossils are confined almost wholly to the limestones and marly beds. They consist of corals, molluscan, and foraminiferal remains.

The Foraminifera, according to Dr. Joseph A. Cushman, indicate an Eocene age.

---

Astrocoenia d'achiardii was described from the upper Eocene of St. Bartholomew. Finding it on the Pacific coast of Nicaragua is additional evidence in favor of connection between the Atlantic and Pacific oceans across Central America during upper Eocene time.

**ASTROCOENIA GUANTANAMENSIS,** new species.

Plate 79, figs. 1, la, 2.

Corallum massive, with a rather uniformly rounded or more or less tuberose surface. Type 55 mm. long, maximum width about 31 mm., height 38 mm. The corallum may be much larger.

Calices polygonal, shallow, almost superficial, small; maximum size about 1.75 mm. in diameter, 1.5 mm. usual, smallest calices about 1 mm. in diameter, measured between thecal summits. Intercorallite walls acute or flattish, usually less than 0.25 mm. wide, maximum width 0.5 mm.; crossed by subequal costae corresponding to all septa unless very narrow, when the edge of the wall is dentate instead of costate.

Septa 16 in number, 8 reach the columella; 8 small, about half the length of the principals; in most instances they are thicker in the wall than at their inner ends. Margins of the longer with about three dentations on each. Septal faces with sharp granulations.

Columella, a small, erect, central style.

**Localities and geologic occurrence.**—Cuba, station 7522, Mogote Peak, 0.5 mile east of east boundary of United States Naval Reservation, Guantanamo, south side of peak, altitude about 375 feet a. t., collected by O. E. Meinzer (type).

Antigua, station 6865, Jackass Point, St. John, collected by T. W. Vaughan.

Panama, station 6587, Tonosi, collected by D. F. MacDonald.

**Type.**—No. 324794, U.S.N.M.

Astrocoenia guantanamensis is most nearly related to Astrocoenia incrustans (Duncan) which is from the upper Eocene St. Bartholomew limestone, and is the next species here described. The calices of A. incrustans, a description of which follows, are rather deep and the intercorallite areas are flattish and costate.

**ASTROCOENIA INCURSTANS** (Duncan).


**Original description.**—"The corallum is low in height, and incrusts rocky surfaces. The corallites are united by their rather thick walls, and are parallel. The calices are quadrangular or pentangular, and their margins are marked by the septa of the adjacent corallites."
The septa are subequal at the wall, and 16 in number; but only eight reach the small and deep stylloid columella; the others project very slightly, and are moniliform on their free edge. The pali are attached to the eight larger septa.

"Height of corallum, one-tenth inch [=2.5 mm.]. Breadth of calice, one-twentieth inch [=1.25 mm]."

The following notes are based on the type-specimen:

It is a small thin fragment, 17.5 mm. long, 8 mm. wide, and 4 mm. thick.

The calices are moderately deep polygonal, many are elongate, the smaller ones measure 0.9 mm. in diameter, an elongated one is 1.2 mm. wide and 2 mm. long. The walls are thin, about 0.2 mm. wide; however, the upper edges of the septa are flattened and somewhat expanded. No mural styles.

Septa, 16 in number, equal in thickness at the wall, thicker than the spaces between; 8 extend to the columella, the laminae thinner between the portions surrounding the columella and the outer ends. The other 8 septa are short. The margins are finely dентate. Distinct pali absent. Apparently dissepiments are present.

Columella styliform, rather prominent, compressed.

This coral can not be referred to *Stephanococenia* because there are no pali and the septal margins are dentate, instead of being entire. However, it exhibits all the characteristics of *Astrocoenia*. In the size of the calices, number of the septa, and character of the septal margins it resembles *A. duerdeni* (Vaughan), but differs from that species by the apparent absence of mural spines. Notwithstanding this, it is not impossible that the type-specimen could be a portion of a corallum of *A. duerdeni*, the styles being absent from the area whence it was derived.

**Locality and geologic occurrence.**—Island of St. Bartholomew, P. T. Cleve, collector; subsequently collected by T. W. Vaughan; in the upper Eocene St. Bartholomew limestone.

**Type.**—University of Upsala.

ASTROCOENIA DECATURENSIS, new species.

Plate 78, figs. 3, 3a, 4, 4a.


Corallum massive, rather large, upper surface with numerous gibbosities. One specimen has a base 14 by 17 cm., respectively, as the smaller and greater diameter, and is about 8 cm. in height, another has 19 cm. as the greatest diameter of the base.

Corallites polygonal, separated by walls that are never very thick, rarely as much as 1 mm., upper edge usually if not always marked
by a small raised, granulated line. The distal ends of the septa are produced as short costae to this line and often a granulation occurs between each pair of costae. The diameter of the corallites ranges from 1.5 to 2.5 mm.; about 2 mm. is the average. Calices shallow.

Septa distant, normally 16 in number, of which 8 extend to the columella, occasionally 20, with 10 reaching the columella. Their outer ends are slightly prominent on the wall and are equal in size. The inner margins lie almost in a straight line or are very slightly excavated but are regularly finely dentate, with four to seven teeth to each septum. These teeth are moderately acute and are directly obliquely upward and inward. Granulations on the faces minute, pointed.

Endothecal disseipments present, thin, not abundant.

Columella a strong style, upper end pointed but not very prominent. There is some thickening of the inner ends of the larger septa where they fuse to the columella.

**Localities and geologic occurrence.**—Georgia, station 3383, Hale's Landing on Flint River, 7 miles below Bainbridge; and station 3381, Blue Springs, 4 miles below Bainbridge, collected by T. W. Vaughan.

Island of Antigua, West Indies, in the Antigua formation, collected by Robert T. Hill.

Cuba, station 7523, south side of Mogote Peak, altitude 250 feet a. t., one-half mile east of east boundary of the United States Naval Reservation, near Guantanamo, collected by O. E. Meinzer.

**Type.**—Cat. No. 324789, U.S.N.M.

**Paratype.**—Cat. No. 324788, U.S.N.M.

_Astrocoenia ornata_ Duncan from Antigua (No. 12048, coll. Geol. Soc. London) is a massive species of _Astrocoenia._ It is silicified; the corallites are crowded, polygonal, intervening walls thin, diameter of corallites, 1.5 to 1.75 mm. Septa, 8 principal, 8 rudimentary, thin and distant. Columella, a slender style.

**ASTROCOENIA MEINZERI, new species.**

Plate 79, figs. 3, 3a.

Corallum composed of thick branches, with broadly elliptical cross-section. Type, a broken, bifurcating branch. Length from broken base to fork, 50 mm.; diameter of basal end, 23.5 by about 24 mm. Diameter of broken end of branch at fork, 23 by 24 mm. Length of broken lateral branch from fork, 21 mm.; diameter of distal broken end, 17.5 by 20.5 mm.

Calices rather large, diameter measured between thecal summits from 2.5 to 3 mm.; depth, 1.25 to 1.5 mm. Intercorallite walls from 0.5 to 1.5 mm. across where well preserved, about 0.75 mm. usual. In places the top of the wall is acute, but this condition is probably due
to weathering. Where the walls are wide there is usually a distinct intercorallite groove. Thick costae or mural teeth are probably present on perfect specimens, but they are not distinct on the type, as its surface is worn.

Septa 16 in number; 8 principals extend to the columella, and 8 are short but thick. The principal septa slope in a concave curve to the bottom of the calice, and are narrow nearly to the level of the bottom of the calice; the smaller septa are narrow. All septa are thick in the wall, and the principals are fused by their thickened inner ends around the columella. About seven small dentations were counted on one long septum. Septal faces with small granulations.

Columella a low style, with rounded upper end; it with the inner septal ends fused around it forms a rather large columellar mass.

Thickish dissepiments are present.

Locality and geologic occurrence.—Cuba, station 7522, Mogote Peak, 0.5 mile east of east boundary of United States Naval Reservation, Guantanamo, south side of peak, altitude about 375 feet a. t. collected by O. E. Meinzer.

Type.—No. 324791, U.S.N.M.

The species most nearly related to Astrocoenia meinzeri is A. d'achiardi Duncan from the upper Eocene St. Bartholomew limestone. The branches of A. d'achiardi are more irregular in form, for the same size branch the calices are larger, up to 3.5 mm. in diameter, the intercorallite walls are not so wide, the outer part of the septal margins is steeper, and the septal dentations are coarser. Notwithstanding these apparent differences, it should be admitted that larger collections may lead to combining the two supposed species.

ASTROCOENIA PORTORICENSIS, new species.

Plate 76, figs. 4, 4a; plate 78, figs. 1, 1a.


Not:
1838. Porites ornata Michelotti, Specim. Zooph. diluv., p. 172, pl. 6, fig. 3.

The following is a description of the type (pl. 76, figs. 4, 4a):

Corallum forming flattened, even palmate branches. The type-specimen, which is broken, has a greatest width of 53 mm., length 105 mm., and a thickness of 15.5 mm. at the lower and of 7.5 mm. at the upper end.

Calices, diameter from 1.0 to 1.5 mm., excavated but rather shallow, outline polygonal, united by compact, rather narrow walls, which range from 0.2 to 0.5 mm. across. The distal ends of the septa form low costae.

Septa, 16 in number, 8 reach the calumella and 8 are short or even rudimentary; a few dentations, usually about 3 or 4 on the margin
of each principal septum. Interseptal loculi about as wide as the thickness of the septa.

Columella an erect style, which does not reach the level of the upper edge of the wall; its upper termination rounded; cross-section elliptical.

Endothecal dissepiments present.


Porto Rico, station 3191, 4 miles west of Lares, in the Pepino formation, collected by R. T. Hill.

Canal Zone, station 60246, in the Emperador limestone, at the crossing of the Panama Railway over Rio Agua Salud, collected by T. W. Vaughan and D. F. MacDonald.

Type.—No. 324785 U.S.N.M., from 4 miles west of Lares, Porto, Pepino formation, collected by R. T. Hill.

Paratype.—Cat. No. 324786, U.S.N.M.

The foregoing description is based on the type-specimen and does not take into consideration the variation of the species. I obtained a good suite of specimens at two exposures of the Antigua formation on the island of Antigua. The branches range in form from greatly compressed to subcylindrical (see pl. 77, figs. 1, 1a, illustrations of a specimen from Willoughby Bay, Antigua). A segment from near the base of a subcylindrical branch was collected on Rio Agua Salud, Canal Zone.

Genus STYLOCOENIA Milne Edwards and Haime.


Type-species.—Astrea emarciata Lamarck.

STYLOCOENIA PUMPELLYI (Vaughan).


This species seems to belong to the genus Stylocoenia, as it has intercorallite pillars; but as some septa show dentations on their margins, the original generic identification may be correct. It occurs in the base of the Chattahoochee formation, near Bainbridge, Georgia, and not in Vicksburgian deposits, as I stated in the original description.

Localities and geologic occurrence.—Georgia: Station 2326, Russell Spring, Flint River, 4 miles below Bainbridge, collected by R. Pum- pelly (type, Cat. No. 158315, U.S.N.M.); station 3381, same locality as the preceding, collected by T. W. Vaughan; stations 3383, collected by T. W. Vaughan, and 7078, collected by T. W. Vaughan, C. W. Cooke, and W. C. Mansfield, Hales Landing, Flint River, 7 miles below Bainbridge, in the base of the Chattahoochee formation.
Antigua: Station 6881, Willoughby Bay, collected by T. W. Vaughan in the Antigua formation.

Family OCULINIDAE Milne Edwards and Haime.

Genus Oculina Lamarck.


Type-species.—Madrepora virginea Ellis and Solander.

Oculina Diffusa Lamarck.


Doctor MacDonald obtained seven pieces of branches of this species at the locality mentioned below. They are slender and resemble fragments from specimens of Oculina diffusa, which grow either in water 10 to 16 fathoms deep or where the water is very quiet. The specimens from Panama nearly duplicate those I described from Porto Rico.

Locality and geologic occurrence.—Canal Zone, station 5849, swamp, Mount Hope, Pleistocene, collected by D. F. MacDonald.

Oculina Varicosa Le Sueur.


A single nearly typical fragment of a branch was obtained.

Locality and geologic occurrence.—Canal Zone, station 5849, swamp, Mount Hope, Pleistocene, collected by D. F. MacDonald.

Archohelia, new genus.

Archohelia differs from Oculina solely by having a persistent axial corallite, whereas in Oculina there is no axial corallite. Pali or pali-form teeth are present on all but the last cycle of septa. Columella trabecular, with some papillae on its upper surface.

Type-species.—Archohelia limonesis Vaughan.

The relations of this genus to the species described in my monograph on the Eocene and lower Oligocene coral faunas of the United States 2 under the names Astrohelia neglecta, A. burnsi, Oculina vicksburgensis, O. mississippiensis, O. singleyi, O. alabamensis, O. harrisi,
O. aldrichi, and O.? smithi should be indicated. The species mentioned have axial corallites and generically resemble Archohelia except in the details of the inner ends of the septa. The type-species of Astrhelia (the correct spelling of the name, instead of Astrohelia) is Madrepora palmata Goldfuss, which has no definite axial corallites, and I have seen no pali or paliform lobes on its septa. The species to which I applied the names Astrohelia neglecta and A. burnsii, as they possess axial corallite should be taken out of the genus Astrhelia. As it is not practicable just now to revise critically the Eocene and lower Oligocene species listed above, it will here only be mentioned that they probably should be transferred to Archohelia.

**ARCHOHELIA LIMONENSIS, new species.**

Plate 80, figs. 1, 1a, 1b, 2, 3.

Corallum composed of relatively slender branches. The following are measurements of the cotypes:

**Dimensions in millimeters of cotypes of Archohelia limonensis.**

<table>
<thead>
<tr>
<th>Branch</th>
<th>Length</th>
<th>Diameter</th>
<th>Calices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower end</td>
<td>Upper end</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>4.5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>4.5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>4</td>
<td>3.5</td>
</tr>
</tbody>
</table>

The cavity of the axial corallite is about 2.25 in diameter. The foregoing tables give the dimensions and amount of the projection of the radial calices—the diameters stated are as measured from the outside of the walls. The distance between adjacent calicular margins is about 2.5 mm. on branch No. 2; in extreme cases it ranges up to as much as 7 mm., as between some calices on branch No. 3. The arrangement is in more or less definite spirals. Subequal or slightly alternating costae, with closely granulate surfaces, correspond to all septa just below the calicular edges; lower down on the corallite limbs they flatten and become subequal; they may continue on the coenenchymal surface or disappear. The calicular cavities are excavated; moderately deep, about 1.5 mm.

Septa normally in three complete cycles; primaries as a rule slightly larger than the secondaries, both cycles reach the columella, and have subequal, slightly exsert upper margins; tertiaries smaller than the secondaries and have lower upper margins. Inner edges of the tertiaries usually free, but in some systems they fuse to the sides of included secondary septa. Single or double paliform teeth on the inner ends of the primaries and secondaries. Septal faces closely granulate.
Columella papillate.

Coenenchyma dense; with or without costal prolongations from the calicular peripheries; fine granulations scattered over its surface.

Localities and geologic occurrence.—Costa Rica, Limon, as follows: Station 2692, collected by R. T. Hill; Moin Hill, Niveau d and No. 461, collected by H. Pittier; station 5884b, Moin Hill, collected by D. F. MacDonald. The geologic horizon seems to be Pliocene.

Florida, station 3300 in the Pliocene Caloosahatchee marl of Shell Creek, collected by Frank Burns.

Cotypes.—No. 324809, U.S.N.M., from Niveau d, Moin Hill, Port Limon (3 specimens).

Family EUSMILIIDAE Verrill.

Genus ASTEROSMILIA Duncan.


Type-species.—Trochocyathus abnormalis Duncan.

When Duncan described this genus he referred to it his Trocho-
cyathus abnormalis, changing the name to anomala, and refigured the species. He also described two additional species as Asteros-
smilia exarata and A. cornuta, a synonym of A. abnormalis, and failed to designate a type-species for the genus. Trochocyathus abnormalis was described with much care, while the descriptions of the two other species are short and unsatisfactory. A. cornuta is a synonym of A. abnormalis. It therefore seems best to take the species I have selected, as indicated above, as the type-species of the genus.

Duncan described three species of Asterosmilia from the Tertiary formations of Santo Domingo, namely, Trochocyathus abnormalis,\(^1\) for which the genus Asterosmilia was subsequently erected, A. cornuta, and A. exarata,\(^1\) and one species A. pourtalesi from the upper Eocene St. Bartholomew limestone. I consider A. cornuta a synonym of A. abnormalis, and transfer Duncan’s Trochocyathus profundus from the genus in which it was originally placed to Asterosmilia, leaving four described fossil species in the genus. Pourtalès described from the West Indies one recent species that belongs to Asterosmilia, his A. prolifer, originally named Ceratocyathus prolifer, and of which Lindstrom’s Paracyathus arcatus is a synonym. I here describe an additional new species, namely, A. hilli, from Bowden, Jamaica, and Limon, Costa Rica, and have described two additional species from Santo Domingo, in a paper not yet published, making eight, the total number of American species at present known to belong to the genus.

---

\(^1\) Collected by A. Olsson on Provision Island, Costa Rica, in the Gatun formation. Footnote added to page proof.

I find it difficult to explain why a species so common as this one could have so long remained undescribed. There are from Bowden, Jamaica, 41 specimens in the Henderson and Simpson collection, 20 in the Hill collection, and 9 in the T. H. Aldrich collection, making a total of 70 specimens that I have studied from this one locality. A series of ten of the best specimens of the Henderson and Simpson collection have been selected as the cotypes.

Corallum cornute with a pointed base and attached, at least in its early stages, rather slender, curved in the plane of the greater transverse axis of the calice. The following table gives the measurements and number of septa in the type specimens.

**Dimensions of and number of septa in *Asterosmilia hilli***

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Greater diameter of calice.</th>
<th>Lesser diameter of calice.</th>
<th>Height of corallum.</th>
<th>Number of septa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm.</td>
<td>mm.</td>
<td>mm.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>6.5</td>
<td>About 24, and probably some rudimentary.</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3.75</td>
<td>7</td>
<td>24, and a few rudimentary.</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3.5</td>
<td>9</td>
<td>24+17 of the fourth cycle.</td>
</tr>
<tr>
<td>4</td>
<td>4.5</td>
<td>4</td>
<td>10.5</td>
<td>24+20 of the fourth cycle.</td>
</tr>
<tr>
<td>5</td>
<td>6.5</td>
<td>5</td>
<td>12</td>
<td>24+20 of the fourth cycle.</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>6</td>
<td>15</td>
<td>24+20 of the fourth cycle.</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>15.5</td>
<td>Calice broken on side.</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>7</td>
<td>18.5</td>
<td>48, fourth cycle complete.</td>
</tr>
<tr>
<td>9</td>
<td>9.5</td>
<td>8.75</td>
<td>19</td>
<td>48, four complete cycles.</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>9</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

1 About.

The calice is oblique, its upper edge being considerably higher than its lower. In the measurements given above the height of the corallum is measured from the tip of the pedicel to the highest point of the calicular margin.

The wall is only moderately thick, externally there is a variable amount of pellicular coating. Costae corresponding to all septa, distinct, but usually not prominent. There is a fair amount of variation in the costal characters. In some specimens the costae of all cycles are equal or subequal, low, flattish or only slightly crested; in others, those corresponding to the septa of the first and second cycles of septa are decidedly more prominent than the intervening costae. Those corresponding to the third cycle of septa may be slightly more prominent than those corresponding to the fourth. Sometimes costae of both kinds are combined in one specimen. Rather often in an intercostal space there is a raised thread or line which does not correspond to a septum. Minute, crowded granulations are scattered over the surfaces of the costae and in the intercostal spaces.
Septa, thin, distant, those of the first and second cycles have slightly exsert margins. In adult specimens, 19 to 25 mm. tall, there are four complete cycles, in younger specimens the fourth cycle is incomplete. The members of the first and second cycles are of equal size, extend to the columella, and are decidedly thicker than the other septa. The members of the fourth cycle are thinner and shorter than those of the third. The septal margins are subentire, arched above and fall at a very steep angle to the bottom of the calicular fossa. Septal faces finely striate, with more or less elongate granulations along the courses of the striae. Line of divergence of the striae very close to the inner side of the wall. Wide, tall, thin, pali, rounded above, stand before the septa of the third cycle, from whose inner margin they are separated by a deep notch. The width of a palus is about 1 mm., height, 1.5 mm.

Dissepimental endotheca, present, but not abundant. The dissepiments thin.

The columella in fully grown specimens, prominent, compressed or even distinctly lamellar in appearance. In young and broken specimens it appears to be composed of interfused processes from the inner ends of the septa, it is decidedly vesicular. Calice, rather deep, 3 to 4 mm.

Localities and geologic occurrence.—Jamaica, Bowden, collected by J. B. Henderson and C. T. Simpson and R. T. Hill.


Cotypes.—Nos. 324815, 324816, U.S.N.M. (10 specimens).

The specimens from Limon, Costa Rica, are essentially duplicates of those from Bowden. One specimen with a greater calicular diameter of 9.5 mm. has a few quinary septa.

Genus STEPHANOOCOENIA Milne Edwards and Haime.

1850. Stephanocenia Milne Edwards and Haime, Mon. Brit. foss. Cor., Intr., p. XXX.

Type-species.—Astrea intersepta Lamarck = Madrepora intersepta Esper.

STEPHANOOCOENIA INTERSEPTA (Esper).


1902. *Plesiostraera goodei* Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 106, fig. 1, p. 172, pl. 31 (not pl. 30 as given in the text), figs. 1, 1a.


Although the original description of Lamarck is brief, it is good. According to him, "Cette espèce forme de large plaques un peu convexe, et offre à sa surface un réseau assez fin, constitué par les bords réunis des cellules. On voit un petit axe au centre de chaque étoile." He placed Madrepora intercepta Esper doubtfully in its synonymy. Esper says regarding his specimens of the species: "Es kommt diese Koralle von den ostindischen Meeren; ich habe sie gleichfalls durch die Güte des Herrn Prediger Chemnitz, mitgetheilt erhalten." It appears that Chemnitz had specimens from both the Atlantic and the Indo-Pacific and that he gave numbers of them to Esper. Apparently in some instances the locality labels were confused, and that this is one of them, for Esper's figures (pl. 79, figs. 1–3) are fairly good for the West Indian and Floridian species to which the specific name intercepta is now applied, and seem to me to represent no other living species of coral with which I am familiar.

The corallum is massive, either subhemispherical or pulvinate in form. The corallites are not protuberant, joined directly by their walls or by costae, in the latter case exothecal disseipements may be present. The diameter of the calices ranges between 2 and 3 mm. Septa in three cycles. Primaries and secondaries bear well-developed pali, by which they are joined to the columella. Tertiaries thin and relatively short. Septal margins subentire or very finely dentate. Columella, a compressed style of nearly the same height as the pali. Endothecal disseipements subhorizontal. thin, average about 0.5 mm. apart.
As this is the type-species of the genus *Stephanocoenia*, the following notes on its finer structure will be repeated, with slight emendation, from my paper on the Eocene and lower Oligocene corals of the United States (1900): The septa are composed of ascending trabeculae; near the wall is a line of divergence. External to this line the trabeculae pass upward and have a slight inclination outward. The trabeculae on the inner side of the line of divergence pass upward and incline inward. The trabeculae are fine, measuring from 0.027 to 0.04 mm. across. A study of the lines of growth across the trabeculae indicate an entire or very obscurely dentate septal margin. The growth segments of the septa are well defined; the distance across one measured along the line of divergence is about 0.32 mm. on an average. The distal ends of the septa do not thicken sufficiently to form a pseudotheca. In places dark centers or a dark band can be seen in the theca between the septal ends; that is, the wall belongs in the euthecal class. In some instances the wall is clearly formed by peripherally placed dissepimenta. The corallites are rather often joined by their costae. In such instances the wall of one corallite is usually formed by dissepiments. There is usually distinguishable a central erect piece, around which the principal septa fuse by their inner margins. In some instances the columella appears to be formed merely by the fusion of the septal margins. In one calice the axis of the columella is vacant, the septal margins having fused around it. The pali in cross section show as thickenings on the inner septal ends. The inner ends of the tertiary septa are free.

The above description should be compared with Felix's description of *Stephanocoenia formosa* (Goldfuss).¹ I should also like to call attention to a statement by Miss Ogilvie, that "it is doubtful if they (*Astrocoenia* and *Stephanocoenia*) are represented in recent seas."² She evidently did not know that the type-species of *Stephanocoenia* is the recent *S. intersepta* (Esper). So if there is any doubt, it is that the genus is found fossil earlier than late Tertiary.

It is astonishing to find the following statement in a recent paper by Felix:³ "Von dieser Art, welche heutzutage in Australischen Meeren lebt, liegen mir zwei examplare vor. Fossil findet sich in dem Pliocänen Mergel von Rangoen auf Java." Such a statement when the species he is discussing is one of the most widespread and best known of those in Pleistocene deposits adjacent to and in the Recent waters of the western Atlantic Ocean, the Caribbean Sea, and the Gulf of Mexico!

**Synonymy.**—Gregory in 1895 gave full references to the literature on this species up to that date, except that he did not place *Stephanocoenia debilis* Duchassaing and Michelotti in its synonym.

While in Turin in 1897 I examined the specimens identified by Duchassaing and Michelotti as Stephanocoenia intersepta and S. michelini. They belong to the same species. It is said of S. debilis: "Bien que les dimensions des calices de cette espèce soient les mêmes que dans la Stephanocoenia michelini, elle s'en distingue pourtant par la muraille, par les cloisons plus minces, et par les palis qui atteignent la hauteur de la columelle." The only character of apparent value is the height of the pali, which are as tall as the columella. The pali and columella are usually of nearly the same height in the species; in areas on some specimens the columella is somewhat taller; in other areas the pali are taller.

I examined Duncan's type of Plesiastraea [later described as Antillassastra] spongiformis and a specimen identified by him as Stephanocoenia intersepta. The corallites of the former are united by their costae, and where the costae meet there is often a second wall outside the true corallite wall. The second specimen had been cut, the larger piece bearing the label Stephanocoenia intersepta; the smaller piece, which fits into the larger, was labeled Plesiastraea spongiformis. Duncan, it seems, could not distinguish between the two. I agree with Gregory in placing Plesiastraea spongiformis in the synonym of Stephanocoenia intersepta.

Plesiastraea godei Verrill, fragment of the type No. 36497, U.S.N.M., is precisely the same as Stephanocoenia intersepta—there are no differential characters.

Distribution of Stephanocoenia intersepta.—Just how old, geologically, this species is, is not definitely known.

Jamaica.—There is a specimen in the United States National Museum bearing the station number 2580, which is for the collection made by Messrs. J. B. Henderson and C. T. Simpson in the Bowden marl of Jamaica.

Santo Domingo.—Miss C. J. Maury obtained five specimens of this much-named species, as follows:

Rio Gurabo: Zone D, associated with Stylophora affinis Duncan, Madracis decactis (Lyman), Pocillopora crassoramosa Duncan, Orbicella limbata (Duncan), Orbicella cavernosa var. cylindrica (Duncan), Syzygophyllia dentata (Duncan); zone E, associated with Placocystthus new species, Placocystthus variabilis Duncan, Stylophora new species, Madracis decactis (Lyman), Syzygophyllia dentata (Duncan), Pavona new species. Limestone, Los Quemados, associated with Placocystthus variabilis Duncan. As zones I and H of Miss Maury's section represent the Bowden fauna, zones E and D are stratigraphically above the Bowden.

Cuba.—I collected a specimen near the Morro, at the mouth of Santiago Harbor, altitude about 240 feet above level. This specimen may be of Pleistocene age. The general basement country rock is

37149—19—Bull. 103—12
Miocene limestone and marl, which contain some corals of reef facies; and on this basement there are in places well-developed Pleistocene coral reefs. Therefore, the specimens of *Stephanococenia intersepta* might be of Miocene age. Other specimens from stations 3436 and 3449, south side of the trocha in Santiago, seem definitely to belong in the La Cruz marl and to be of pre-Pleistocene age.

Doctor Pittier obtained a specimen of the species at the "Colline en démolition," Limon, Costa Rica, apparently in association with *Asterosmilia hilli*, *Dichocoenia tuberosa*, and *Balanophyllia pittieri*. The horizon would therefore be near that of the Bowden marl.

**Pleistocene.**—General in the elevated reefs of the Caribbean and Gulf region: Barbados (low-level reefs); Curacão and Arube; Key Vaca, Florida.

**Recent.**—The West Indies in general, northward to the Bermudas; Florida; British Honduras.

Although I have often picked up specimens of this species where they had been washed up by the waves, both in Florida and in the Bahamas, I have not certainly seen it alive on the reefs. As the color of the living polyps is brown, while alive it so closely resembles *Siderastrea radians* that only very close examination will distinguish between them, probably on the reefs it was mistaken for the latter. That it is a common associate of the usual West Indian reef corals is shown by its usual presence among them in the fossil reefs. This species ranges into slightly deeper water than most of the West Indian reef corals. I dredged it at a depth of 4–9 fathoms off Nassau, Bahamas, and at a depth of 16 fathoms off Tortugas, Florida.

**Genus DICHOCOENIA** Milne Edwards.


**Type species.**—*Dichocoenia porcata* Milne Edwards and Haime.

**DICHOCOENIA TUBEROSA** Duncan.

Plate 79, figs. 4, 4a, 4b.


This name has been placed in the synonymy of the living *Dicho-
coenia stokesii* Milne Edwards and Haime by both Gregory ¹ and myself.² One-half of Duncan’s type is in the United States National Museum, No. 155275, presented by the officers of the Geological Society of London. Although *D. tuberosa* is very similar to *D. stokesii*, *D. tuberosa* has a pendunculate base and granulate costal markings below the calicular surfaces in all the specimens I have

examined. As I am able to recognize the species I am treating it as valid. Duncan records the form from the "Nivajè shale and tufaceous limestone of Santo Domingo."

Localities and geologic occurrence.—Costa Rica, "Colline, en démolition," Limon, No. 618 of H. Pittier collection, associated with Asterosmilia hilli, Stephanocoenia intersepta, and Balanophyllia pittieri. A single, small, immature specimen. The illustrations present its characters well enough to make a detailed description unnecessary.

Santo Domingo, Rio Gurabo, zone F, of Miss C. J. Maury's section, associated with Placocyathus variabilis Duncan and Antillia dubia (Duncan).

Genus EUSMILIA Milne Edwards and Haime.


Type-species.—Madrepora fastigiata Pallas.

EUSMILIA FASTIGIATA (Pallas).

1902. Eusmilia aspera Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 114, fig. 3.

Study of large suites of Eusmilia convince me that Eusmilia fastigiata (Pallas) and E. aspera (Dana) = E. knorri M. Edwards and Haime are not specially separable, as there is great variation and complete overlapping in the columellar characters by which they were distinguished.

Localities and geologic occurrence.—Canal Zone, Pleistocene at stations 5549, Mount Hope; Costa Rica, 6251, Monkey Point, collected by D. F. MacDonald.

General in the living and Pleistocene coral reefs of Florida, the West Indies, and the Caribbean coast of Central America.

Family ASTRANGIIDÆ Verrill.

Genus CLADOCORA Ehrenberg.


Type-species.—Caryophyllia cespitosa Lamarck.
Cladocora arabscula (Le Sueur).

1820. Caryophyllia arabscula Le Sueur, Paris Mus. Mém., vol. 6, p. 275, pl. 15, figs. 2a-2d.

This species is common in the Pleistocene marls near Colon.

Locality and geologic occurrence.—Canal Zone, station 5850 and 6039, Pleistocene, Mount Hope, collected by D. F. MacDonald. Living in Florida and the West Indies on reef flats and in water from 8 or 9 to about 20 fathoms deep.

Family Orbicellidae Vaughan.

Genus Orbicella Dana.


Type-species.—Madrepora annularis Ellis and Solander.

Of this perplexing genus of corals, the following species and varieties are treated as valid in the present papers:

*Orbicella annularis* (Ellis and Solander).

- **limbata** (Duncan).
- **imperatoris**, new species.
- **altissima** (Duncan).
- **antillarum** (Duncan).
- **cavernosa** (Linnaeus).
  - var. **endothecata** (Duncan).
  - var. **cylindrica** (Duncan).
- **aperta** (Verrill).
- **bainbridgensis**, new species.
- **costata** (Duncan).
- **canalis**, new species.
- **tampæensis**, new species.
  - var. **silecensis**, new variety
- **brevis** (Duncan).
- **insignis** (Duncan).
- **intermedia** (Duncan).
- **gabbi**, new species.

As synonymy is discussed on subsequent pages, it is here only necessary to say that under the name *Astraea megalaxona*¹ Duncan described from Antigua a silicified coral which is not determinable; that his *Astraea crassolamellata*² and its varieties are here referred to

---
² Idem., p. 412, pl. 13, figs. 1-7.
the fungid genus *Diploastrea* Matthai; his *Astraea cellulosa* \(^1\) is made the type-species of a new genus, *Antiquastrea*, and his *Astraea antiquensis* \(^2\) and *Astraea tenuis* \(^3\) are referred to the fungid genus *Cyathomorpha* Reuss.

Although inadequacy of information regarding four species, *O. altissima*, *O. antillarum*, *O. insignis*, and *O. intermedia*, described by Duncan, renders the preparation of an adequate synoptic table impracticable, an attempt will be made to summarize the most striking characters. With one exception, the species fall into two larger groups: the members of the first group normally have only three cycles of septa; those of the second group have four cycles, the fourth cycle is incomplete in some specimens, while in other specimens a variable number of quinary septa are present. One species, *Orbicella gaffi* Vaughan, has five cycles of septa.

**Synopsis of American Species of *Orbicella*.**

*Species with 3 cycles of septa.*

Calices usually 2 to 3 mm. in diameter; costae subequal; primary and secondary septa equal, extend to the columella............. 1. *O. annularis* (Ellis and Solander).

Calices 3 to 4 mm. in diameter; costae usually alternately large and small; secondary septa thinner than the primaries, but usually reach the columella.

2. *O. limbata* (Duncan).

Calices 3.5 to 5 mm. in diameter; costae prominent, thin; secondary septa usually about half as long as the primaries, terciaries small and thin.


Calices 7.5 mm. in diameter; costae tolerably developed, subequal; primary and secondary septa subequal, extend to the columella... 4. *O. antillarum* (Duncan).

*Species of *Orbicella* with the 4th cycle of septa nearly or quite complete.*

Calices 5 mm. in diameter; costae unequal, thicker than the septa, last "order" \(^7\) of costae well developed, contrasting with rudimentary septa; septa irregular in arrangement, 38 in number, 6 septa in each of 6 systems. 5. *O. altissima* (Duncan).

Calices from 5 to 11 mm. in diameter; costae correspond to all septa, usually subequal; separt normally in 4 complete cycles, subequal over top of wall, first 3 cycles reach columella, no pali................................. 6. *O. cavernosa* (Linnaeus).

Costae strongly alternating in size, fourth cycle small and thin without obvious corresponding septa.................. 6a. var. *endothecata* (Duncan).

Corallites smaller than in 6a (5 to 6 mm. in diameter), about 38 septa, last cycle of costae rudimentary or obsolete........ 6b. var. *cylindrica* (Duncan). Similar to *O. cavernosa* except that the first three cycles of sepa are thinner and taller, strongly contrast in height with the quaternaries... 7. *O. aperta* (Verrill).

Calices 6 to 7 mm. in diameter; costae low, equal; septa low and subequal on mural summit; primaries and seconaries with rather wide erect, paliiform lobes, youngest septa composed of incompletely fused spines.


Calices 7.5 to 8.5 mm. in diameter; costae highly developed, alternate in size except at calicular margin; separta normally in 4 cycles, thin except in wall of some specimens, paliiform lobes and thickenings distinct but rather small, terciaries usually shorter than secondaries......................... 9. *O. costata* (Duncan).

---

\(^1\) Geol. Soc. London Quart. Journ., vol. 19, p. 417, pl. 13, fig. 10.

\(^2\) Idem, p. 419, pl. 13, fig. 8.

\(^3\) Idem, p. 421, pl. 13, fig. 11.
Calices 5 to 9 mm. in diameter; costae subequa1 or alternatingly large and small below calicular edge. Septa in 4 or nearly 4 complete cycles; primaries as a rule notably larger than the secondaries, with a prominent tooth on inner end; secondaries smaller, but with paliform tooth on inner end of each; tertaries still smaller; quaternaries very small. 10. O. canalis, new species.

Calices 6 to 10 mm. in diameter, exsert 4 to 4.5 mm.; costae very prominent, no or only rudimentary costae correspond to last cycle of septa; septa in 3 or 4 sizes, margins of primaries exsert as much as 1.5 mm... 11. O. tampáensis, new species.

Calices not so elevated as in 11; small but distinct costae correspond to last cycle of septa. 11a. var. silecensis, new variety.

Calices 5 mm. in diameter, protuberant but rather low; costae strongly alternating in size; primary septa the largest; fourth cycle incomplete 12. O. brevis (Duncan).

Calices 10 mm. in diameter; costae long, slender, subequa1, occasionally a rudimentary costa with no corresponding septum; septa delicate, long, slender, distant, fourth cycle incomplete. 13. O. insignis (Duncan).

Calices 5 mm. in diameter; in places small costae between larger ones; a few quaternary septa. 14. O. intermedia (Duncan).

The numbers preceding the names in the synopsis correspond to numbers before the names heading the following descriptions.

As Orbicella gabi is the only species with 5 complete cycle of septa, it needs no special caption nor is O. irredivus included in the key.

1. ORBICELLA ANNULARIS (Ellis and Solander).

Plate 80, figs. 7, 7a, 7b; plate 81, figs. 1, 1a, 2; plate 82, figs. 1, 1a, 2; plate 83, figs. 1, 2, 3, 3a; plate 84, figs. 1, 2, 3, 3a.


1863. Astrea barbadensis Duncan, Geol. Soc. Lond. Quart. Journ., vol. 19, pp. 441 and 444, pl. 15, figs. 6a, 6b.
1902. Orbicella annularis Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 94, pl. 15, fig. 1.
1902. Orbicella annularis var. stellulata Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 96, pl. 15, fig. 2.
1902. Orbicella hispidula Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 100, pl. 15, figs. 3, 3a, 3b.
1903. Orbicella annularis Duerden, Nat. Acad. Sci. Mem., vol. 8, p. 564, pls. 8–10, figs. 64–73.

Subsequent study has led me to believe that changes should be made in the synonymy as given in the first of my papers cited in the synonymy. Phyllococenia limbata Duncan, P. limbata var. tegula Duncan, and Plesiastastra ramea Duncan represent one species and it is separable from Orbicella annularis. As Phyllococenia limbata is the older name, the species should be designated Orbicella limbata (Duncan). The most conspicuous difference between it and O. annularis consists in its primary septa being markedly more developed than the secondaries.

Orbicella annularis is the principal coral of the outer reefs in Florida, the West Indies, and on the Caribbean side of Central America. It is general in the elevated Pleistocene of the same region.

Prof. J. Graham Kerr, of the University of Glasgow, has kindly sent me photographs of the type of this species, which is preserved
in the Hunterian Museum at that institution, and I have based the following description on them:

The corallum is head-shaped, with a greater diameter of 107 mm. and a lesser of 86.

The calices are circular, 2 mm. in diameter, margins slightly elevated, joined by equal costae, distance apart usually about 1 mm., occasionally 2.

Septa 24 in number, alternately larger and smaller; the larger are rather thick and reach the columella; the intermediate ones are short and their inner ends are free.

Columella spongy, well developed, its diameter about one-third that of the calice.

A comparison of the photographs with specimens shows that the traditional *Orbicella annularis* of the Caribbean and Gulf region is correctly identified.

There are in the collection of the United States National Museum a number of specimens that are almost duplicates of the type-specimen, except that they are not worn, as is the type. These specimens form the basis of the succeeding description (see pl. 81, figs. 1, 1a).

The corallum forms rounded masses rising above a rather large, firmly attached base, which is, however, less in diameter than the maximum diameter of the corallum. Frequently there is a projecting or incrusting edge whose lower surface is covered by epithea. The upper surface may be uniformly rounded, undulate, or lobed. The size, of course, is variable; the masses may be several feet in diameter.

The calices are circular, or slightly deformed. Their diameter, measured between thecal summits is from 2 to 2.5 mm. In depressions on the surface they may be smaller, about 1.5 mm., but these are abnormal. Their edges are from 0.5 to almost 2 mm. apart, about 1 mm. is probably an average. The calicular edges are slightly elevated. The intercorallite areas are costate. Costae correspond to all septa; subequal or alternating in size, those of adjoining calices meeting; edges dentate; thicker than the width of the intercostal spaces and moderately elevated.

Septa in three complete cycles, primaries and secondaries equal, rather stout, extending to the columella and fusing to it; secondaries shorter, about half the length of the primaries, somewhat thinner, inner edges free. Margins of the primaries and secondaries decidedly exsert; their inner edges fall perpendicularly to the bottom of the calicular fossa, and bear just above the columella one or two prominent teeth, with a few smaller teeth above; the septal arch is either very gentle, obtuse, or it may be truncate, its dentations fine; the outer margins steep, but more inclined than the inner, dentations relatively coarse. Septal faces finely granulate; in longitudinal sections, the inner edges are lacerate, the last cycle with perforations.
Endothecal dissepiments delicate, thin, nearly horizontal, slightly inclined downward from the corallite walls. In this series of specimens the corallite walls are thick and close together, those of adjacent corallites sometimes being solidly fused together; usually, however, there is some exotheca, consisting of stout, subhorizontal dissepiments.

Columella well developed, formed by interlacing processes from the inner edges of the septa; diameter from one-third to one-half that of the calice; its upper surface about 1 mm. below the thecal margin.

These specimens, it should be repeated, are typical, and except in size and to a certain extent in the configuration of the surface show almost no variation. They come from the following localities: Dry Tortugas, Florida, Dr. Edward Palmer, collector, 8 specimens; east end of Hog Island, Bahamas, B. A. Bean, collector, 1 specimen; Florida and the Bahamas, many specimens, collected by T. W. Vaughan and others. There are other specimens, bearing the indefinite label “West Indies” or having no locality stated. These localities indicate that the species in its typical form is of general occurrence in the coral reef areas around the Caribbean Sea and Gulf of Mexico.

The recent specimens in the United States National Museum show at least four kinds of variation from the typical form.

Variation No. 1 (pl. 84, fig. 2).—This variation is, I believe, only a growth form. It, in its structural features, is the same as the typical form, except that the septa near the growing edge are less exsert and the exotheca appears to be absolutely solid. The corallum is an obtuse, compressed column, with an undulated surface. Greater diameter of the base, 62 mm.; lesser 52 mm.; height 72 mm.

Locality.—Dry Tortugas, Florida.

Variation No. 2 (pl. 81, fig. 2).—The general growth form is similar to that of typical specimens, except that the surface is thrown into gibbosities of irregular shape and size; these are often about a centimeter in height and several centimeters in diameter. The calices are larger than in the typical specimens, often measuring 3, occasionally 4 millimeters in diameter, between thecal summits. The thecal edges are slightly elevated; the margins of the primaries and secondaries decidedly exsert, not infrequently standing 2 mm. above the intercorallite furrow. The three characters here mentioned are the distinguishing ones of this variation, namely, gibbosities on the surface; larger calices; and more exsert septa.

Localities.—Dry Tortugas, Florida, Dr. Edward Palmer, collector, 1 specimen; east end of Hog Island, Bahamas, B. A. Bean, collector, 1 specimen; and two other specimens, without locality labels.
Variation No. 3 (pl. 82, fig. 2) is represented by a single specimen. The corallum is discoid, lower surface flat, upper surface convex, some irregularities. Greater diameter, 22.7 cm., lesser, 19.2 cm; thickness in the center about 5 cm., on the edge, 3 cm.

Calices with elevated margins and crowded together, the different corallite walls almost contiguous; margins of primary and secondary septa decidedly exsert. Diameter of calices about 2.75 mm.

The distinguishing characters of this variation are its discoid form, its crowded calices, its decidedly exsert septal margins.

Locality.—Fort Taylor, Key West, Florida.

Variation No. 4 (pl. 82, figs. 1, 1a) is represented by the specimens that I have described from Mayaguez, Porto Rico, in my "Stony corals of the Porto Rican waters." 1 The following description is based on them:

The corallum forms ascending masses; the largest specimen is about 20 cm. tall; diameter above flared-out base about 13.5 cm. The base of each specimen is considerably produced as a wide, free edge invested below by epitheca.

Calices with very slightly or only moderately elevated margins, diameter measured between thecal summits, from 3.25 to 4 mm.; rather shallow; distance apart, from a thin dividing edge to 2.5 mm.; about 1.5 mm. is probably the average. Thin costae moderately prominent, subequal, or alternating in size, correspond to all septa; those from one calice extend across the intercorallite spaces and meet those from the adjacent calices.

Septa thin, 24 to 28 in number, one-half of them extend from the wall to the columella, and have decidedly exsert margins; the other half are not so tall and are short, their inner ends free.

Endotheca and exotheca as in the typical specimens, except that they are more delicate.

These differ from typical specimens by their much lighter texture, which, of course, is determined by their thinner skeletal structures, the wide, flaring, free edges of the base, and their larger calices. The calices overlap in size those of variation No. 2, otherwise I should consider the specimens as representing a distinct species.

Variation No. 5 (pl. 83, figs. 1, 3, 3a).—Orbicella hispidula Verrill. 2 The following is the original description:

Coral an incrusting mass over 125 mm. across, and from 5 to 20 mm. thick. The texture is rather solid and heavy, there being much solid exotheca between the calices, which are rather far apart, the interspaces being mostly equal to, and often exceeding, their diameter.

The calices are round, regularly stellate, a little prominent, with swollen, sloping, costate rims much as in those of O. annularis, which they resemble in size, though distinctly larger. The septa are in three very regular cycles; the twelve principal

---


2 Conn. Acad. Arts and Sci. Trans., vol. 11, pp. 100, pl. 15, figs. 3, 3a, 3b.
ones are wide, nearly equal, all reaching the rather large columella; their edges are perpendicular and finely, sharply serrate, with slender, rough teeth, which extend also over their prominent, obtuse, or subtruncate summits, giving them a rough appearance under a lens; their surfaces are also rough or hispid with numerous conical grains. The septa of the third cycle are narrow, straight, and usually reach about halfway to the columella.

The costae are thick, not very high, meeting or inosculating between the calicles, and covered with a single row of small, slender, rough spinules. The columella is well developed, formed of contorted trabecular processes and often having a small pit in the center and a few erect spinules, similar to the slender, rough, paliform teeth that often (but not regularly) stand at the base of some of the 12 larger septa.

In sections the walls are very thick and nearly solid. The endothecal dissepiments are small, thin, irregularly convex or flat above. The calicles are not filled up below, or only slightly encroached upon, by a deposit between some of the septa. Diameter of the calicles 3 to 3.5 mm.; distance between them mostly 2 to 4 mm., often more.


This has the general appearance of O. annularis, but with calicles larger than usual and decidedly farther apart. The walls and exotheca are much thicker and more solid, and the endothecal cells are fewer and less regular. The sharply spinulose and hispid septa and costae are also characteristic. The exothecal deposits are nearly as solid as in Oculina.

A Nassau specimen, in the American Museum, is an irregular, rounded mass about 5 inches in diameter, and 3 to 4 thick, with a a lobulated surface. The coral is heavy and solid; the surface of the coenenchyma is spinulose; the costae well developed. The calicles are more variable in size than in the type, in some places being one-half smaller and closely crowded. Coll. R. P. Whitfield.

The form of O. hispidula Verrill, in which the upper surface is lobulate, is common on the reef off Cocoanut Point, Andros Island, Bahamas, where a suite of 12 specimens was obtained by the Anton Dohrn expedition in 1914. The calicles of most of these specimens are precisely as in the type of Professor Verrill's O. hispidula (fragment of type No. 40476, U.S.N.M.) and Gregory's Echinopora franksi (fragment of type No. 156455, U.S.N.M.), but in both growth form and calicular characters there is intergradation with the more usual characters of O. annularis. Plate 76, figures 3, 3a illustrates the appearance of one of the specimens with lobulate surface.

A specimen from Port Castrics, Santa Lucia (pl. 83, fig. 2), shows a variation worthy of note. In all of the variations so far described, the primary and secondary septa are constantly subequal, uniformly reaching the columella. In the Santa Lucia specimen a secondary septum in some systems is shorter and thinner than a primary; and in some calicles there are as many as 30 septa. This specimen is of importance for comparison with Phyllocoenia sculpta var. tegula Duncan and Echinopora franksi Gregory.

These remarks cover the variation of the recent specimens that I have actually been able to study. Pourtalès, Verrill, and Duerden, however, have added other observations.
Pourtales says of the species:

The same remarks about variation, given under the head of *O. cavernosa*, can be applied to this species; there are very fine examples in the museum of the great variation of form of the calices in the same specimen.

It is very common in Florida on the reef and in the channels, and forms large hemispherical masses nearly up to low-water mark. The central and highest part often dies out from being left uncovered at very low tide and the mass then assumes an annular form through the decay of the dead part. 1

Verrill writes:

It shows considerable variation in the size of the calices; in the extent to which they are crowded together; in the prominence of their borders above the intervening exothea; in the prominence of the septa above the walls; and in the extent to which the small septa of the third cycle are developed. But yet these variations, so far as I have seen, never go so far as to render difficult the recognition of the species unless the specimens are badly worn.

* * * * *

When well grown it forms hemispherical or spheroidal masses, up to 5 feet or more in diameter. But it also grows in irregular incrusting plates, and sometimes in nodose or lobulate masses, or even in branched forms. 2

Duerden, in describing specimens from Jamaica, says:

The species occurs on coral areas in small or large, fixed, nearly spheroidal masses; also as an incrustation occupying areas several feet across. Small isolated colonies are sometimes conical. In places it is an important constituent of the reefs. 3

This is one of the species to which I devoted a great deal attention in my study of the living reefs in Florida and the Bahamas, and have inserted references to two of my papers (1915, 1916) in which it is considered. It is preeminently the great reef-building species of the Pleistocene and Recent reefs in Florida and the West Indies. Where there is sand on the bottom, it forms tall, thick, round-topped columns.

**VARIATION OF FOSSIL SPECIMENS.**

There are specimens, particularly those of known Pleistocene age, similar to the typical form of the species, except that there may be variations in the size of the calices; those of a specimen from Fort Nassau, Curaçao, range from 3 to 4.5 mm. in diameter, measured between thecal summits; those of another specimen from Westpunt, Curaçao, are from 2.5 to 3 mm. in diameter. The former possesses the largest calices of any specimen of the species I have seen.

The variations not included in the preceding remarks may be divided into two classes, dependent upon growth—namely, a, explanate or incrusting; b, columnar.

A. Growth from explanate or incrusting.

Gregory was mistaken in referring the specimens described by him as *Echinopora francisi* (see pl. 84, fig. 4) to the genus *Echinopora*. The following is the original description:

**Diagnosis.**—The coral has a broad base; from this pass outward short, thick, rapidly tapering expansions.

Corallites long, often an inch in length. Their distance one from the other varies from half their diameter to the whole.

Septa strongly dentate; inner teeth paliform, in three cycles. Those of the first cycle always unite to the columella; those of the second cycle often do so, but may join the primary septa; those of the third cycle are much smaller and independent, but a few may unite with the septa of the other orders.

Columella of very loose tissue; half the diameter of the corallite. Endotheca scanty. Coenenchyma thinner than in other species of the genus. Echinulations of the surface coarse. Epitheca thick and well developed.

**Dimensions.**—Diameter of an average corallite, 3 mm.; height of corallite varies from 10 to 25 mm.; thickness of wall varies from 1½ to 3 mm.

**Distribution.** Recent: West Indies. Fossil: Barbados: Lowlevel Reefs, near Bridgetown.

**Cotypes.**—British Museum (Natural History); a piece of one of the cotypes in the United States National Museum, No. 156,455.

A comparison of this description with the notes on the variation of *Orbicella annularis* will show that it presents no important difference from variations of the species already recorded. Its growth form is expletative, the exotheca is solid, and the secondary septa often, but not always, reach the columella.

B. Growth from columnar (pl. 84, figs. 3, 3a.)

These are the specimens referred to in my paper "Some fossil corals from the elevated reefs of Curacao, Arube, and Bonaire," obtained by Mr. v. Koolwijk at Westpunt, Curacao. Three of the specimens are in the United States National Museum, and they form the basis of the following description:

The corallum forms ascending, compressed, obtuse columns.

**Dimensions in millimeters of variant of *Orbicella annularis* from Curacao.**

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Greater diameter of base, mm.</th>
<th>Lesser diameter of base, mm.</th>
<th>Height, mm.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37.5</td>
<td>25</td>
<td>60</td>
<td>Bifurcation 32 mm. above base.</td>
</tr>
<tr>
<td>2</td>
<td>30†</td>
<td>23</td>
<td>71</td>
<td>Constricted, above base; gradually enlarging above the constriction.</td>
</tr>
<tr>
<td>3</td>
<td>27.5</td>
<td>21</td>
<td>91</td>
<td>Figured, pl. 84, figs. 3, 3a.</td>
</tr>
</tbody>
</table>

Calices 2.5 to 3.5 mm. in diameter; from less than 1 mm. to 2 mm. apart. The upper margin is usually not elevated, while the lower one is, thus tilting the calicular orifices. The maximum length of the lower limb of the calice is about 3 mm. Subequal, relatively thick, dentate costae correspond to all septa.

1 Geol. Soc. London Quart. Jour., vol. 51, p. 274, pl. 11, figs. 2a, 2b, 1895.
The usual number of septa is three complete cycles; primaries and secondaries subequal, reach the columella; tertiaries short, inner edges free. The septa present only one noteworthy difference from what is usual in *O. annularis*: that is, the margins of the primaries and secondaries are less exsert.

Columella not very large, loose, trabecular.

The three salient characteristics of this variant are (1), its growth form; (2), the tilted calices; (3), the lower (less exsert) margins of the primary and secondary septa.

Geologic horizon.—Pleistocene.

NOTES ON SYNONYMY.

A number of other names need to be considered in greater or less detail.

Gregory 1 applied the name *Orbicella acropora* (Linnaeus) to this species. He accepted the determination of the species by Milne Edwards and Haime, 2 who separated it from *O. annularis* by its having no septa corresponding to the last cycle of costae. Gregory showed that occasionally in typical specimens of *O. annularis* the last cycle of septa may be absent while the costae are present, thus breaking down the character used by Milne Edwards and Haime to distinguish the species. I accepted Gregory's conclusion, and followed him in my paper on Some fossil corals from the elevated reefs of Curacao, Arube, and Bonaire, and subsequent papers. Professor Verrill, in his Variations and Nomenclature of Bermudian, West Indian, and Brazilian reef corals, 3 declares that *Madrepora acropora* Linnaeus "is utterly indeterminable," and takes the next later specific name, *annularis* Ellis and Solander, for the species. Subsequent study convinced me that Professor Verrill is right, and I published my change of opinion in a paper on Some recent Changes in the Nomenclature of West Indian corals. 4 Therefore, I now believe that *Madrepora acropora* Linnaeus should be considered as undeterminable and that the name should be dropped from coral nomenclature.

The type-specimen of *Madrepora favolata* Ellis and Solander is preserved in the Hunterian Museum of the University of Glasgow, where I have seen it, and Prof. Graham Kerr has kindly sent me a photograph. It is a worn specimen, considerably infiltrated with calcium carbonate, and is probably the same as *Orbicella annularis*.

*Astraea* (*Orbicella*) *stellulata* Dana has been carefully redescribed by Professor Verrill from Dana's types, which are preserved in the Yale University Museum. The following is his description:

They 5 are beach-worn specimens of a true *Orbicella*, more or less infiltrated with calcium carbonate, to which the unusual solidity of the walls and exothca, in some

---

5 Conn. Acad. Arts and Sci. Trans., vol. 11, p. 95, pl. 15 ,fig. 2, 1902.
parts, as seen in sections figured by Dana, seem to be partly due. In other parts the structure is nearly as in _O. annularis_, to which it probably belong, though there are differences in the sections not due to infiltration. Its septal arrangement is the same as in ordinary specimens of the latter, those of the third cycle being distinct, but narrow and thin. The borders of the caliciles seem to have been but little raised, and the septa rather thinner than usual, and not much exsert, but the poor condition of the specimens renders these characters rather uncertain.

The caliciles are rather smaller (2 to 2.5 mm. in diameter) than is usual in _O. annularis_. The thin septa are in three regular cycles; those of the third cycle are very thin and reach only one-fourth or one-third to the columella, which is well developed. The septa are a little thickened at the wall; their faces are only slightly granulated. There are a few, irregular, small teeth on their inner edges where best preserved; upper ends are all worn off; some have a paliform tooth at the base. The costae are well developed, inosculating, with irregular exothecal dissepiments between them, as in _O. annularis_. But in some vertical sections the walls appear as narrow, solid structures (where unaltered); in the sections the columella region is loosely filled with stout ascending trabeculae; the endothea consists of small, very thin, nearly horizontal dissepiments, inclining downward a little, and often in two series. No. 4266.

Their origin is uncertain, but it appears to be West Indian. They are in the same beach-worn state as several other types of West Indian corals studied by Professor Dana. Apparently most West Indian corals, in good condition, were scarce in American museums at the time when he wrote his great work.

It appears to be a small or somewhat dwarfed variety of _O. annularis_. I have seen fresh specimens of a similar variety from the Florida reefs.

This may well be identical with _M. stellulata_ Ellis and Solander, but the latter can not be determined with any certainty from the figure, which represents a badly worn specimen. Its caliciles, as figured, are mostly even smaller than in Dana's type, and somewhat unequal in size; the walls appear to be as solid as in the latter; the caliciles project slightly as in _annularis_; 12 to 15 septa are figured, all perfect; columella is as in _annularis_. There is much more reason for calling this a variety of _O. annularis_ than there is for identifying it with _Solenastrea hyades_, as Gregory has done. There is no evidence that it is a _Solenastrea_.

Fortunately Dana's _Oribicella stellulata_ is a synonym of _O. annularis_ and is not even of varietal importance. Professor Verrill says, "This may well be identical with _M. stellulata_ Ellis and Solander," an opinion from which I emphatically dissent. The figures of Ellis and Solander are of a _Solenastrea_ (Nat. Hist. Zooph., pl. 53, figs. 3, 4); the costae do not continue from one calice to those of adjacent calices, and the exotheca, as is shown by the side of figure 3, is typical of _Solenastrea_. Furthermore, in the description of the species it is stated, "interstitiis planiusculis scabrioribus," the intercorallite areas are not "radiate" as in _annularis_. The _Heliostreaca stellulata_ of Milne Edwards and Haime (see pl. 80, figs. 7, 7a, 7b) is not the _Madrepora stellulata_ of Ellis and Solander; it is probably the same as _Oribicella annularis_.

There is much doubt about the _Cyphastraea oblita_ Duchassaing and Michelotti. The following is the original description:

Espèce arrondie, avec des étoiles arrondies et à bord un peu élevé: côtes rares, presque confondues; les intervalles de l'une à l'autre étoile sont garnies de granulations; la columelle est grande et papilleuse.
La Cyphastrea oblita a les bords moins élevés, et les cloisons plus débordantes que celles de la Cyph. microphthalma qui sont aussi garnies d'une petite dent subpalière qui manque dans la Cyph. oblita. St. Thomas.

I found in the Museum of Natural History at Turin a specimen labeled "Cyphastrea oblita." It is a specimen of Orbicella annularis. Another specimen bearing the same label, seen in the Muséum d'Histoire Naturelle at Paris, is a Solenastrea. The latter is a rounded head with a greater diameter of about 130 mm. The calices range in diameter from 2 to 3 mm.; distance apart from somewhat less to slightly more than 1 mm., occasionally 2 mm. Margins of the calices marked by a slightly raised rim. Costae insignificant, occasionally extending from one calice to the next. Septa in three complete cycles, primaries and secondaries reaching the columella; tertiaries shorter, with inner edges free, i.e., not fused to the sides of a lower cycle. Pali variable in development; in some calices they are large, flattened above, before all septa except the last cycle; in others, several teeth indicate the position of a palus. Columella, lax and papillary. This specimen is the same as the Heliacraea abdita Duchassaing and Michelotti.

The original description of Cyphastrea oblita is not adequate for identification. One of the specimens from the Duchassaing and Michelotti collection is Orbicella annularis, the other the same is their own Helianstraeababdita. Because the Paris specimen is probably the type I am placing the species in the synonymy of Solenastrea bourboni M. Edwards and Haime (see p. 400).

Heliacraea rotulosa Duchassing and Michelotti is a growth form of O. annularis, judging by the description. I did not find the type in Turin.

The specimens determined by Duchassing and Michelotti as Heliacraea acropora (Linnaeus) and H. lamarckii Milne Edwards and Haime are, according to specimens bearing those names in the Museum of Natural History at Turin, referable to Orbicella annularis.

The type of Duncan’s Cyphastrea costata from Barbuda is preserved in the Geological Society of London, and I studied it there. The specimen shows no noteworthy variation from the usual Orbicella annularis, except that its calices are from 3 to 4 mm. in diameter, usually 3.5 mm. Another specimen, from Santo Domingo, labeled Cyphastrea costata is a Solenastrea. The specimens determined by Gregory as C. costata were studied in the British Museum of Natural History; they are O. annularis.

Astraea barbadensis Duncan is a specimen of O. annularis from the Pleistocene reefs of Barbados.

1 Illustrations of this specimen have been published by me in U. S. Geol. Surv. Prof. Pap. 98–T, pl. 99, figs. 3, 3a, 1917.
Gregory refers *Heliastraea altissima* Duncan to the synonymy of this species, but I doubt the correctness of his conclusion and am treating it as valid.

**Geologic distribution.**—Pleistocene and Recent, throughout the elevated reef areas of the West Indies, eastern Central America, and Florida.

Duncan has listed *Astraea barbadensis*, one of the synonyms of *O. annularis*, from the "marl formation" of Antigua, remarking that it is "greatly altered by fossilization; the calicular surface is subplane, and the calices are seen as prominent columnar casts." Should Duncan's identification be correct, the geologic range of *O. annularis* extends from Oligocene time to the present. Mr. R. T. Hill obtained in Antigua a silicified specimen that looks like *O. annularis*, but I am not sure that it is that species.

Costa Rica, station 4269, Port Limon, collected by Doctor Wailes in beds referred to the Pliocene. There are three dissociated coral-lites which have the general characters of *Orbicella annularis*, but are not absolutely typical, for the primary septa are appreciably but not strikingly thicker than the secondaries. They are, therefore, somewhat intermediate between typical examples of the species and *Orbicella limbata* (Duncan).

**2. ORBICELLA LIMBATA (Duncan).**

Plate 85, figs. 1, 1a, 2, 2a, 2b, 3, 4, 4a.


Original description of *Phyllocoenia limbata*: ¹

Corallum in the shape of *Stylium limbata* Edwards and Haime. Stem large and cylindrical. Coralites numerous, irregularly placed. Calices separated by much coenenchyma, circular and but slightly elevated. Costae covering much surface. Slightly dentate where they approach, and turning aside from those of other calices; they are not continuous, not very prominent, and slightly granular. Septa not projecting far inwards, laminae granular; their upper margin is neither incised nor dentate; in six systems of generally three cycles, though occasionally of four. Pri-

---

mary septa largest. Columella rudimentary. Endotheca abundant. Diameter of calice, with costae, one-fifth inch [5 mm.].

The deficient columella is the only point in which this species differs from *Murella limbata* Goldiuss, which has been determined by Milne Edwards to be a Styloina.

From the yellow shale of San Domingo. Coll. Geol. Soc.

Original description of *Plesiastrea ramea*: ¹

Corallum in glibbous masses or more or less cylindrical processes with irregular swellings. Calices distant. Very slightly exerted, circular, and unequal in size. Septa thick at the wall, thin internally, unequal in size, according to the orders; finely dentate above, but sparsely granular laterally. In six systems of three cycles, with occasionally an additional order in one half of a system. Pali very small. Columella lax, papillated, and small. Fossa moderately deep. Costae well developed, subequal, and marked by three or four dentate projections; they are evidently covered with a fine epitheca, which is not granular; where the epitheca is worn the costae are seen to be smaller, the tertiary being much smaller than the others; all project, however. Exotheca moderately developed and often becoming indurated. Endothecal dissepiments fragile, but horizontal and frequent. Height, some inches; diameter of branches 1 inch, more or less; diameter of corallites four-thirtieths inch [3.3 mm ]; distance between corallites about one-tenth inch [2.5 mm.].

From the silt of the Sandstone plain, San Domingo. Coll. Geol. Soc.

I examined Duncan’s types of *Phyllocoenia limbata* and *Plesiastrea ramea* in the Geological Society of London and made a note that the latter, except that its septa are broken down and the calices have a hollowed-out appearance, is the same as the former.

In my Some fossil Corals from the elevated Reefs of Curacao, Arube, and Bonaire, and my Stony Corals of the Porto Rican waters, I placed in the synonymy of *Orbicella aeropora* (= *O. annularis*), the three names of Duncan, cited above, considering the specimens to which they were applied as growth forms of that species. More detailed studies, subsequently made, have led me to believe that I was mistaken in that course. This coral is very similar to *O. annularis*. However, there appear to be two constant differences—namely, the primary septa within the calices are uniformly thicker and usually longer than the secondaries (this lesser development of the secondaries is not occasional as in *O. annularis* but constant) and small, but distinctly developed, pali occur before the primary and secondary septa.

I have for study one specimen from Duncan’s original material, labeled *Plesiastrea ramea* Duncan, No. 155273, U.S.N.M., kindly sent to the United States National Museum by the authorities of the Geological Society of London (see pl. 85, figs. 1, 1a); 10 specimens belonging to the Museum of Comparative Zoology, 4 specimens collected by Miss C. J. Maury in Santo Domingo, and material obtained by myself near Santiago, Cuba. The first specimen is not in very good condition for study, and does not fit Duncan’s description well. The Museum of Comparative Zoology specimens, however,

fit exactly, omitting the remarks about the costae being covered by epithea. The figures presented on plate 85, figs. 2, 2a, 2b, and 3, are based on these specimens.

*Phyllocoenia sculp'ta var. tegula* Duncan. As I do not find Duncan's description of this coral satisfactory, and as the authorities of the Geological Society of London have kindly sent one of the original specimens to the United States National Museum (No. 155274), (see pl. 85, figs. 4, 4a), I submit the following description:

Corallum, a rather thick folium; the specimen here described is unfortunately broken on all its edges, its original dimensions are therefore unknown. Its present length is 62 mm.; width 40 mm.; greatest thickness, 15.5 mm.; thickness near outer edge 5.5 mm. Base invested with a coarsely wrinkled epithea.

The calicular margins are on the same level as the flat exothecal surfaces, or are very slightly raised. In form the calices are circular or somewhat deformed. Diameter from about 2 mm., to 2.5 by 3.25 mm.; distance apart, from 1 to 3 mm. Intercorallite areas with costae, beaded on the edges, equal or alternating in size, corresponding to all septa, those of one calice meeting those of the adjoining calices.

Septa usually in three complete cycles, primaries and secondaries larger, and usually thicker, than the tertiaries, primaries average larger than the secondaries. All the primaries and most of the secondaries reach the columella.

Columella trabecular.

Locality and geologic occurrence.—Nivajè shale, Santo Domingo, t. Duncan.

Miss Maury obtained specimens in Santo Domingo as follows:

Rio Cana, zone H, associated with *Placocyathus*, new species, *Stylophora granulata* Duncan, *Anullia bilobata* Duncan, *Orbicella bain-bridgensis* Vaughan?; *Solenastrea bournoni* M. Edwards and Haime, *Syzygophyllia gregorii* (Vaughan), and *Siderastrea sidere'a* (Ellis and Solander). Rio Gurabo, zone D, associated with *Stylophora a'finis* Duncan, *Madracis decacis* (Lyman), *Pocillopora crassoramosa* Duncan, *Stephanocoenia intersea'ta* (Esper), *Orbicella cavernosa* var. *cylindrica* (Duncan), *Syzygophyllia dentata* (Duncan); zone not stated, associated with *Pocillopora crassoramosa*, *Thysanus grandis* (Duncan), and *Syzygophyllia dentata* (Duncan).

I collected in 1901 a fine specimen of this species east of La Cruz, at the crossing of the highway from Santiago to the Morro over the railroad, near Santiago, Cuba. Other corals collected there, including *Stylophora* species (probably *S. a'finis* Duncan), *Solenastrea bournoni* M. Edwards and Haime, a species of *Thysanus* (aff. *T. excentricus* Duncan), *Siderastrea siderea* (Ellis and Solander), and *Goniopora*

---

jacobianna Vaughan, indicate similarity in horizon with zone D of the Rio Gurabo section.

3. ORBICELLA IMPERATORIS, new species.

Plate 86, figs. 2, 3, 4, 5.

Corallum forming rounded masses 16 cm. or more in diameter.

Calices in the type-specimen are not much elevated but have a distinct, somewhat raised wall; in other specimens the corallites may project as much as 2.5 to 3 mm. Calicular diameter, 3.5 to 5 mm.; distance between calices, from 2 to 3.5 mm. Corallites joined by prominent, rather thin, distant costae, which correspond either to all cycles of septa or to the primaries and secondaries.

Septa, typically in three complete cycles: the 6 primaries prominent, thicker than the members of the higher cycles, and extend to the columella; the secondaries usually do not reach the columella, only about half as long as the primaries; tertiaries shorter and thinner than the secondaries. The septa are usually distant in the wall. The third cycle of septa is incomplete in some calices; while in large calices a few secondaries may reach or almost reach the columella.

Columella formed by the fusion of the inner edges of the primary septa.

Endotheca well developed as dissepiments. Exotheca well developed between the strong costae, about 3 dissepiments within 1.5 mm.

Localities and geologic occurrence.—Canal Zone, Panama, in the Emperador Limestone, at stations 6015 and 6016, quarries in Empire, and 6017, one mile from Empire toward Las Cascadas, collected by T. W. Vaughan and D. F. MacDonald; station 6256, in the Emperador limestone, 1½ miles south of Miraflores, collected by D. F. MacDonald.

Cuba, station 3450, 4 miles north of the City of Pinar del Rio, and station 3451, one-half mile west of Cienaga railroad station, near Habana, collected by T. W. Vaughan; station 3566, Bejucal, collected by Arthur C. Spencer; station 7544, Rio Yateras, near Guantánamo, collected by O. E. Meinzer. N. H. Darton, collected at station 7664, on the north slope of La Piedra, northeast of Jamaica, which is northeast of Guantánamo, a specimen of Orbicella apparently referable to this species. The calices are rather large, 7 mm. in diameter, and nearly all of the secondary septa reach the columella. It seems very near O. antillarum. The specimens from Ciénaga, Cuba (pl. 86, fig. 5), is illustrated as well as the cotypes from Panama.

Anguilla, stations 6893 and 6967, Crocus Bay, collected by T. W. Vaughan.

Cotypes.—No. 324884, 324902, 324903, U. S. N. M.

Paratype.—No. 324878, U. S. N. M.

This species is distinguished by the small size of its calices, its prominent costae, its 6 long septa, with intermediate septa shorter according to cycle.
4. ORBICELLA ANTILLARUM (Duncan).


This coral was doubtfully referred by me ¹ to the synonymy of Orbicella cavernosa; but, as there is doubt, it is here accorded specific treatment.

Original description.—"A specimen in the form of a rolled flint, found with silicified wood, has the corallum large, tall, probably resembling in shape that of the San Domingan A. exothecata. Corallites close, unequal in size, but quite distinct; the transverse section shows them to be circular in outline. Septa in six systems of three cycles. The primary and secondary septa are nearly equal, and reach to the columella; the tertiary are small and straight; all are slender, wide apart, and very distinct. Costae tolerably developed, subequal. Walls moderately developed, by no means strong. Columella small, and occupying a small space. Endotheca greatly developed, vesicular, and forming cells between the septa. Exotheca well developed; large cells broad, others squarer, with shelving dissepiments. Diameter of the corallites three-tenths inch [7.5 mm.]. The interspaces are filled with opalescent or porcellanous silica; sclerenchyma often destroyed. Coll. Geol. Soc."

Locality.—Montserrat.

Duncan ² lists a coral as Astraea antillarum variety, and makes the following note: "With more distant calices than the type, produced costae, and a less perfect development of the third septal cycle. The exact locality is not known, but the coral, from its mineralogical characters, appears to have been obtained from Antigua. Brit. Mus."

Regarding the apparent absence of a fourth cycle of septa, it will be noted that as they are often very small and may be broken away, something especially likely to occur in worn specimens such as fossils usually are, they may have been present, but were subsequently destroyed. The size of the calices, 7.5 mm. in diameter, suggests the presence of quaternary septa. Additional material from Montserrat is needed to solve the question.

5. ORBICELLA ALTISSIMA (Duncan).


Original description.—"The corallum is very massive and tall, and its upper surface is subplane and wider than the base. The calices

² Geol. Soc. London Quart. Journ., vol. 29, p. 36, pl. 4, fig. 2.
are barely above the common surface, they are circular, but occasionally deformed, and they are slightly unequal in size. The calicular fossa is shallow, and the calicular margins are broader than the septa. The columella is small, distinct, lax, and parietal. The costae are well marked, unequal, and rarely touch, and they are thicker than the septa. The costae of the highest order are well developed, and contrast with their rudimentary septa. The septa are delicate, they are thinner midway than elsewhere, and those which reach the columella have a paliform tooth; they are not exerted, and are only slightly dentate. The septa are very irregular in their arrangement. There are six systems, and in most of them there are three cycles with or without a part of a fourth in one-half of the system, so that there are constantly six septa in a system instead of eight. The endothea is well developed; and the dissepiments are close, stout, and nearly horizontally parallel. The exothea is abundant, forming small cells with arched outlines. Height of corallum 6–8 inches. Diameter of calices two-tenths inch [=5 mm.]."

Locality.—St. Croix, Trinidad.

Gregory¹ places Duncan's *Heliastraea altissima* in the synonymy of *Orbicella acropora* (Linnaeus), without giving his reason. He may be right, but the calices are large for *O. acropora* (here called *O. annularis*), and judging from the presence of quaternary septa it is almost certainly distinct. According to Duncan's figure every other septum reaches the columella, a septal arrangement which is one of the characteristics of *O. annularis*. I did not see the type in London, and think that until it is restudied or additional material has been collected at the type locality, it will not be possible to reach a positive decision as to the validity of the species.

6. ORBICELLA CAVERNOSA (Linnaeus).

Plate 87, figs. 1, 1a, 1b, 1c; plate 88, figs. 1, 2, 3, 3a, 3b.


In my first paper referred to in the synonymy I placed *Astraeae endotheacta*, *Astraeae cylindrica*, and *Astraeae brevis* of Duncan in the synonymy of this species. *A. endotheacta* and *A. cylindrica* now seem to me to deserve varietal recognition and *A. brevis* should be treated as a valid species until additional information concerning it is available. Duncan's *Astraeae antiquensis*, which I doubtfully

placed in the synonymy of *O. cavernosa*, has the general appearance of *Orbicella*, but it is a fungid coral and is referred to the genus *Cyathomorpha*. *Astraea antillarum*, given by me as doubtfully a synonym of *O. cavernosa*, should for the present at least be treated as a valid species.

As so many of the species related to *O. cavernosa* must be considered in this paper, it is desirable to describe all those members of the group found in the American Tertiary formations and now living in the western Atlantic Ocean. The systematic rank of the forms described on the following pages is open to debate, and I wish here to express my recognition of other methods of treatment. As the forms, whether they be designated "species," "subspecies," "variations," or merely "variants," exist, and as they have geographic and geologic significance, they should be discriminated and characterized. In comparison with these desiderata nomenclatorial considerations are of secondary importance.

*Orbicella cavernosa* is so variable that great difficulty has been experienced in constructing an intelligible description. A very interesting specimen, obtained by Prof. J. E. Duerden in Jamaica and presented by him to the United States National Museum, will first be described in detail, as it shows within itself a wide range of variation and indicates the lines of variation of other specimens more constant in their character (see pl. 87, figs. 1, 1a, 1b, 1c).

The corallum is oblong; upper surface convex but not uniformly arched or domed; base epithecate. Length, 25 cm.; breadth, 20 cm.; thickness, 11.3 cm.

The specimen has two different kinds of calices. Those of one kind are rather distant, protuberant, and have subequal, not very tall, thick, dentate costae (pl. 87, fig. 1). The transverse outline is circular or broadly elliptical, diameter between thecal summits 8 mm.; one of the elliptical calices has a greater diameter of 11 mm., lesser about 9 mm. The costae are about 1 mm. tall. The distance apart, measured between the outer costal edges, is from almost contiguous to 6 mm. The free limb of the corallite is subcylindrical and projects between 6 and 7 mm. The calices, as is shown by plate 87, figures 1, 1a, are not uniformly distributed, and vary in size, form, and prominence.

In a fully developed calice there are 48 septa, every other one extending to and fusing to the columella. All the septa, particularly the principals, are rather thick. The margins are dentate, within the calicular cavity, they fall abruptly to the bottoms of the calices, which are 3 to 4 mm. deep, and there the principals extend to the columella. There are septal teeth around the periphery of the columella but they are not in the form of well-developed pali or paliform lobes.
The columella is large, trabecular, with a papillate upper surface; diameter, as much as 4 mm. The columellar elements are rather often twisted and present a whorled appearance.

Endothecal dissepiments rather delicate; exotheca, coarse and very vesicular.

The calices of the other kind (pl. 87, fig. 1a) in their typical development are smaller than those above described, their edges are only slightly elevated, and the septa and costae are decidedly thin and exsert. Diameter of the calices from 5 to 8 mm.; septal margins 2 mm. tall.

The differences between these two kinds of calices are so great that it seems scarcely possible that they could belong to the same species; however, they occur on the same corallum where perfect intergradation can be traced.

Pourtales, as far back as 1871, published the following important notes on this species:

There is considerable variation among the specimens from Florida in the Museum of Comparative Zoology, enough apparently to warrant placing them among the three species mentioned in the synonymy; but by carefully examining the different parts of each specimen, passages from one to the other can be found. Thus young polypids, expanding rapidly laterally and with rather distant polyps, appear at first to differ considerably from strongly convex ones with crowded calices; the costae are larger, flatter, and less sharply denticulate, and the border of the calices less elevated.

The size of the calices, relied on to divide the genus into groups by Milne Edwards and Haime, is a very uncertain character; one specimen has in one part the calices varying from 3.5 to 4 mm., in another from 7 to 8 mm. The same specimen has in some parts the contiguous walls united solidly, with very few or no exothecal cells, in others separated by an abundant cellular exotheca. In worn specimens the last cycle disappears first, for that reason probably Orbicella (Madrepora) radiata Ellis has been characterized by the Milne Edwards and Haime as having but three cycles.

Verrill gives the following description:

Much of the confusion in regard to the name of this species is due to the fact that it was generally described and figured from badly beach-worn specimens by the earlier writers. Such specimens have the septa and calices worn away and the hard exotheca thus becomes prominent around the excavate calices, so as to greatly change the appearance of the coral. Another cause is the rather wide variations in the size of the calices.

The normal or average specimens have the calices about 6 to 8 mm. in diameter, but occasionally a specimen occurs in which part or all of them may be 9-10 mm., or rarely, even 11 mm. in diameter. Sometimes, on crowded parts of large specimens, the diameter may be only 4 to 5 mm. The degree of elevation of the calices is also more or less variable on a single specimen.

The calices may be pretty close together, where crowded, but in other cases they are separated by spaces of 4 to 6 mm. or more. The costae are usually well developed as denticulated, rounded, radial ribs, usually 48 in number.

The septa are generally about 48, arranged in four regular cycles, but several of those of the last cycle are often rudimentary or lacking, reducing the number to 40-44.

1 Mus. Comp. Zool. Ill. Cat., No. 4, p. 76.
2 Trans. Conn. Acad. Arts and Sci., vol. 11, pp. 102, 103, 1902.
They differ in breadth and thickness according to the cycles; those of the last cycle are very thin and often bend toward and join those of the third cycle. The principal septa are exsert, denticulated, and thickened at the wall. The columella is usually well developed and broad. The paliiform teeth are distinct, but not very prominent. It sometimes forms hemispherical masses 4 to 5 feet or more in diameter.

This species appears to be rare at the Bermudas, and probably occurs only on the outermost reefs. The only specimen seen by me from there was from near the North Rocks. (Centennial collection.) It is a hemisphere about 11 inches in diameter, of the typical form. It is common on the Florida reefs and throughout the West Indies, Bahia, Brazil; (Yale Mus.):= var. hirta, nov., with elevated corallites; roughly serrate; thin costae and septa; calicles deep, 5-6 mm. broad; septa narrow, perpendicular within, usually 40-44.

The description of the Jamaican specimen, when taken in connection with the notes by Pourtalès and Verrill, gives a good idea of the extent of the variation of the species except in one particular, that of the septal arrangement. The normal, fully developed calices have four complete cycles of septa; however, sometimes the fourth cycle may not be complete while at others there may be a few quinaries. In the recent specimens the terciaries usually, but not invariably, extend to the columella.

The characters common to all of the specimens may be briefly summarized as follows:

Corallum massive, base epithetacate, upper surface flat, irregularly convex, or domed. Calices more or less elevated, diameter from 5 to 11 mm., externally costate, costae normally subequal. Septa normally in four complete cycles, the members of the first three cycles extend to the columella, but the fourth may not be complete, and sometimes there may be a few quinaries. Columellar trabecular, well developed, large, with a papillary upper surface.

*Remarks on the synonymy of* O. cavernosa.---The names *O. radiata* (Ellis and Solander), *O. argus* (Lamarck), *O. conferta* (Milne Edwards and Haime), and *O. cavernosa* var. *hirta* Verrill, are definitely placed in the synonymy of *O. cavernosa*, and it is thought probable that *O. braziliiana* Verrill, should be referred to it. These names will be discussed seriatim.

Gregory applies *O. radiata* to this species, as he considers the Linnaean definition of *Madrepora cavernosa* insufficient, an opinion with which I do not agree. All the Linnaean descriptions are unsatisfactory, but in this instance Linnaeus refers to the figures of Seba, he places the *Madrepora astriotes* of Pallas in its synonymy, and he states "Habitat in O. Americano." Taking all things together, the original diagnosis with the references seem to me sufficient for purposes of identification—in fact, the brief Latin description is not bad. *O. radiata* was supposed to differ from *O. cavernosa* by possessing only three cycles of septa. Pourtalès states, in the quotation already made from him, that "In worn specimens the last cycle disappears first; for that reason probably *Orbicella (Madrepora) radiata* Ellis and Solander has
been characterized by Milne Edwards and Haime as having but three cycles.”

Lamarck’s Astrea argus is a new name for the Madrepora cavernosa Esper. The reason for his giving it is not evident.

The specimen identified by Ehrenberg as Explanaria argus, which is the type of Milne Edwards and Haime Astrea conferta, is in the Berlin Museum für Naturkunde, and the following notes are based upon it:

The specimen is much worn and is apparently somewhat fossilized. The calices are not regularly rounded, but frequently are of irregular polygonal outline. The greater diameter of an average calice is 8.5 mm.; lesser 7 mm. Thickness of wall between the calices is 2.5 mm. In one calice there were 21 large and 21 smaller septa; there may be four complete cycles in some calices. The columella is very large and vesicular and occupies the greater part of the corallite cavity. Dissepiments abundant, about 13 to 5 mm.; they slope downward and inward. From reading the Poultales’s description quoted above, it will be evident that this is only a variety of O. cavernosa with crowded calices. The Explanaria radiata of Ehrenberg is the ordinary Heliostraæa cavernosa as figured by Milne Edwards and Haime, except that the fourth cycle of septa may not always be complete.

Orbicella cavernosa var. compacta Vaughan (pl. 88, figs. 3, 3a, 3b) has solid exotheca, low mammillate corallites, and equal costae. Recent on the Brazilian coast; lat. 12° 48’ S., long. 38° W.; 27 fathoms.

Locality and geologic occurrence.—On the living and Pleistocene reefs of Florida, the West Indies, and the Caribbean side of Central America. There are beach worn or Pleistocene specimens from the Isthmus of Darien in the United States National Museum, collected by Dr. Van Patton.

6a. ORBICELLA CAVERNOSA var. ENDOTHECATA (Duncan).

Plate 89, figs. 1, 1a.


The corallite walls are thick; costae strongly alternating in size; the last cycle are small and thin, and there appear to be no septa corresponding to them; occasionally there is a rudimentary septum of the fourth cycle. The last cycle of septa may have been broken off; or the wall, because of subsequent thickening, may have included their inner ends; all other septa, with rare exceptions, extend to the large, well developed columella. Diameter of corallites from 8 to
10 mm. Type in the Geological Society of London; duplicate in the United States National Museum (No. 155276). The preceding remarks are based on the latter.

Localities and geologic occurrence.—Type said to come from the Nivajè shale of Santo Domingo.

Costa Rica, station 4269, Port Limon; collected by Doctor Wailes in a bed of reputed Pliocene age. The size of the calices, and the costae, wall, and columella of the Port Limon specimen are as in var. endotheccata; but usually every other septum meets the columella; a cycle of small septa between the larger is clearly present. As it is probable that the last cycle of septa has been destroyed in the type of var. endotheccata, the presence of small septa between the larger would not indicate specific difference. The strongly developed costae with small ones between them are the same in both the type and the Port Limon specimens.

The stratigraphic range of this variety, therefore, is from the Nivajè shale (lower Miocene) to probably Pliocene.

6b. ORBICELLA CAVERNOSA var. CYLINDRICA (Duncan).

Plate 89, fig. 2.


This variety closely resembles var. endotheccata. It has smaller corallites, 5 to 6 mm. in diameter; fewer septa, 12 to 16 principal septa, with from 1 to 3 smaller intermediate septa. Between each pair of larger septa on the mural summits around the calices is an intermediate rudimentary septum; the total number of septa is about 38. The costae corresponding to the principal septa are strikingly prominent, while those corresponding to the rudimentary septa are very small or even obsolete. The calice is rather deep, about 2.5 mm.

This coral may be only a growth facies of O. endotheccata.

Localities and geologic occurrence.—Duncan type, in the Geological Society of London, comes from "the tufaceous limestone" of Santo Domingo; duplicate specimen No. 155277, U.S.N.M. Miss C. J. Maury has recently collected the variety in Santo Domingo as follows:

Rio Gurabo, zone D, associated with Stylophora affinis Duncan, Madracis decacisis (Lyman), Pocillopora crassoramus Duncan, Stephanocoenia intersepta (Esper), Orbicella limbata (Duncan), Orbicella cavernosa (Linnaeus) var., Syzygophyllia dentata (Duncan). The single specimen collected is essentially typical, in fact it is a better specimen than Duncan's type. Cercado de Mao, without
more specific information. The latter specimen has corallites with somewhat larger diameter, as much as 7.5, than those of typical specimens, diameter 4.5 to 5 mm., in that respect more closely resembling var. *endothecata*, but there are no or only a few small costae between the large ones, and the septal characters are more similar to those of var. *cylindrica*.

Costa Rica "Colline en démolition", Port Limon, No. 669, collection of H. Pittier. The specimens from Port Limon consist of two isolated corallites, which so closely resemble those of the type of var. *cylindrica* as not to need comment. Except in size, they are very similar to var. *endothecata*.

7. **ORBICELLA APERTA** (Verrill).

Plate 89, fig. 3.

1868. *Heliastrea aperta* Verrill, Conn. Acad. Arts and Sci. Trans., vol. 1, p. 356,

This species is especially characterized by having the principal septa, that is, those of the first, second, and third cycles, all of which ordinarily reach the columella, taller and thinner than is usual in *O. cavernosa*. At one time I was inclined to consider it only a variety of *Orbicella cavernosa*, but comparisons of large suites of *O. cavernosa* from Florida and the West Indies with a good suite of *O. aperta* from Brazil shows persistently recognizable differences.

*Localities.*—Abrolhos reefs, Bay of Bahia, and Island of Itaparica, Brazil.

8. **ORBICELLA BAINBRIDGENSIS**, new species.

Plate 90, figs. 1, 1a, 1b, 1c.

In growth form, general aspect of the corallum, and size of calices similar to *Orbicella cavernosa*.

Calices 6 to 7 mm. in diameter; walls slope from calicular margins to bottom of intercorallite areas; protuberant about 2 mm.; distance apart from 1.5 to 3.5 mm.

Costae subequal, relatively thick, rather low, beaded on the edges, correspond to all septa, meet in the intercorallite depression.

Septa in nearly four complete cycles, 10 to 12 septa, i.e., the primaries and most or all of the secondaries are thicker than the other septa, these and in some calices a variable number of secondaries extend to the columella. Usually the tertiary septa do not reach the columella, and the quaternaries are still shorter. The septa are distinctly of three sizes, even where the secondaries reach the columella they are thinner than the members of the lower cycles. Septal margins dentate; distinct, rather wide, erect paliform lobes usual on the inner ends of the primaries and secondaries and in places on the secondaries; on some septa instead of paliform lobes there are
several teeth with rounded upper ends. The youngest septa are largely composed of ascending spines which are not completely fused.

Columella relatively large, composed of septal trabeculae, upper surface coarsely papillate.

Endothecal dissepiments highly developed, forming curved vesicles. Exotheca composed of successive, superposed but separated platforms extending between corallites (see pl. 90, fig. 1c).

Localities and geologic occurrence.—Georgia, stations 3881, Blue Spring, 4 miles below Bainbridge, and station 3883, Hales Landing, 7 miles below Bainbridge, Flint River, Decatur County, collected by T.W. Vaughan; in the basal part of the Chattahoochee formation, just above the contact with the Ocala limestone. In the base of one specimen from station 3383 there is a cast of the surface of Cerithium vaughani Dall, and there are several specimens of orbitoidal foraminifera, one of which is clearly a species of Lepidocyclina. Stations 6085, Withlacoochee River, a few hundred yards below the Valdosta Southern Railway bridge, and 6084, about 3 miles below the same bridge, Lowndes County, Georgia, collected by L. W. Stephenson.

Type. — No. 324881, U.S.N.M.

Santo Domingan specimens, representing a very closely related if not identical species, were obtained by Miss C. J. Maury, on Rio Cana, in what she refers to as zone H, in association with a fauna representing the Bowden horizon, namely, Placocysthus new species, Stylophora granulata Duncan, Antillia bilobata Duncan, Orbicella limbata (Duncan), Solenastrea bourroni M. Edwards and Haimé, Syzygophyllia gregoriai (Vaughan), and Siderastrea siderea (Ellis and Solander).

5. ORBICELLA COSTATA (Duncan).

Plate 91, figs. 1, 1a, 2, 3, 3a; plate 92, figs. 1, 2, 3; plate 93, figs. 1, 1a.


Original description.—"The specimens of this species which I have examined present polished longitudinal and transverse sections of corallites, but I have seen no calices. Corallites long, parallel, sometimes deformed, generally circular in transverse outline, not crowded, but close, varying in size. Intercorallite spaces very distinct. Walls thin, not thicker than the delicate septa. Costae large alternately, both sizes equally produced; wedge-shaped at the wall, pointed, and often bent at the free end. Septa all delicate and linear near the columnella and in the middle; at the wall their base is narrower than that of the costae. They are arranged in six systems, the cycles being very irregular. In three systems there are three cycles, and in the rest an incomplete fourth; rarely there are two systems with
four complete cycles; the fourth and fifth orders often curve toward the third order. Lamellae rather cribriform, joining the columella by oblique processes. Columella lax, small, and formed by dissepi-ments from the septa and a central spongy mass. Endotheca very abundant, vesicular, and horizontal, with four or five dissepiments in one-tenth inch [2.5 mm.]. Exotheca abundant, nearly equal to the endotheca. Reproduction by extra-calicular budding. Diameter of the corallites from three-tenths to seven-twentieths inch [7.5 to 8.25 mm.].

"This species is closely allied to the astracans with great endo-thecal development, and especially to Astraea vesiculosa Edwards and Haime, from Dax, as well as to A. antillarum nob., and A. endotheccata nob."

Locality.—"The Marl of Antigua."

Illustrations based on one of Duncan's original specimens, but not the type, are given on plate 91, figures 1, 1a.

This species is represented in the Antigua formation of Antigua, the Pepino formation of Porto Rico, the Culebra formation of the Canal Zone, and in the marls and limestone of Anguilla. The principal variation consists in the size of the calices. The minimum size of the calices in the Antiguan specimens (pl. 91, figs. 2, 3, 3a) is about 7 mm., which is about the average for the Porto Rican specimens (pl. 92, fig. 1), and the calices of the specimens from the Canal Zone (pl. 92, fig. 2) average slightly smaller than those from Porto Rico, but the two sets of specimens differ very little. In Anguilla (pl. 92, fig. 3; pl. 93, figs. 1, 1a) the large and small calicled forms are found in association.

The amount of the protuberance of the corallites varies greatly, but protuberant and low corallites are found on the same corallum. Usually where the corallites are low the alternation in size of the costae is not so pronounced as where the corallites are exsert; but some protuberant corallites of the specimen represented by plate 92, figure 3, have equal costae on at least one side.

There are pali before all except the last cycle of septa; they are moderately wide, erect, rounded above, form two crowns.

Localities and geologic occurrence.—Antigua, in the Antigua formation, at station 6881, Willoughby Bay, collected by T. W. Vaughan.

Porto Rico, in the Pepino formation, station 3191, 4 miles west of Lares, collected by R. T. Hill.

Canal Zone, in the Culebra formation, at station 6020c Las Cascadas, collected by Vaughan and MacDonald.

Anguilla, stations 6893, 6894, 6966, in the lower and the middle beds on the south and west sides of Crocus Bay; 6969a, bottom bed at Road Bay.
This species in its general aspect resembles *Cyathomorpha belli* Vaughan (see p. 459), but has thinner septa and costae and deeper calices. The lower surface is more or less invested with epitheca, and no synapticulae could be found.

10. ORBICELLA CANALIS. new species.

Plate 94, figs. 1, 1a, 2, 2a, 3, 3a; plate 97, figs. 4, 4a.

This species can best be characterized in terms of comparison with *O. costata*. The growth forms and the general facies of both are similar, except that the maximum size of the calices in *O. canalis* is nearly the minimum size in *O. costata*; range in calicular diameter of *O. canalis* from 5 to 9 mm., average about 6 or 6.5 mm.

The costae in *O. canalis* are alternately large and small or subequal around the calicular edge below which they may be subequal, alternately large and small, or the last cycle may disappear.

Septa in 4 or nearly 4 cycles; primaries notably larger than the secondaries except in occasional unusually large calices, and each bears a strong tooth on its inner end; secondaries thinner than the primaries, also with a tooth on the inner end, these and the primaries reach the columella; secondaries shorter, but with a paliform thickening or a tooth on the inner end; quaternaries decidedly small. The septa usually are lanceolately thickened in the wall, in this character resembling typical *O. costata*.

The columella is formed by the fusion of the inner ends of the septa and is less developed than in *O. costata*.

Endothecal dissepiments well developed, thin, from 0.5 to 1.5 mm. apart. Exotheca consists of thick-walled blister-like, small vesicles, about 0.5 mm. high, and more or less wavy platforms which extend between the corallites.

**Localities and geologic occurrence.**—Canal Zone stations 6015 and 6016, quarries in the Emperador limestone, Empire, collected by T. W. Vaughan and D. F. MacDonald, also collected in Empire by Ralph Arnold.

Anguilla, stations 6894, lower bed; 6966, middle bed, between 50 and 75 feet above the base of the section; and 6967, upper bed, west side of Crocus Bay, collected by T. W. Vaughan.

**Type.**—No. 324862, U.S.N.M. (pl. 94, figs. 1, 1a).

**Paratypes.**—No. 324861, U.S.N.M. (pl. 94, figs. 2, 2a; pl. 97, figs. 4, 4a). The specimen represented by plate 94, fig. 3, 3a No. 324859. U.S.N.M. is a varietal form that appears referable to *O. canalis*; it is from Anguilla.

*Orbicella canalis* is so nearly related to a number of Antillean upper Oligocene species, that I have hesitated to apply a distinctive name, but as the large suite of specimens before me, 30 of those from Empire, Canal Zone, have been selected as the reserve series of the United States National Museum, shows characters by which they
can be discriminated, it seems logical to recognize them as a species. *Stylangia panamensis* has a general resemblance to those specimens of *O. canalis* in which the corallites are small and the costae not very prominent; but the corallites of *O. canalis* are larger, and they have not the lamellate columella of *S. panamensis*. Small-caliced specimens with prominent, strongly alternating costae resemble *O. imperatoris*, and differ from the latter by their somewhat larger calices and more numerous septa. The calices of *O. costata* are larger, the primary and secondary septa are subequal, and the columnella is more developed. In both *O. intermedia* and *O. costata* the secondary septa are more developed. Larger suites of specimens than are at present available may lead to the reduction of some of these names to subspecific or varietal rank.


Plate 95, figs. 1, 2, 2a, 3, 3a.


The corallum forms head-shaped masses up to the size of a man's fist.

Calices deep, decidedly elevated, up to 4 or 4.5 mm.; diameter from 6 to 10 mm. Costae prominent, distant; there are no or only rudimentary costae corresponding to the last cycle of septa.

Septa, distant, in four cycles, the fourth usually more or less incomplete. The primaries and some or all of the secondaries, occasionally a tertiary, reach the columnella. Usually there are three or four different sizes. On the inner ends of the primaries are paliform teeth, below which the margins fall steeply to the bottom of the fossa. Margins of the primaries exert as much as 1.5 mm.; those of secondaries almost as prominent; those of the tertiaries less prominent: those of the quaternaries inconspicuous. Septa thickened in the wall.

Columnella much looser than in the other related species.

**Locality and geologic occurrence.**—The "silex" bed of the Tampa formation, Tampa, Florida.

**Type.**—No. 324900, U. S. N. M. (pl. 95, figs. 2, 2a.)

**Paratype.**—No. 324901, U. S. N. M. (pl. 95, fig. 1.)

**Paratype.**—Wagner Free Institute of Science, Philadelphia (pl. 95, fig. 3).

11a. **ORBICELLA TAMPAENSIS** var. *silecensis*, new variety.

Plate 96.


Corallum oblong, irregularly convex above; type about 16 cm. long, 11 cm. wide, and 9.5 cm. high.
Calices slightly elevated, the corallites somewhat swollen below the calicular edges. Diameter, 8.5 to 9.5 mm. Costae prominent; those corresponding to the primary and secondary septa subequal; tertiaries subequal to those of lower cycles or smaller; fourth cycle small but usually recognizable.

Septa in four cycles, usually differentiated in size according to cycle; primaries and secondaries and occasionally some tertiaries reach the columella. Margins of primaries, secondaries, and tertiaries exsert, up to as much as 1.5 mm., usually about 1 mm.; those of the quaternaries obvious but not prominent.

Columella rather well developed.

Locality and geologic occurrence.—The "silex" bed of the Tampa formation, Tampa, Florida.

Type.—Wagner Free Institute of Science, Philadelphia.

Paratype.—No. 324896, U.S.N.M.

This variety, which intergrades with the typical form of the species, is especially distinguished by its less prominent calices and the better developed last (quaternary) cycle of costae.

Orbicella tampæensis var. silecensis is near Orbicella costata, from which it is separable especially by the more exsert margins of the primary, secondary, and tertiary septa, and by the quaternary septa having much lower margins than those of the other cycles. The general resemblance of the Tampa specimens of O. tampæensis var. silecensis is so close to specimens of O. costata from Anguilla that at one time I thought them referable to the same species, but the differences in the characters of the costae and of the upper septal margins served to separate them. For a comparison of O. tampæensis with O. irradians (Milne Edwards and Haime) Vaughan see page 394 of this paper.

12. ORBICELLA BREVIS (Duncan).

Plate 97, fig. 1.

1864. Astraeæ brevis Duncan, Geol. Soc. London Quart. Journ., vol. 20, p. 37, pl. 4, figs. 3a, 3b.


The following is Duncan's original description:

Corallum small, irregularly convex above, and slightly concave below. Corallites short, irregularly distant, and radiating. Calices circular, tolerably elevated, their height varying; the margin is rather sharp, and the external wall is marked by very distinct costae. The septa are very slightly exsert, largest at the wall, arched, the radius of the curve being directed upwards and inwards, passing but a little way inwards before descending abruptly; they are dentate on the free margin. In six systems of three cycles, with a septum of a fourth in some half-systems; primary septa the largest, the tertiary being small. The laminae are perfect, join the columella by ascending processes, and are slightly granular. Costae well developed, passing downwards and outwards from the margin; the primary are equal to the secondary, and there is some variation in the size of the tertiary; they are dentate, 37149—19—Bull. 103—14
and appear to be covered with a fine epithea, and their course is often in a curve. In transverse and vertical sections the costae are seen to project far from the wall, and to be marked by oblique and abundant exothecal dissepiments; the tertiary costae being much less projecting than the others. The columella is large, lax, and papillary. The fossa is deep. The endothea is not well developed, but the dissepiments extend to close to the calice. Diameter of calices one-fifth inch [5 mm.]; height of the corallum 9.10 inches [22.5 mm.]. The costae are very marked in this species, and with the papillary columella and short calices distinguish it from its allies; it is related both to Astraea cylindrica nob., and to Astraea cavernosa Edwards & Haime.

From the Nivaje shale, San Domingo. Coll. Geol. Soc.

Duncan’s remarks on the affinities of this coral are correct, and in a previous paper I referred it to the synonymy of O. cavernosa. The type of the species is represented by plate 97, figure 1. The costae are similar to those of O. costata, but the calices are much smaller. It will be noted in the figure that around the calicular margins the costae are subequal and that lower down on the corallite limb those corresponding to the last cycle of septa become smaller while the alternate costae become more prominent and extend on to the intercorallite areas. The costal beading is rather coarse, therein resembling O. tampaensis, which has larger calices. As predictions as to the ultimate fate of coral-names are admittedly hazardous, I will only remark that it seems to me from the material available for study that O. brevis is a distinct species; but a specimen from the “silex” beds near Tampa, Florida, so nearly bridges the gap between O. tampaensis and O. brevis that doubt is cast on their specific distinctness. Should the two supposed species ultimately be combined under one name, of course O. brevis, it being the older name, would persist, and O. tampaensis would become either a synonym or would be reduced to varietal or subspecific rank.

13. ORBICELLA INSIGNIS (Duncan).

Plate 98, figs. 1, 2, 2a.

1867 Heliastrea insignis Duncan, Geol. Soc. London Quart. Journ., vol. 24, pp. 19, 24, pl. 1, fig. 4.

Original description.—“The corallum is large, and the corallites also; they are wide apart, are circular in transverse outline, and are very equal in size. The wall is stout as regards the septa and costae, but thin in comparison with the diameter of the corallites. The septa are delicate, wide apart, long, slightly thicker at the wall than elsewhere, straight, and the primary septa are hardly any broader than the tertiary. There are three cycles of septa in the six systems, and rarely a septum of the fourth cycle is noticed in half of a system. The primary and secondary septa are of equal length, and the tertiary extend far in towards the columella. The columella is small. The costae are long, slender, often bent, almost equal, and of about the

---

same thickness as the septa; occasionally a rudimentary costa is seen, and is not represented by a septum. The exotheca is inclined and abundant. The endotheca is very abundant and inclined.

"Diameter of corallites (costae not included) four-tenths inch [10 mm.]."

"Loc. Antiguan Tertiary deposits.

"The large size of the corallites, the low septal number, the long septa and costae, with the small columella and highly developed endotheca, distinguish this species."

One of Duncan's original specimens, in the Geological Society of London, is represented by plate 98, figure 1.

I did not obtain in Antigua any coral definitely referable to O. insignis.

Regarding the specimens from Serro Colorado, Arube, referred by me to Orbicella cavernosa,¹ the following notes will be made (see pl. 98, fig. 2, 2a):

The corallites are circular in cross section, and have a diameter of a centimeter, sometimes slightly greater. The distance between them is 3 mm. or even greater. Endotheca and exotheca are very richly developed. The septa are usually 24 in number, alternately larger and smaller, all of the larger reach the columella; occasional small quaternaries. They are thin, but are thickened at the wall sufficiently to form a so-called "pseudotheca." There are two specimens of this coral from Serro Colorado, one of which is completely silicified, and a large portion of the other has undergone silicification. The columella is lax, spongy, and fairly large, occupying about one-third of the diameter of the corallite cavity. These specimens closely resemble Duncan's Astraea radiata var. intermedia, but have larger corallites; they are very near O. costata (Duncan), from which they differ by having thicker and fewer septa and a larger columella; O. antillarum differs by its somewhat smaller corallites; I discover no difference from O. insignis Duncan.

14. ORBICELLA INTERMEDIA (Duncan).

Plate 97, fig. 2.


Astraea radiata var. intermedia Duncan is, according to its original description, characterized by "having the third cycle of septa complete, and a little excess of vesicular endotheca. * * * The variety forms a link between the great astraeans of the Miocene of the Antilles and the existing Astraea radiata of the Caribbean Sea, Astraea antillarum being closely allied to it." The type-specimen, No. 2943, Geological Society of London, is represented by plate 97, figure 2. The diameter of the corallites is about 5 mm., distance between corallites from 1 to 2 mm. There are in places indications

of small costae between the larger ones, similar to those of *O. cavernosa* var. *endothecata*, and there are a few quaternary septa. Columella rather small.

I did not collect any specimen of this species in Antigua. The species to which I am applying the name *O. canalis* is very nearly related and may eventually become a synonym. However, the primary and secondary septa are more nearly equal in *O. intermedia* than in *O. canalis*. *O. costata* and *O. insignis* are both very similar to *O. canalis*. *O. costata* has more extended costae, and *O. insignis* has larger calices and, in comparison with the size of the calices, fewer septa. As suites of specimens adequate for a satisfactory study of variation are not available, at least temporarily, the three names, *O. intermedia*, *O. costata*, and *O. insignis* should be treated as valid.

**Locality and geologic occurrence.**—According to Duncan, "From the upper Parian of Trinidad (Wall and Sawkins coll.), and the marlformation [Antigua formation] of Antigua." The specimen represented by plate 97, figure 2, is from Antigua.

15. **ORBICELLA GABBI**, new species.

Plate 108, figs. 1, 1a, 1b.

Corallum massive; corallites very large, from 20 to 25 mm. in diameter, by far the largest corallites of any species of the genus known from the American Tertiary formations. Intercorallite areas narrow or as much as 4.5 mm., perhaps more, across.

Septa very numerous, thin, crowded, 106 were counted in the corallite represented by plate 108, figure 1a. There are more than 5 complete cycles. Septal grouping obvious, usually every other or every fourth septum reaches the columella, but in places there are seven or eight shorter septa, forming a group, between two long septa.

Columella rather small, only about 2.5 mm. in diameter. Endothecal and exothecal dissepiments greatly developed, thin-walled.

**Locality.**—Santo Domingo (Gabb Collection).

**Type.**—Academy of Natural Sciences of Philadelphia.

16. **ORBICELLA IRRADIANS** (Milne Edwards and Haime) Vaughan.

Plate 97, figs. 3, 3a.

1848. *Phyllocodia irradians* MILNE EDWARDS and HAIMÉ, Comptes Rend., vol. 27, p. 469.


This appears to be the species referred to by Fabiani in his "II paleogene del Veneto" as *Heliastrae irradians* Michelin. Michelin erroneously applied the name *Astrea radiata* to this species.

---

Figures of *Orbicella iradians* and some notes on it are introduced here, because of the close resemblance of *Orbicella tampæensis* to it. The beading of the costae in *O. tampæensis* appears coarser, and paliform lobes seem more specialized in *O. iradians*.

**Locality and geologic occurrence.**—Milne Edwards and Haime (1857) record it from Castel Gomberto and Chaine d’Hala (Sinde). Reuss\(^1\) says it is the most abundant anthozoan of the Monte Grumi beds. He also records it from Castellaro, Monte Spiado, Monte del Carrioli, and Montecchio Maggiore.\(^3\) D’Archirardi mentions it as occurring in what he designates as the Castel Gomberto, Montecchio Maggiore, and Monte Viale groups.\(^4\) Fabiani refers *Heliastraea iradians*, by which I believe he means this species, to the Lutetian (Eocene) and to the Rupelian (middle Oligocene) of Castel Gomberto and San Giovanni Ilarione. The specimen in the United States National Museum (No. 164723) (see pl. 97, figs. 3, 3a), was received from Professor Parona of the University of Turin, and came from Monte Grumi di Castel Gomberto. Although apparently reported from the Lutetian Eocene of Veneto, it is most abundant in the Rupelian or middle Oligocene. Because of the close resemblance of *Orbicella tampæensis* to *O. iradians*, of the presence of *Antiquastrea cellulosa* in the “silex” bed at Tampa, and of the presence at Tampa of species of *Stylophora, Galaxea, Endopachys, Goniopora*, and *Alveopora*, all genera now extinct in the Atlantic Ocean, I believe that the fauna of the “silex” bed at Tampa surely is as old as upper Oligocene.

The generic name *Phyllocoenia*, genotype *P. iradians*, is a synonym of *Orbicella Dana*.

**Genus SOLENASTREA** Milne Edwards and Haime.


**Type-species.**—*Astrea turonensis* Michelin.

**SOLENASTREA HYADES** (Dana).


1902. *Orbicella excelsa* Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 98, pl. 15, figs. 4, 4a, 4b.

---

1. Icon. Zoophytol., p. 58, pl. 12, fig. 4, 1872.
BULLETIN 103, UNITED STATES NATIONAL MUSEUM.

1902. Solenastrea hyades Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 104, pl. 15, figs. 5, 5a, 5b.


Professor Verrill has studied Dana's types of Orbicella hyades in the collection of the Boston Society of Natural History, and gives the following description:

Calicles circular, or nearly so, mostly 3 to 3.5 mm. in diameter; borders generally distinctly elevated above the exotheca, often to the height of 0.5 to 1 mm. Younger and smaller calicles, 1.5 to 2.5 in diameter, are scattered between the full-grown ones. In the middle of the convex summit the calicles are so crowded that the walls are in contact, and here they often become angular by crowding, and when not in contact their edges may not be elevated. On other parts they may be separated by intervals of 2 or 3 mm. or more. The walls are very thin. The costae are thickened and roughly minutely serrulate; they are very narrow and mostly confined to the wall, never extending across the exothecal spaces, when these occur. The surface of the exotheca is smooth or vesicular; in sections the exotheca is openly vesicular.

Septa 20 to 24, mostly 21 in mature calicles; 12 extend to the columella; those of the third cycle are also wide, but thinner, and most of them bend toward and join the larger ones about midway between the wall and columella. The septa all become thin and curved toward the columella, but thickened at the wall; the summits are narrowed and rather prominent above the walls; inner edge irregularly and roughly serrulate, especially distally; sides roughly granulated. Paliform lobes small and thin. Columella usually rather small and loose; formed of small twisted processes from the inner edges of the septa, but variable in size.

Thickness of the larger mass from St. Thomas, about 50 mm.; diameter 125 mm.; diameter of calicles, mostly 3 to 3.5 mm., rarely 4 mm.

This species is found on the Florida Reefs and throughout the West Indies. It has not been found at the Bermudas. St. Thomas (coll. C. F. Hartt, Yale Mus.). In the American Museum, New York, there is a large turbinate mass, 12 to 14 inches in diameter and about 10 inches high, from Jamaica.

The same author gives the following description of Orbicella excelsa Dana:

Dana's type of this species, in the Boston Society of Natural History, was carefully studied by me a number of years ago, and descriptions were made at that time. The type is apparently slightly beach-worn, but so little that the natural surface of the coenenchyma and costae, and the summits of the septa are well preserved in most parts, and there is no evidence of post-mortem alteration by infiltration to account for the solidity of the coenenchyma, referred to by Dana, and which is, indeed, quite remarkable in most parts. The coral is very solid and heavy as contrasted with O. annularis or Solenastrea hyades.

A fragment, apparently of the same specimen, and which appears to have been used by Dana in describing the details, is preserved in the Museum of Yale University. From this the accompanying photograph has been made (pl. 15, fig. 4). The coral grows in irregular, often upright, lobed or gibbous masses, up to 100 to 150 mm. or more high, but when young it must be encrusting. No. 1729.

The type-specimen is so strongly lobed that the lobules in some places look like incipient branches. But these may possibly be due to the coral growing over the tubes of invading bivalves or annelids, though none can be seen without sections.

The calicles are more closely crowded on the lobules, especially at the obtuse summits, where they become angular and are separated by thin walls and cellular exotheca. Elsewhere the calicles are nearly circular, scarcely elevated, and separated by exothecal spaces usually about equal to the radii of the calicles, but toward the base often equal to their diameters. The exotheca and walls are very solid in most parts.

The 24 costae are subequal, thickened, only slightly raised, faintly or almost microscopically granulated; those of adjacent calicles are usually separated at the surface by a slight intermediate groove, forming polygonal areas around the calicles. The exotheca is nearly level with the edges of the walls and costae, flat or slightly concave, minutely granulated or nearly smooth, sometimes slightly vesicular at the surface, but usually almost solid and blended with the costae and walls; near the tips costae unite and exotheca is cellular.

In a transverse section, near the surface, the entire partition between the calicles may be perfectly solid, whether thick or thin, but in many cases one or two rows of small, rounded or crescent-shaped vesicles can be seen, and sometimes, close to the surface, vesicular dissepiments are visible between the small costae, while close to the basal margin of the coral the exotheca may be decidedly vesicular, appearing almost like miniature honeycomb in transverse sections. But this basal portion is formed by the thin, down-growing margin, where the new calicles are very short, oblique, and far apart, as in many other corals that have a thin, proliferous margin.

The septa are generally 24, subequal; in three regular cycles; those of the first two cycles are nearly equal in height and thickness; those of the third cycle are thinner and narrower, and generally bend to the right and left in pairs to join the straight septa of the second cycle, usually at a point more than half way to the columella, and often very near it. The summits of all the septa are narrow and only slightly raised above the walls. The edges are irregularly serrulate, two to four of the basal teeth being the larger. The sides are distinctly granulated. The septa are all thin, but slightly thickened toward the wall, and all are narrowed above the base, so as to leave a cup-like calicular cavity. The columella is small, trabecular, papillose, and often nearly wanting. In transverse sections of some calicles it is solid, and formed by the union of the inner edges of the septa, but in most it is small, porous, trabecular.

Diameter of the calicles 2.5 to 3 mm.; breadth of intercalicial spaces, usually 1 to 2 mm., sometimes 3 to 4 mm. or more, near the base.

Origin uncertain, supposed to be West Indies. Several irregular gibbous masses of this species, 3 to 5 inches in thickness, in the American Museum, New York, were found near Osprey, West Florida, cast on the beach, after a storm, by R. P. Whitney (No. 485). I have also seen specimens from Key West.

Verrill keeps O. hyades and O. excelsa separate, with the remark, however, that "they may eventually prove to be one species." The differences between the two consist in the latter possessing a much more solid exotheca and more developed costae. There is in the United States National Museum a moderate suite of specimens from the living Florida reefs, and a large number of fossil specimens. I feel convinced that the two forms are only variations of the same species, as in the same specimen the exotheca may be solid or vesicular; and the costae may be confined to the corallite periphery or extend from the periphery of one corallite to that of the next. Although Professor Verrill's descriptions are so comprehensive as to render a new one unnecessary, I should like to call attention to some features not considered in detail by him. The costae seen on the surface
are not prolongations of the distal ends of the septa. They are only elevations on the exothecal surface corresponding in position with the septa. The exotheca is usually built up of more or less horizontal platforms, which when closely applied one above another give rise to a compact, or even a solid exotheca; if the platforms are separated, the intervening spaces contain vesicular dissepiments. In some instances the exothecal surface is formed by thin-walled vesicles. The septal trabeculae are directed upward at a low angle, and have their courses indicated by rather small and crowded granulations. The inner septal edges or trabeculae from the septal edges fuse to form a false columella. The septa usually are imperforate; however, in some instances perforations occur between the trabeculae near the columella, but never so abundantly as in *Orbicella annularis*.


Pleistocene, Miami oolite and Key Largo limestone, Florida, collected by T. W. Vaughan.

In the Pliocene Caloosahatchee marl on Shell Creek and Caloosahatchee River, Florida, collected by numerous persons.

In the Miocene La Cruz marl at stations 3440 and 3443, in the northeast part of Santiago, Cuba; station 3445, crossing over the railroad of the highway from Santiago to the Morro, collected by T. W. Vaughan. At one time I thought these Santiago specimens might come from a deposit of Pliocene age, but the other associated fossils indicate that this is another species of considerable geologic antiquity. A specimen from station 3451, Cienaga railroad station, near Habana, collected by T. W. Vaughan, seems to belong to this species.

**Solenastrea bournoni** Milnc Edwards and Haime.


The following description is based on specimens from the Pliocene Caloosohatchee marl of Florida:

Corallum forming spheroidal or dome-shaped masses, sometimes as much as a foot, or even more, in diameter; the outer surface uniformly rounded or with gibbosities.

The succeeding portion of the description is based upon a single head-shaped specimen, 15.3 cm. tall; greater diameter 12.8 cm., lesser, 11 cm.

The calices have very slightly elevated margins, and thin corallite walls. Diameter from 2 to 2.5 mm. Distance apart from 0.75 to about 2 mm.; usually about 1 mm., or half the diameter of the calices. The depth of the calicular fossae can not be determined with certainty, as the specimen is worn; where it is best preserved they are shallow. The corallite walls externally are costate, a costa corresponding to each septum; the costae, however, are short, those from one corallite not extending to those of the next. Between the corallites are thin-walled exothecal vesicles, which have a horizontally stratified arrangement. The outermost exothecal platform may show costal striations.

The septa are thin, somewhat thicker at the wall; uniformly in three complete cycles; primaries and secondaries equal and reaching the columella; tertiaries only about half as long; thinner, inner margins free. Rather wide, thin pali occur before the first and second cycles. The septal faces are finely granulate, with the courses of the trabeculae indicated; no perforations could be discovered. Thin endothecal dissepiments present. Columella poorly developed, rather small and lax.

**VARIATION OF SOLENASTREA BOURNONI.**

The United States National Museum possesses very large suites of specimens of this species, permitting a rather satisfactory study of its variation. The specimen already described shows within itself the limits of variation in the size and distance from one another of the calices. About 2 mm. is the average calicular diameter. The exotheca may be very light and delicate, or rather compact, even almost solid. The septa vary in thickness and the pali may be strongly or weakly developed; where strongly developed they are triangular in shape, the base of the triangle directed outward, and the tertiaries may fuse to the basal corners or to the sides of the pali before the secondaries. The thickened pali are correlated with the denser exotheca, the various skeletal elements seem to thicken together.
SYNONMY OF SOLENASTREA BOURNONI.

Of the species described by Duchassaing and Michelotti, *Cyphastrea oblita*, *Pleistastrea carpinetti*, *Solenastrea ellisi*, *Solenastrea micans*, and *Leptastrea caribaea* can confidently be placed in this synonymy.

I examined in the Museum of Natural History in Turin a specimen labeled *Cyphastrea oblita* Duchassaing and Michelotti, but it is a small caliced corallum of *Orbicella annularis* (see p. 374 of this paper), and it does not accord with the original description of *C. oblita*, which is as follows: "Species rounded, with rounded calices, the margins of which are a little elevated; costae rare, almost confluent; the intercalicular areas are beset with granulations: columella, large and papillary."

In a note it is stated the septa of *C. oblita* bear small, subpaliform lobes. It seems to me more probable that the type is the specimen in the Muséum d'Histoire Naturelle, Paris, figured by me in United States Geological Survey Professional Paper 98-T, plate 99, figures 3, 3a.

The original description of *P. carpinetti* is as follows: "The form of the corallum is convex and lobed; the calices are small, and often slightly deformed with prominent margins, separated by distinct costae and vesicular tissue; the septa are finely denticulate and do not attain a length of one-third the radius of the calice because of the development of the pali. The last are thick, as strong as the septa, when examined with a lens they appear covered with granulations; the columella is formed by papillae similarly granulate."

*Solenastrea ellisi*, according to Duchassaing and Michelotti, "has for a synonym the Astrea pleiades figured in the work of Ellis and Solander, Nos. 1 and 4 of plate 53." There is a specimen, probably the type, in the Museum of Natural History at Turin, labeled *Solenastrea ellisi*. It has small calices, 2 mm. in diameter, and three cycles of septa, the members of the last cycle are very small.

The original description of *Solenastrea micans* is as follows: "Corallum orbicular, with crowded calices, circular, but often deformed, diameter about a line [2 mm.]; their upper margin is free, projecting above the rest of the surface; the septa are very echinulate and thicken outwardly; the columella is thick and vesiculate." St. Thomas.

The calices of the type are crowded; 2 to 3 mm. in diameter. Septa in two complete cycles, with a few tertiaries; primaries and secondaries of the same size.

The original description of *Leptastrea caribaea* is as follows: "Species globular, with calices almost contiguous, circular, margins elevated; columella simple, septa alternately smaller." St. Thomas.

Calices of the type, 2 to 2.5 mm. in diameter: margins slightly elevated. Septa of the last cycle rarely fused to the sides of the
secondaries; paliform lobes insignificant or absent. Columella with papillate upper surface.

Duncan’s Plesiastraea distans and P. globosa, from the silt of the sandstone plain of Santo Domingo, belong in the same synonymy. The types of both species are preserved in the collection of the Geological Society of London, where I have studied them. A duplicate of the latter is in the United States National Museum. The difference between P. distans and P. globosa consists in the calices of the former being one-half or more than one-half their diameter apart, while in the latter the distance between them is usually less than one-half this diameter.

Cyphastrea hyades and C. bournoni are closely related species. The calices of C. hyades, however, are constantly larger than those of C. bournoni, and the tertiary septa, except in young coralla, constantly fuse to the sides of the secondaries. C. bournoni has smaller calices, and except when the pali are decidedly thickened, has the inner ends of the tertiary septa free. These differences are constant in the considerable suites of specimens that I have been able to study.

Localities and geologic occurrence.—Living at St. Thomas, Virgin Islands, whence Duchassaing had a number of specimens. Tortugas, Florida, in water between 8 and 9 fathoms deep.

Pliocene, in the Caloosahatchee marl of Florida, on Caloosahatchee River, collected by Frank Burns and others; and Shell Creek, Florida, collected by Frank Burns and by Doctor Griffith.

Miocene, Rio Cana, Zone H, Santo Domingo, collected by Miss C. J. Maury in association with an invertebrate fauna of the age of the Bowden marl of Jamaica.

Miocene, in the La Cruz marl, Santiago, Cuba, at stations 3436, 3437, 3446, collected by T. W. Vaughan, in association with an invertebrate fauna closely related to, but probably a little younger than that of the Bowden horizon.

ANTIGUASTREA, new genus.

Growth form massive; asexual reproduction by intercorallite budding; septal margins very obscurely dentate, subentire; corallites usually joined by thin costae; columella lamellar, usually well developed and prominent; exothecal and endothecal dissepiments highly developed.

Type-species.—Astraea cellulosa Duncan.

This genus is near Orbicella, from which it differs by its more obscurely dentate septa and its lamellar columella. The costæ between corallites are thin and in some instances disappear on the surface of the exothecal vesicles.
Reis\textsuperscript{1} proposed the name \textit{Heterastraea} for the genus here named \textit{Antiguastrea}; but, as R. F. Tomes had used \textit{Heterastraea} for a genus of English Liassic corals in 1888,\textsuperscript{2} Reis's name can not stand. Reis's account of the columella in his description of \textit{Heterastraea} is contradictory. Regarding \textit{Heterastraea tenuilamellosa} (Gümbel) Reis, he says, "zeigen ein verlängertes blattartiges bis papillöses Säulchen." The columella in that species, therefore, is lamellate.

This genus of corals is important in its bearing on the corollation of American and European Tertiary formations. At the end of his table of the corals from the Reiter Schichten, Reis says: \textsuperscript{3} "Aus diesem Tabelle geht unzweifelhafth bervor, dass erstens die Reiter Korallenlager und die vom Hallthurm mit denen von Haering gänzlich stimmen, also keinen tieferem Horizont angehören können und dass zweitens dieser Horizont sowohl durch Haeringer Schichten als auch durch die deutlichsten Beziehungen zu den unter- bis mittel oligoeänen Korallenlagern des Vicentins als solcher festgestellt ist." Reis reports species of \textit{Heterastraea} from Reit, Castelgomberto, and Crosara.

There is in the United States National Museum (No. 155186) a specimen of \textit{Heterastraea michelottina} (Catullo) Reis, received from Prof. K. A. von Zittel. This specimen has a distinct, short, thick, lamellar columella. It so closely resembles \textit{Antiguastrea cellulosa} that specific distinction is difficult, perhaps even doubtful. \textit{Isastrea elegans} Reuss is referable to \textit{Antiguastrea}. It is described after \textit{Antiguastrea cellulosa} (see p. 409, pl. 102, figs. 1, 1a). \textit{Astrea alveolaris} Catullo\textsuperscript{4} also belongs to \textit{Antiguastrea}. Notes on it follow those on \textit{A. elegans}.

\textbf{ANTIGUAESTREA CELLULOSA (Duncan).}

Plate 98, figs. 3, 3a, 4, 4a; plate 99, figs. 1, 1a, 2, 2a, 3, 3a; plate 100, figs. 1, 2, 3, 3a, 4, 4a; plate 101, figs. 2, 2a.


\textsuperscript{1} Korallen der Reiter Schichten, Bayerisch. geognost. Landesuntersuch, geognost. Jahreshefte, Jahrg. 2, pp. 129-152, 1889.
\textsuperscript{2} Geol. Mag., Dec. 3, vol. 5, pp. 207-218, pl. 7, 1888.
\textsuperscript{3} Korallen der Reiter Schichten, p. 91.
\textsuperscript{4} Dei terreni di Sedimento superiore delle Venezie, e dei fossili byrozoari, antozoiri, e spongiori, ai quali danno rivetto, p. 51, pl. 11, fig. 1. Padova, 1856.
Original description.—"Corallum tall, and, judging from the disposition of the corallites, subplane above. Corallites very numerous, tall, slender, crowded, but distinct; usually cylindrical, but sometimes more or less prismatic from mutual pressure; varying in size. The transverse section of the corallites is generally circular, now and then deformed. Septa crowded, linear; the primary are the largest, but often the secondary are nearly as large. The primary septa are of nearly the same thickness at the wall and throughout. There are six systems of four cycles; in imperfectly developed systems the fourth cycle is wanting, but the persistence of this cycle throughout all the systems is very generally decided. The fourth and fifth orders are very small, and when there are only three cycles, the third order is small; the septa are generally straight. Columella small and slightly developed. The wall appears to be stout. Costae attached to every septum, subequal, and not very greatly developed. Endothe- ca vesicular, greatly developed. There are often four dissepi- ments dividing each interseptal space. Exotheca cellular and highly developed; exotheal cells small, more rectangular and larger than the endotheal cells. The reproduction is by extracellular gemma- tion; the smallest buds visible have three perfect cycles of septa.

"From the Conglomerate of Antigua. Coll. Geol. Soc.

"Dimensions.—Height of corallum several inches. Diameter of corallites from 1–2 lines [2 to 4.2 mm.]."

The type of the species was examined in the collections of the Geological Society of London, and the identification of the specimens I am referring to it was verified.

As this is an enormously variable species further discussion of it should begin with a clear statement of the characters of the typical form. These may be summarized as follows: Calices 2 to 4.2 mm. in diameter, crowded, but distinct; costae subequal, not greatly developed; wall stout. Septa in four cycles, primaries the largest and of the same thickness throughout; secondaries almost as large as the primaries; teriaries and quaternaries smaller according to cycle. Columella said to be small and slightly developed. Endothea and exo- theca greatly developed. Plate 98, figures 3, 3a illustrate a typical specimen, which completely satisfies the requirements of Duncan's description, except that close inspection shows a small, well-developed, lamellate columella. Plate 100, figures 1, 2, are reproduced from photographs of thin sections of specimens and show the lamellar columella.

The first variant to be considered is represented by plate 99, figures 1, 1a. The corallites have free limbs as much as 1.25 mm. tall, and
are separated by intercorallite areas usually about 1 mm. wide, range in width from 0.5 to 1.5 mm. The walls are thick; costae slightly developed, thin. Calicular diameter from 3 to 5 mm. Septa in 4 complete cycles; 6 thick primaries which reach the columella; secondaries stout, but thinner than primaries, reach to or almost to the angle formed at the inner ends of the adjacent primaries; tertiaries thin, their inner ends project just beyond a peripheral zone of dissepiments; quaternaries small and thin, their inner ends barely reach the inner side of the dissepimental zone. Columella a compressed axial tubercle or an axial lamella. Endotheca and exotheca well developed. This specimen, which differs only slightly from the typical form of the species, represents the extreme of variation in one direction.

One line of variation from the typical form of the species is by increase in the size of the calices, diameter from 7 to 9 mm., with consequent greater development of the higher cycles of septa, and the development of thin corallite walls which are separated by interspaces from 1 to 2 mm. wide. The intergradation between specimens with the large and small calices and thick and thin walled corallites is complete; in fact, the variations may be found on the same specimen. These larger caliced specimens belong to what Duncan designated var. *curvata*.

Specimens showing the variations so far discussed occur in Antigua at the southwestern foot of the limestone hills from Willoughby Bay practically to the intersection of the hills with the sea near Wetherell Point.

Other lines of variation may best be presented by describing a series of specially selected specimens.  

*Specimen No. 1, from Station 6366, opposite the Cathedral, St. John, Antigua* (pl. 99, figs. 2, 2a).—Corallum broken on the base; 66 mm. long, 50 mm. wide, 34 mm. tall. There is one tuberose protuberance.  

Corallites separated by narrow intercorallite areas, only 0.25 mm. wide, or by areas which range up to 3.5 mm. across, measured between the peripheries of neighboring calices. Where the calices are separated the intercorallite areas are depressed and are crossed by thin costae, which are confluent where they can be clearly seen, but in other areas they may alternate; about 15 costae to 5 mm., or the distance between summits of adjacent costae is about 0.3 mm.; the interspaces decidedly wider than the thickness of the costae.

The following table gives the size of eight calices.

*Measurements in millimeters of calices of Antiquastrea cellulosa.*

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater diameter</td>
<td>10.75</td>
<td>9.25</td>
<td>9</td>
<td>9.25</td>
<td>5</td>
<td>7.75</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Lesser diameter</td>
<td>10.00</td>
<td>9.25</td>
<td>7.5</td>
<td>6.00</td>
<td>4</td>
<td>6.00</td>
<td>5</td>
<td>4.5</td>
</tr>
</tbody>
</table>
About half the calices on this specimen are 9 or more mm. long. The large calices are usually separated by narrow intercorallite areas, while most of the smaller calices are distant from 1.25 up to as much as 3.5 mm. The large calices are excavated, while the smaller are shallow and are tumid around their peripheries.

Septa thin, normally in four complete cycles; in some calices quinaries are present in a few quarter systems. The primaries are usually somewhat thicker, in a few calices conspicuously thicker than the members of the higher cycles, and extend to the columella; the secondaries also extend to the columella. The tertiaries may fuse to the secondaries near the columella; and the quaternaries may fuse to the tertiaries about halfway between the calicular periphery and the columella, or the inner septal ends may be free. Septal grouping not conspicuous. Septal margins with fine dentations, about 7 in 1.25 mm.; that is, a little less than 0.2 mm. from the top of one dentation to that of the next.

Columella small, in some calices represented by an axial lamella. The variant represented by this specimen is abundant about three-quarters of a mile south of the Cathedral in St. John, on the southwest side of the Otto estate, where I obtained 11 specimens.

Specimen No. 2, also from Station 6866, St. John, Antigua (pl. 99, figs. 3, 3a).—The corallum is of tuberose shape and has a maximum length of about 75 mm.

This specimen resembles in its characters that part of specimen No. 1 where the corallites and calices are smaller and more distant. The calices are tumid around their peripheries and are shallow. The usual calicular diameter, measured between the tops of the septal arches, is from 4.5 to 5 mm.; distance between calices, about 2.5 mm.

Other characters need not be described, except to say that the columella is either a compressed papilla or a short lamella.

Specimen No. 3, from Station 6856, Friars Hill, Antigua (pl. 100, figs. 3, 3a).—The corallum of this specimen is 85 mm. long, 70 mm. wide, about 75 mm. tall, and has a more or less tuberose form of growth.

The fully developed calices are 5 to 6 mm. in diameter, and are usually about 2 mm. apart, with depressed intercorallite areas, and slightly raised calicular rims, which project as much as 0.75 mm. The free part of the corallites in places rises perpendicularly above the intercorallite areas, but in other places the calicular peripheries are rounded in profile.

Septa in four complete cycles, with a few quinaries in some calices; primaries the thickest; secondaries nearly as thick as the primaries; tertiaries considerably thinner; quaternaries the thinnest, unless quinaries are present. There is grouping of the highest cycles around the secondaries, but it is not very striking.
Columella variable in development, represented by an axial papilla or by a distinct axial lamella.

Other specimens from Station 6866, St. John, Antigua.—There are in addition to those already described, from station 6866, two large specimens and fragments representing three others. The largest is 13 by 14 cm., in diameter and about 9 cm. tall. The calicular and septal characters are similar to those of specimen No. 2 of the foregoing descriptions. The primary septa in many calices are decidedly thick, the thickness of the other septa decreasing according to cycle. The columella, although it appears to be derived from the septa, is an axial lamella and in many cycles is decidedly thick.

The specimens described in the foregoing remarks are the ones that have given me the most trouble in identification. They grade directly into typical specimens, such as the one on which Duncan based his original description, and those described on pages 403, 404 of the present discussion.

The following is Duncan’s original description of *Isastrea turbinata*:

Corallum 7 inches high, subplane and irregularly convex above, broad and gibbous at the sides, small and conical at the base, whence the corallites radiate; upper surface ridged with the elevated margins of more or less polygonal, close calices. Corallites very long, slender, and prismatic, excessively crowded. Walls united, simple throughout. Calices very numerous, irregularly pentagonal, not deep, and not packed geometrically. Margins existing as sharp ridges, not marked by the septa, but faintly ragged; united, crowded, not deep. Septa small, not exerted, not arched, but slanting irregularly downwards and inwards, except the primary, which stand up in the fossa, and are easily seen. They are laminar, delicate, and crowded, slightly toothed near the internal end, ragged above, and granular on the sides. The primary septa sometimes meet by their inner ends; the secondary and tertiary are subequal when there are others. They are disposed in six systems. In fully developed calices there are four cycles in four systems and three in the rest; in other calices three cycles with an occasional fourth order. The fourth cycle is very small. Septa straight, not crenulate, but slightly ragged; no external spines. Endotheca tolerably developed. From the condition of the base, which has been rolled, no epitheca can be seen. Reproduction by submarginal (close to the wall) gemmation. Diameter of the calices from 2 lines to 3½ lines [4.2 to 7.3 mm.]. (From the Chert formation of Antigua Coll. Geol. Soc.)

A specimen that agrees with Duncan’s descriptions and figures is represented by plate 100, figures 4, 4a. This coral puzzled me for some time but it is almost typical *Antiquastrea cellulosa*, in which the intercorallite tissues have been mineralologically changed so as to present the appearance of solid intercorallite walls; however, in a few places the calicular edges persist, showing separate calicular margins between which is a lower intercorallite area crossed by thin costae. The septal and columellar characters are precisely as in A. cellulosa. I failed to find Duncan’s type of *Isastrea turbinata* in London, but I am convinced that it is a specimen of *Antiquastrea cellulosa* in which the intercorallite tissues are solidified by secondary mineral changes.

Localities and geologic occurrence.—This is one of the commonest corals in the Antigua formation of Antigua, where I collected and
brought to Washington about 100 specimens. A list of the stations at which collected would be almost a list of the exposures of the Antigua formation examined. In Cuba, at station 7508, Ocuja Spring, altitude 200 feet a. t., near Guantanamo, collected by O. E. Meinzer. In Porto Rico, zone C, near Lares, collected by Bela Hubbard, of the New Academy Porto Rican Explorations. Serro Colorado, Arube, Dutch West Indies.

As a slight variant from the typical form, it is common in the base of the Chattahoochee formation along Flint River, near Bainbridge, Decatur County, Georgia, and it is well represented in the silex bed of the Tampa formation at Tampa, Florida.

It is also found in Anguilla, where I collected a single specimen at station 6893, on the south side of Crocus Bay.

In the State of Tamaulipas, Mexico, at the following localities: One mile east of Salitre; Cerro del Aire, 7 miles southeast of Refugio; 1 mile east of San José de las Rusias; hill 4 miles east of San Rafael (specimens submitted by Mr. E. T. Dumble).

A specimen sent to the United States National Museum by Mr. Philip Crutcher is reputed to come from Vicksburg, Mississippi; subsequently collected by O. B. Hopkins at station 7463 in the Byram calcareous marl, 4½ miles south of Vicksburg, Mississippi.

In general, the species is abundant in the three formations mentioned, and is important in indicating an Oligocene horizon. It has not yet been found in deposits younger than those of Tampa age.

Prof. K. Martin, director of the Geologisch-Reichs Museum, Leiden, submitted to me for determination some material from Serro Colorado, Arube, that I referred to Orbicella tenuis (Duncan), supposing at the time that Duncan's Astraea tenuis belonged to the genus Orbicella.1 Subsequent study of additional collections has shown that Duncan's Astraea tenuis is in reality a fungusal coral. The following are the notes I published on the Arube specimens in the paper referred to in the footnote:

The corallites are long; are close together, only a millimeter apart, and usually are not round because of having been deformed by mutual pressure; the diameter of the corallites is from 4 to 5 mm. The septa are thin, and crowded; the usual arrangement being four complete cycles. The members of the first and second cycles reach the columella; those of the third cycle are not so long; and those of the fourth are still shorter. The members of the first and second cycles are of about the same thickness, no constant difference in thickness according to cycles is discernible. There is no marked difference in the thickness of any of the septa at the wall. The members of the third and fourth cycles are slightly thinner. Endotheca is well developed. The exotheca has been destroyed in the process of fossilization. The columella is poorly developed, being formed by the loose fusion of the principal septa in the axial space.

I also pointed out in the paper cited the close resemblance of the specimens described to "Orbicella" cellulosa (Duncan). I have

---


37149—19—Bull. 103—15
carefully restudied the specimens, and, as I can find only dissepi-
mental endo- and exotheca, they can not be identified as Duncan's
Astraea tenuis. Because of silification and changes due to fossilization
the columellar characters are obscured, but it is possible to
recognize the presence of a lamellar columella. The species, there-
fore, is definitely Antiguastrea cellulosa (Duncan).

**ANTIGUASTREA CELLULOSA var. CURVATA (Duncan)**

Plate 98, figs. 4, 4a.

vol. 19, p. 418.

*Original description.*—"Corallites slender, long, close, sometimes
compressed; circular in transverse section, except when compressed.
Walls thin and delicate. Costae delicate, unequal, narrow at the
base, tapering externally. Septa well developed, in six systems of
four complete cycles. The primary septa are large, toothed on either
side, not larger at any one point than at another. The secondary
septa are smaller than the primary, and have a tooth near the
columella. The tertiary are smaller than the secondary, vary much
in size, often extend nearly up to the columella, and curve there
towards the latter; they have lateral teeth, and a larger tooth at the
end; or they reach only halfway, being either straight or curved.
The quaternary septa have wedge-shaped bases and spike-like pro-
longations, extend one-quarter the distance to the columella, and
sometimes curve towards the tertiary. Columella lax and parietal.
Endotheca greatly developed, subdividing the septal loculi by
transverse bars. Exotheca distinct, cells small.

"*Dimensions.*—Diameter of the corallites one-fifth inch [5 mm.]; a
bud 1 line [2 mm.] in diameter has three cycles.

"Chert-formation of Antugua. Coll. Geol. Soc. As a rule, this
variety is curiously fossilized."

*Plesiotype.*—U.S.N.M. No. 324923 (pl. 98, fig. 4, 4a). This is
actually more abundant in Antigua than the typical examples of the
species. I doubt the presence of teeth on the primary and secondary
septa. The appearance of their being present is probably due to
changes resulting from fossilization.

**ANTIGUASTREA CELLULOSA var. SILICENSIS, new variety.**

Plate 101, figs. 1, 1a.

The two distinctive characters of this variety are, (1) the flat or
domed upper surface; (2) the rather large calices, which are occasion-
ally only 4 mm. in diameter, but usually 5 to 6.5 mm., sometimes
the diameter may be as much as 11.5 mm. when the fifth cycle of
septa is nearly complete.

*Localities and geologic occurrence.*—Basal part of the Chattahoochee
formation, Blue Springs, Flint River, 4 miles below Bainbridge, and
Hales Landing, Flint River, about 7 miles below Bainbridge, Ga.; "silex" bed of the Tampa formation. Specimens obtained about three-quarters of a mile south of the Cathedral St. John, Antigua, and at station 6893, Crocus Bay, Anguilla, and one specimen from hill 4 miles south of San Rafael, Tamaulipas, Mexico, are referable to this variety.

**Type.**—No. 324936, U.S.N.M.

**ANTIGUASTREA ELEGANS** (Reuss) Vaughan.

Plate 102, figs. 1, 1a.


Illustrations of and a few notes on this species are introduced for purposes of comparison with *Antiguastrea cellulosa*. The illustrations exhibit the calicular characters so well that a detailed description is not necessary. Specific distinction between it and *A. cellulosa* is exceedingly doubtful.

**Localities and geologic occurrence.**—Reuss originally described *Isastraecia elegans* from Fontana della Bova di San Lorenzo, the locality at which the specimen here figured was obtained. Fabiani lists it as Rupelian Oligocene.

**Plesiotype.**—No. 156898, U.S.N.M.; specimen received in exchange from Prof. J. Felix of the University of Leipzig.

**ANTIGUASTREA ALVEOLARIS** (Catullo) Vaughan.

1856. *Astrea alveolaris* Catullo, Terr. sed. sup. Venezie, p. 54, pl. 11, fig. 1.


This coral is not a species of *Phyllangia*, the type-species of which is *Phyllangia americana* Milne Edwards and Haime, from Florida and the West Indies. I dredged a particularly fine example of *P. americana* in water between 15 and 16 fathoms deep in Rebecca Channel, Florida, between Tortugas and Rebecca Light. The columella is composed of curled, flaky processes from the inner ends of the principal septa. The margins of the largest septa are faintly dentate, while on the septal faces there are small, sharp, distinct ridges with granulations along their courses.

Reuss's figures of an enlargement of the calices of *Phyllangia alveolaris* represent the columella as bluntly styliform. He says however, "Die rudimentäre Axe besteht nur aus 1-3 öfters etwas

---

1 Brit. foss. corals, Introduction, p. 44, 1850.
verlängerten Papillen." There are two specimens in the United States National Museum, as follows: (1) No. 156910 from Fontana della Bova di San Lorenzo, received from Prof. J. Felix; (2) No. 164726, from Monte Grumi, received from Professor Parona of the University of Turin. I believe there is no doubt as to the correctness of the identification of these specimens. The columella in both is lamellate; in No. 156918 a relatively thick, coarse lamella; in No. 164726 it is small and thinner but distinct. Astrea alveolaris Catullo, therefore, belongs to the genus Aniguastrea, and it closely resembles those variants of A. cellulosa, in which the calices are somewhat elevated and relatively remote one from another. Compare especially with the description of specimen No. 2 on page 405 of this paper.

Localities and geologic occurrence.—Catullo originally described the species from "Gambugliano nel Vicentino;" d'Achiardi records it from Dego, Torricelle, Castelgomberto, Monte Viale, Montecchiò Maggiore, Crosara, and Veronese; Reuss cites it from Monte di Carlotta; the United States National Museum has it from Fontana della Bova di San Lorenzo and from Monte Grumi. Fabiani lists the species as of only Rupelian Oligocene age.

Genus STYLANGIA Reuss.


Type-species.—Stylangia elegans Reuss (K. K. Akad. Wiss. Wien, Math-Naturwiss. Cl., Denkschr., vol. 33, 1874, p. 11, pl. 42, figs. 1, 1a), from San Giovanni Ilarione. Horison, Lutetian Eocene according to Fabiani.¹

The species of coral next to be described does not precisely fit into any of the genera known to me. It has the general aspect of Aniguastrea alveolaris (Cat.) Vaughan, and as it has a compressed styloid or very narrow-lamellate columella, it appeared referable to Aniguastrea, but the columella is really more in the nature of a compressed style than a lamella. I should have no hesitancy in referring the species to Stylangia, if it were not for the very distinctly developed pali. However, as pali in this group of corals are usually not of generic value I am placing the species in Stylangia.

STYLANGIA PANAMENSIS, new species.

Plate 86, figs. 1, 1a.

The following is a description of the type, the only specimen of the species well enough preserved to show clearly the specific characters:

Corallum, a small mass, 29 mm. long and 26 mm. wide.

Corallites protuberant from 1.5 up to 3.5 mm., distance between the calicular margins from 2 to 4.5 mm. The diameter at the calice

of a corallite about 3 mm. tall is about 4 mm., at its base about 5 mm., showing that although the diameter at the base of the free corallite limbs is greater than it is at the calice, the increase in diameter toward the base is rather slight. The costae on the free limbs are low, subequal, closely crowded, between 40 and 48 in number, relatively thick, as thick as or thicker than the intercostal furrows, and closely beaded along the edges. The walls are thick.

Septa, 3 complete cycles and a variable number of quaternaries. The 6 primaries are larger than the other septa, extend to the columnella, and bear paliform thickenings which are decidedly prominent in those calices where they have been preserved; the secondaries are somewhat shorter than the primaries; the tertiaries still shorter; and the quaternaries, which may be completely developed in some systems, are still smaller; in some systems in many calices the quaternaries are not distinguishable within the calices, but are represented by small costae.

Columnella, a narrow, compressed style.

Endotheca and exotheca, details of their character not clear in the type.

**Locality and geologic occurrence.**—Canal Zone, station 6016, in the Emperador limestone, quarry, Empire, collected by T. W. Vaughan and D. F. MacDonald.

**Type.**—Cat. No. 324955, U.S.N.M.

**Genus SEPTASTREA** d'Orbigny.


**Type-species.**—*Septastrea subramosa* d'Orbigny, 1849 = *S. forbesi* Milne Edwards and Haime, 1849 = *Astrea marylandica* Conrad, 1841 = *Septastrea marylandica* (Conrad) Vaughan, 1904.

**SEPTASTREA MATSONI**, new species.

Plate 86, figs. 6, 6a.

Corallum incrusting surfaces of shells. The type incrusts part of the surface of a *Turritella* shell. It is probable that the fully grown corallum may be massive or ramose.
Calices irregular in form, subpolygonal or more or less elliptical in outline; slightly excavated. Diameter from 3 to 4.5 mm.; depth about 1 mm. Intervening walls narrow, acute.

Septa in two complete cycles. The primaries are rather thick and reach the calicular center; in fully developed calices all or nearly all of the secondaries also extend to the center, tertiary septa absent or very rudimentary. Margins not exsert; within the calices straight or slightly concave upward. There are no recognizable dentations, but on the septal edges and faces there are many rather large granulations. Interseptal loculi wide and open.

Columella false, formed by the fusion of the thickened inner ends of the principal septa. There are no trabecular septal processes.

Asexual reproduction by intercorallite budding.

Locality and geologic occurrence.—Republic of Colombia, station 7873, Gatun formation, about 0.5 km. west of Usiacuri, collected by G. C. Matson.

Type.—No. 324956, U.S.N.M.

Septastrea matsoni closely resembles young coralla of S. marylandica (Conrad) Vaughan, from the St. Marys and Yorktown formations in Virginia. It is interesting to find in Colombia a species of Septastrea that is doubtfully distinguishable from a species in the Miocene of Virginia. The fossiliferous marl that almost surrounds Usiacuri appears to be the same formation as the Gatun formation, or to be a part of the Gatun formation. Although the evidence supplied by this coral is not great, it is at least indicative of the late Miocene age of a part if not all of the Gatun formation.

Family FAVIIDAE Gregory.

Genus FAVIA Oken.


Type-species.—Madrepora fragum Esper.

FAVIA FRAGUM (Esper).

1795. Madrepora fragum Esper, Pflanzenth., Fortsetz., p. 79., pl. 64, figs. 1, 2.
1902. Favia fragum Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 90, pl. 13, figs. 1, 2.

1 See Vaughan, T. W., Anthozoa, Maryland Geol. Survey, Miocene, pp. 444-447, pl. 125, figs. 1a, 1b, 2; pl. 127, figs. 1-3; pl. 128, figs. 1, 2; pl. 129, 1901.
This species is common in Pleistocene deposits near Colon, Canal Zone.

Localities and geologic occurrence.—Canal Zone stations 5850 and 6037; Pleistocene, Mount Hope, collected by D. F. MacDonald. Throughout the West Indies, in Florida, and on the Atlantic side of Central America, where there are elevated Pleistocene reefs. Now living throughout the same area, in the Bermudas, the Azores (Quelch), and St. Vincent (collected by Mr. Cyril Crossland, specimens donated to the United States National Museum by Prof. J. Stanley Gardiner).

FAVIA MACDONALDI, new species.

Plate 102, fig. 2; plate 103, fig. 1.

Corallum massive, with a rounded upper surface (for general aspect of the upper surface (see pl. 102, fig. 2).

Calices large, oblong, elliptical or subquadrangular in outline; separated by intercorallite areas from 2 to 5 mm. across. Cavities slightly excavated. Walls thin on the upper edge, in places entirely composed of dissepiments; deeper down fairly thick.

Measurements, in millimeters, of calices of Favia macdonaldi.

<table>
<thead>
<tr>
<th>Calice</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater diameter</td>
<td>11.5</td>
<td>9.75</td>
<td>10.5</td>
<td>13.5</td>
<td>14.5</td>
<td>13</td>
<td>13.5</td>
<td>11</td>
</tr>
<tr>
<td>Lesser diameter</td>
<td>8.5</td>
<td>9.5</td>
<td>9.5</td>
<td>8</td>
<td>11.5</td>
<td>12</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

The number of septa in calice No. 4 of the table is about 38, of which 12 or 13 extend to the columella. A few rudimentary septa may have been broken so as not to be distinguishable now. In calice No. 5, 36 septa were counted, of which about 12 extend to the columella. On a polished cross section, in which every septum is clearly visible, there are 31 septa in a corallite having calicular diameters of 12.5 and 8.5 mm.; of the septa about 12 reach the columella—that is, usually every alternate or every third septum extends to the columella. In the calice the septa are thin and distant, but deeper down they are rather thick. The inner ends of the long septa are slightly thickened, suggesting that paliform lobes were present.

Costae correspond to all septa, greatly developed, long; those from one corallite extending to meet those from the adjacent corallite; members of the different cycles subequal in thickness; thicker in the wall, gradually thinning distally.

Columella composed of the fused inner ends of the septa; fairly well developed; some papillae on upper surface.

Thin endothecal and exothecal dissepiments well developed.

No clear instance of asexual reproduction was observed, but that it is by fission seems an inference warranted by the configuration of the corallites.
Locality and geologic occurrence.—Station 6587, in limestone and iron bearing sandstone, Tonosi, Panama, collected by D. F. Macdonald. This deposit is of Oligocene age (for fuller discussion, see pages 207, 555, 582). Station 6881, Antigua formation, Willoughby Bay, Antigua, collected by T. W. Vaughan.

Type.—Cat. No. 324993, U.S.N.M.

The only American fossil species at all nearly related to *Favia macdonaldi* is one from the Oligocene or Miocene of Santo Domingo, not yet described in print. It has smaller corallites and relatively more numerous septa than *F. macdonaldi*. These two species are Indo-Pacific in their affinities, there being no nearly related species in the Atlantic Ocean, with the possible exception of *F. leptophylla* Verrill, of which I have no specimen for comparison. It gives me pleasure to attach the name of Doctor Macdonald to this really handsome species of coral, which was discovered by him.

Genus FAVITES Link.


Type-species.—*Madrepora abdita* Ellis and Solander.

FAVITES MEXICANA, new species.

Plate 103, figs. 2, 2a.

Corallum massive, with more or less rounded or flattish upper surface. Type a small broken specimen, 54 by 61 mm. in horizontal diameter and 27 mm. thick.

Corallites polygonal, separated by narrow intercorallite walls which are barely 0.5 mm. thick. Diameter of corallites as follows:

<table>
<thead>
<tr>
<th>Diameter, in millimeters, of corallites of Favites mexicana.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corallite</td>
</tr>
<tr>
<td>Greater diameter</td>
</tr>
<tr>
<td>Lesser diameter</td>
</tr>
</tbody>
</table>

Calices damaged so that their depth can not be definitely ascertained, but apparently they were shallow.

There are 46 septa in a corallite 7.5 by 6.5 mm. in diameter; of these, 14 reach the columella and 23 are small or rudimentary. Usually three sizes of septa are recognizable; the tertiaries fuse to the side of the secondaries, as a rule. Even the large septa are relatively thin, not so thick as the width of the interseptal loculi. The inner ends of the principal septa are somewhat thickened and paliform lobes may have been present.
Columella trabecular, false, fairly well developed.

* Thin endothecal dissepiments abundant.

* Asexual reproduction by marginal fission.

**Locality and geologic occurrence.**—Mexico, hill 4 miles east of San Rafael Ranch, State of Tamaulipas, collected by W. F. Cummins and J. M. Sands in the Oligocene San Rafael formation of Dumble, in association with *Antiquastrea cellulosa* (Duncan) Vaughan.

**Type.**—Cat. No. 324995, U.S.N.M.

This specimen closely resembles *Astroria antiquensis* Duncan. I have a photograph (see pl. 131, fig. 4) of Duncan's type (No. 12936, Coll. Geol. Soc. London), and because of the resemblance, I furnished Mr. Dumble the name *Goniastrea (?) antiquensis* (Duncan), as given in his papers cited. Subsequent study of the photograph and further comparisons with specimens from Antigua lead me to believe that *Astroria antiquensis* is in reality a fungid coral, and is probably based on a silicified specimen of *Cyathomorpha antiquensis* (Duncan) Vaughan in which the corallites are deformed by crowding. That adjacent corallites are separated by costate intercorallites areas is clear on most of this photograph; and apparently there are both intercostal and mural synapticularae. For additional notes on *Astroria antiquensis* see page 466 of this paper.

**FAVITES POLYGONALIS** (Duncan).


Besides *F. mexicana*, the only other definitely known species of *Favites* in the American older Tertiary formations is *F. polygonalis* (Duncan) Vaughan, which is very abundant in Antigua. The calices of *F. polygonalis* are much larger than in *F. mexicana*, the smallest size usually being 15 mm., rarely as little as 14 mm. in diameter; range in diameter from the size just stated up to 23 mm. wide by 35 mm. long, an extraordinarily large calice. The lesser diameter of a calice is usually between 15 and 20 mm. The calices are excavated, depth 8 to 10 mm., separated by acute walls. Septa in 4 or 5 sizes, thin, rather distant, about 8 within 1 cm. In many specimens there is a more or less flattened zone around the columellar fossa, which is bounded by the rather steep inner ends of the septa. In *F. mexicana*, 9 septa were counted within a linear distance of 5 mm., being twice as many within the same distance as there are in *F. polygonalis*. Cooke and Mansfield collected in the base of the Chattahoochee formation, station 7078, 8 miles below Bainbridge, Georgia, a species of *Favites* that seems to be the same as the Antiguan specimens of *F. polygonalis* with small calices.

---

1 See p. 206 for additional notes.
Genus GONIASTREA Milne Edwards and Haime.


Type-species.—Astrea retiformis Lamarck.

GONIASTREA CANALIS, new species.

Plate 91, fig. 4.

Corallum massive, rounded or flattened on the upper surface, forms masses 15 cm. or more in diameter.

Calices joined directly by their walls, shallow, polygonal deformed; lesser diameter of adult calices about 3.5 mm., greater diameter from 3.5 mm. up to 5.5 mm.

Septa about 42, in a calice 3.5 mm. wide by 4 mm. long; of these 11 extend to the columella, and there are about 21 small (rather rudimentary) septa. The inner ends of the smallest septa are usually free; but the septa of the intermediate size fuse to the sides of the members of lower cycles, and in places a small septum fuses to the side of a member of a lower cycle. As is normally the case in corals reproducing by fission, the septal arrangement is not definite. About 10 septa, alternately larger and smaller, were counted in a space of 2.25 mm. along the wall. At the wall the interseptal spaces are about as wide as the thickness of the larger septa. Septal faces with some granulations. Septal margins too badly damaged to permit a study of their characters.

Columella false, fairly well developed, formed by the fusion of the inner end of the long septa.

Asexual reproduction by fission, either equal or unequal, equal fission seems more common.

Locality and geologic occurrence.—Canal Zone, station 6016, quarry, Empire, in the Emperador limestone collected by T. W. Vaughan and D. F. MacDonald.

Type.—No. 324996 U.S.N.M.

Of the species of Goniastrea previously described from the American Tertiaries, G. variabilis Duncan¹ from the upper Eocene St. Bartholomew limestone, French West Indies, has larger calices, about 5 mm. wide, and as it has about 40 septa to a calice, the septa in it are less crowded than in G. canalis. I collected in the Oligocene of Antigua, in the Antigua formation, a species of Goniastrea, that is evidently the same as Stephanocoeenia reussi Duncan.² This differs from G. canalis only by the absence of rudimentary septa between the larger septa. The two forms, although closely related, seem to represent distinct species.

¹ Geol. Soc. London Quart. Journ., vol. 29, p. 557, pl. 21, fig. 11, 1873.
² Idem, vol. 34, p. 19, pl. 2, fig. 1, 1887. I have excellent photographs of Duncan's type, which is No. 5011, Brit. Mus. Nat. Hist.
Genus MAEANDRA Oken.


Type-species.—Madrepora labyrinthiformis Linnaeus.

MAEANDRA ANTIGUENSIS, new species.

Plate 103, figs. 3, 4, 4a.

The general habit of the corallum is similar to that of Maeandra clivosa (Ellis and Solander), that is, the upper surface is more or less lobulate, not rather uniformly rounded or domed as M. strigosa (Dana). A view of the upper surface of each cotype is shown on plate 103, figures 3, 4. Valleys sinuous, relatively long, as much as or more than 26 mm. in length; width from 3.5 to 5.5 mm., about 4.25 mm. usual; depth about 2 mm. Collines with narrow, acute or subacute summits, the septa sloping away at an angle of about 45°. Adjacent valleys are usually separated by simple walls; in places separate mural edges are distinguishable, but in such instances the distance between the walls is less than 0.5 mm.

Septa decidedly crowded, 8 or 9 long septa and as many intermediate short septa within 5 mm., that is, from 32 to 36 septa, alternately short and long, within 1 cm. The long septa extends to edge of the columellar fossa; the intermediate septa are about half as long. Septal margins finely dentate, about 10 small teeth on the long septa; slope downward and inward at an angle of about 45°, as previously stated. Inner ends of long septa more or less thickened, some appear to bear paliform lobes, fused by lateral expansions and processes at the edge of the columellar fossa.

Columella composed of axial septal processes, which are usually more or less flattened and curled. Calicinal centers indistinct.

Thin, crowded, endothecal dissepiments abundant.

Localities and geologic occurrence.—Antigua, station 6881, Antigua formation, Willoughby Bay, cotypes, 2 specimens, collected by T. W. Vaughan.

Panama, station 6587, Tonosi, a broken specimen, collected by D. F. MacDonald.

Cotypes.—No. 325003, U.S.N.M.

Maeandra antiquensis is very close to M. clivosa. The principal differences seem to be the steeper margins and the thicker intercorallite walls, and the slightly wider and deeper valleys of M. clivosa. The cotypes of M. antiquensis were compared with 33 small specimens of M. clivosa and the differential characters indicated appear valid.

The specimen obtained by Doctor MacDonald is only a fragment, but as the cross-section of the corallites and walls and the septal
characters agree with *M. antiquensis*, there is no reasonable doubt as to its belonging to that species.

**MAEANDRA PORTORICENSIS**, new species.

Plate 107, figs. 1, 1a.

Corallum massive, composed of long valleys, from 5.5 to 9 mm. wide, and about 3.5 mm. deep, separated by acute collines. Walls in the collines, rather thick but simple.

Septa, rather thick, crowded, about 10 in 5 mm., or 20 to the centimeter. As a rule alternately shorter and longer, but in some places they are equal. At the wall usually equal in thickness. The inner ends of some septa are enlarged, and there are indications that such septa bear upright paliform teeth. Margins dentate. Calicinal centers indistinct.

Columella absent.

**Locality and geologic occurrence.**—Four miles west of Lares, Porto Rico, Pepino formation, collected by R. T. Hill.

**Type.**—No. 325004, U.S.N.M.

**Remarks.**—*Maeandra portoricensis* is very close to an undescribed species from the St. Bartholomew Eocene, to which Duncan erroneously applied the name *Manicina areolata* (Linnaeus). The difference seems to lie in the former having straighter valleys (a character of very little value), and thicker septa and walls.

**MAEANDRA DUMBLEI**, new species.

Plate 104, figs. 1, 1a.

Corallum massive, upper surface gradually curved, without gibbosities. The type, a segment of a head, is 63 mm. long, 57 mm. wide, and 45 mm. thick.

Valleys straight or curved; length from 5 mm., the diameter of a solitary calice, up to 30 mm. or even more; width from 3 to 5 mm.; depth 1.5 mm. or less, the valleys are very shallow, almost superficial Collines flat or furrowed along the top; width from 1.5 to 2.5 mm. Each of two adjacent series usually with its own separate wall, the walls separated on top by a slight depression which is crossed by costae. The colline characters are those characteristic of *Diploria*, which is typical *Maeandra*.

Septa rather distant, 9 within 5 mm. or 18 to 1 cm.; subequal or alternately longer and shorter, the shorter usually almost reaching the columella; no rudimentary septa except in young calices; outer septal ends thick. Septal margins broken in the type, but the trabeculae indicate fairly large dentations, about 5 on a long septum outside the distinct, thickened, palar lobe.

Columella composed of septal processes, only slightly developed. Calicinal centers distinct or obscure.
Locality and geologic occurrence.—Mexico, hill one mile east of San Jose de las Riascas ranch, State of Tamaulipas, collected by W. F. Cummins and J. M. Sands, in the Oligocene formation to which Mr. E. T. Dumble applied the name "San Fernando beds," later changed to San Rafael beds. Antiquastrea cellulosa (Duncan) Vaughan was also collected at this locality.

Type.—No. 325005, U.S.N.M., presented by Mr. E. T. Dumble.
This species groups with the living West Indian Maeandra labrinthiformis (Linnaeus), the genotype, which has far more crowded septa, and with M. bowersi Vaughan, from Carrizo Creek, California, which has wider intercorallite areas, deeper valleys, and fewer long septa to the centimeter.

MAEANDRA AREOLATA (Linnaeus).
1902. Maeandra areolata Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 81, pl. 11, figs. 1, 2; pl. 12, figs. 1, 2, 3.

Common in the Pleistocene marl of Mount Hope near Colon, Canal Zone.

Locality and geologic occurrence.—Canal Zone, stations 5850 and 6039, Mount Hope, collected by D. F. MacDonald.
This species is a common fossil in the Pleistocene coralliferous deposits and in areas of living reefs in the Caribbean region and Florida. M. areolata is not a true reef coral. It thrives best on the flats behind the reefs or in water 10 to 12 fathoms deep off the reefs proper. As it has no firm basal attachment, it can not resist the impact of the waves of rough seas.

MAEANDRA CLIVOSA (Ellis and Solander).
1902. Macandra agassizii Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 80, pl. 14, figs. 1, 1a.

Locality and geologic occurrence.—Costa Rica, station 6251, Monkey Point, in a slightly elevated Pleistocene reef, collected by D. F. Mac-

Donald. This species is general in the elevated Pleistocene reefs and in the areas of living reefs in the Caribbean region and in Florida. It is one of the most abundant species on the living Bahamian reefs, but appears not to occur in the Bermudas.

**MAEANDRA STRIGOSA** (Dana).


1902. *Meandra cerebrum* Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 74, pl. 10, fig. 4; pl. 12, fig. 4; pl. 14, figs. 4, 5.


I can not at all agree with Professor Verrill’s application of Ellis and Solander’s name “*cerebrum*” to this species. There are three large, massive species of *Maeandra* in the West Indies and Florida, namely, *M. labyrinthiformis* (Linnaeus), *M. clivosa* (Ellis and Solander), and *M. strigosa* (Dana). I applied to *M. strigosa* a varietal name proposed by Le Sueur, but Professor Verrill expressed doubt as to Le Sueur’s having meant the species under consideration. There is good evidence that Ellis and Solander did not intend *Madrepora cerebrum* for this species, for they applied the name *Madrepora labyrinthica* to it and figured it. As they applied names to two of the identifiable species, it is probable that they intended *Madrepora cerebrum* for the third species, that is, for *Madrepora labyrinthiformis*, of which *Diploria cerebriformis* (Lamarck) M. Edwards and Haime is a synonym.

Under these circumstances, the proper course to pursue evidently is to take the first name concerning which there is no doubt. Choice then fall on *Meandrina strigosa* Dana, the type of which is in the United States National Museum.

**Locality and geologic occurrence.**—Costa Rica, station 6251, Monkey Point, in the slightly elevated Pleistocene reef, collected by D. F. MacDonald. This species is general in the Pleistocene and living coral reefs of the Caribbean region, Florida, and the Bahamas, and is found living in the Bermudas. It is one of the two most important massive reef-building species in Florida and the West Indies; the other of the most important species is *Oribicella annularis* (Ellis and Solander).
Genus LEPTORIA Milne Edwards and Haime.


Type-species.—Meandrina phrygia Lamarck = Madrepora phrygia Ellis and Solander.

LEPTORIA SPENCERI, new species.

Plate 109, figs. 2, 2a, 3.


Corallum more or less explanate, with a flatish, undulate upper surface.

Valleys long and sinuous, shallow, from 3.25 to 5 mm. wide, separated by narrow, but strong colline walls.

There are 8 or 9 long septa within 5 mm., 18 to 19 within 1 cm. These are rather stout and extend from the wall to the columellar fossa; somewhat thickened in the wall and on their inner ends, where there appear to be paliform knots or lobes. Usually between each pair of larger septa is a very thin septum, which is either short or long.

The columella is stout and lamelliform.

Locality and geologic occurrence.—Cuba, station 3473, Río Canapu, crossing of Manassas trail, Oriente Province, Cuba, collected by Dr. Arthur C. Spencer, for whom the species is named. Cyathomorpha tenuis (Duncan) was obtained at the same place. The geologic horizon, therefore, seems to be that of the Antigua formation of Antigua; but Dr. J. A. Cushman reports Orthoptritgmina from the same station, and suggests that the formation exposed there is of upper Eocene age.

The specimen from Antigua referred to by Duncan as "Meandrina sp." seems to belong to L. spenceri, according to two photographs I have of Duncan’s original specimen, No. 12946, coll. Geol. Soc. London. Duncan’s specimen has a distinctly lamellate columella.

Type.—No. 324968a, U.S.N.M. (pl. 109, figs. 2, 2a).
Paratype.—No. 324968b, U.S.N.M. (pl. 109, fig. 3).

There is no other known species from the West Indies to which L. spenceri is nearly related. It has closer affinities with the Indo-Pacific species L. phrygia and L. gracilis. L. spenceri has about the same number of septa to the centimeter as Meandrina antiquensis, but it differs from M. antiquensis in having shallower valleys, stouter interserial walls, and its columella is distinctly lamelliform.

Genus MANICINA Ehrenberg.

1902. Manicina Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 84.

Type-species.—Madrepora gyrosa Ellis and Solander.
MANICINA GYROSA (Ellis and Solander).


Locality and geologic occurrence.—Canal Zone, station 5850, Pleistocene, Mount Hope, collected by D. F. MacDonald.

Costa Rica, station 5884b, probably Pleistocene, Moin Hill, collected by D. F. MacDonald.

This species is general in the elevated Pleistocene and on the living coral reefs of the Caribbean area and in Florida. Usually specimens are not abundant, but can nearly always be found in both the Pleistocene and living reefs.

There is in the Antigua formation of Antigua a very handsome species of *Manicina*, which is of interest in showing the presence of the genus in American Tertiary deposits of middle Oligocene age.

MANICINA WILLOUGHBIENSIS, new species.

Plate 104, figs. 2, 2a; plate 105.

Corallum attached by a more or less centrally placed basal peduncle, from which the lower surface slopes upward and outward, upper surface curved or flattish. Common wall thrown into rounded corrugations, which are narrow at the lower end, but widen with outward growth until they may be 15 mm. across, height as much as 7 mm. Besides the corrugations, the lower surface is costate; large, low rounded costae about 1 mm. apart, with an intermediate smaller costa between each pair of larger. There is no vestige of epithea. (There are only occasional shreds of epithea on the lower surface of *M. gyrosa*.)

Valleys long and sinuous; from 7 to 16 mm. wide, between 10 and 11 mm. usual; depth 8 to 10 mm. Colline submits narrow, usually from 1 to 1.5 mm. wide, but the walls of adjacent series are nearly always distinct, being separated by a narrow furrow, against the sides of which the outer ends of the septa terminate.

Septa from 19 to 22 to 1 cm., one-half of which are small and rudimentary; the larger septa are thin and are arranged in 2, 3, or 4 sizes. Near the top of the wall all septa are narrow and steep through a distance of about 3 mm., below which the larger septa widen by a slope of about 45°; their inner edges fall steeply, in places perpendicularly, to the bottom of the axial furrow. There are no definitely developed paliform lobes, but in places the septal margins rise upward just outside the steep fall into the axial fossa. Denta-
tions on the septal margins small and serrate, not prominent. Septal faces with small granulations.

Columella very poorly developed or absent; calicinal centers as a rule fairly distinct, range from 9 to 21 mm. apart.

Thin endothecal dissepiments well developed.

Locality and geologic occurrence.—Antigua, station 6881, Wil- loughby Bay, (cotypes), and at other localities in the Antigua formation, Antigua, collected by T. W. Vaughan.

Type.—No. 325006a, U.S.N.M.

Paratype.—Cat. No. 325006b, U.S.N.M.

This species is closely related to the living *Manicina gyrosa* of the Caribbean and Floridian regions. It has narrower collines, because the septa are narrow in their upper part; it has much more numerous septa; and the septa of *M. gyrosa* have far more exsert-margins.

The only European species, known to me, with which comparison will be made is *Diploria intermedia* Michelotti from the Oligocene of Sassello, Liguria (specimen so labelled, received from the Museum of Natural History at Turin, No. 156300, U.S.N.M.). This specimen, although it has the aspect of *Diploria* (precise synonym of typical *Maeandra*), is in my opinion really a species of *Manicina*, for the lower surface is corrugate and there is no epitheca, while there is a complete, concentrically striate epitheca on the base *Maeandra* ("*Diploria*") *labyrinthiformis*. The costae on the base of *Diploria intermedia* are similar to those of *Manicina*. Besides the characters already mentioned, the calicinal centers in *D. intermedia* are more distinct than in the type-species of *Diploria*. I will therefore designate Michelotti's species *Manicina intermedia* (Michelotti). This species has narrower (3.5 to 7 mm. wide), shallower (2.5 to 3 mm. deep), valleys, and thicker septa than *M. willoughbiensis*, and there are distinct, thickish paliform lobes on many long septa. Although the two species are distinct, the genus to which they belong was coincident in the Oligocene of southern Europe and of the West Indies. D'Achiardi has described two species of this genus as *Colpophyllia taramellii* and *C. flexuosa* from the Eocene of Friuli.

Genus *THYSANUS* Duncan.

1863. *Thysanus Duncan*, Geol. Soc. London Quart. Journ., vol. 19, pp. 430, 439, pl. 13, figs. 3a, 3b, pl. 16, figs. 6a, 6b.


Type-species.—*Thysanus excentricus* Duncan (Geol. Soc. London Quart. Journ., vol. 19, p. 439, pl. 16, figs. 6a, 6b).

Duncan included two species in this genus at the time he described it, designating neither one as the type. *Thysanus corbicula* occurs first in the paper, but as specimens of it are not accessible for study,
I have selected as the genotype the second species, *Thysanus excentricus*, of which I have seen nearly 700 specimens.

**Thysanus aff. T. EXCENTRICUS** Duncan.


Apparently the tall variant of *T. excentricus* is represented by casts in material from Cuba.

*Locality and geologic occurrence.*—Cuba, station 3439, in the La Cruz marl, first railroad cutting east of La Cruz, near Santiago, collected by T. W. Vaughan.

**Thysanus Hayesi**, new species.

Plate 77, figs. 3, 3a, 3b.

The type is much damaged, but the three views on plate 77, figures 3, 3a, 3b, give an idea of its form. The corallum, which was about 21 mm. long, 12 mm. tall, and 13 mm. in maximum diameter, is relatively wide, and is unilateral.

The costae are decidedly prominent, 1 mm. or more tall at the mural edge, and are distant, about 2 mm. between the summits of adjacent costae. Their edges are coarsely and irregularly dentate, the dentications compressed transversely to the septal planes, and secondarily spinulose. Toward the base of the corallum the costae become less prominent and are obsolete on the base. There are no distinct secondary costae.

Nearly all of the septa extend to the columella, they are distant and rather thin; intermediate small septa are rare. Margins dentate. Faces with sharp ridges and coarse granulations.

Columella trabecular and obscurely lamellate.

Endothecal dissepiments abundant, thin.

*Locality and geologic occurrence.*—Cuba, station 3461, Gorge of Yumuri River, Matanzas, lower Miocene, collected by T. W. Vaughan.

*Type.*—No. 324994, U.S.N.M.

This species, which I am naming for Dr. C. W. Hayes, is most nearly related to *Thysanus corbicula* Duncan, but differs in its more distant, more prominent, and coarser costae.

Family MUSSIDAE Verrill.

Genus Syzygophyllia Reuss.


*Type-species.*—*Syzygophyllia brevis* Reuss.

**Syzygophyllia Hayesi**, new species.

Plate 106, figs. 1, 1a, 1b.

Corallum compressed-turbinate in form. Greater diameter 75 mm.; lesser diameter 59 mm.; height 40 mm. +. The tip of the base and
the upper part of the calice of the type are broken. Wall strong, moderately thick; with coarsely dentate costae just below the calicular edge, lower down covered by thick, finely wrinkled epitheca.

The number of septa could not be counted with certainty, there are about 200, or approximately 6 cycles. The primaries, secondaries, and tertiaries extend to the columella and are very thick, 1 mm. usual and 2 mm. occasional. The quaternaries are shorter and thinner; and the members of the fifth and sixth cycles shorter and thinner than the quaternaries according to cycle. The very thick principal septa with shorter and thinner intermediate septa constitute one of the most striking characteristics of the species. The septal margins are broken but their character can be inferred from the plan of the broken cross section. There are alternate swollen and thinner areas, showing that the septa are composed of compound trabeculae, and had coarsely dentate margins. The bases of some of the teeth were probably as much as 3 mm. in width, but a more usual width was probably between 2 and 2.5 mm.

The columella is relatively small, it appears to be entirely composed of the fused inner ends of the septa.

Locality and geologic occurrence.—Nicaragua, Brito formation (upper Eocene), on or near the Pacific coast; collected by C. W. Hayes, for whom the species is named.

Type.—No. 325009, U.S.N.M.

Two other species of Syzygophyllia are known from middle America, Syzygophyllia gregorii (Vaughan) and S. dentata (Duncan). S. gregorii was first described from the Bowden marl of Bowden, Jamaica, but also occurs in beds of equivalent age in Santo Domingo. S. dentata, which was described from the Nivajé shale of Santo Domingo, occurs stratigraphically above S. gregorii, but in deposits paleontologically closely related to the Bowden marl. Of the two species S. hayesi is more like S. gregorii, but its principal septa are thicker and its columella is less developed. Probably the most nearly related species is one collected in the Eocene St. Bartholomew limestone by Prof. P. T. Cleve, but the specimen I have seen of this is not good enough for positive identification.

MADREPORARIA FUNGIDA.

Family AGARICIIDAE Verrill.

Genus TROCHOSERIS Milne Edwards and Haime.


Type-species.—Anthophyllum distortum Michelin.

The columella in the type-species is very small, false, and more or less papillary.
TROCHOSERIS MEINZERI, new species.
Plate 106, figs. 2, 2a, 2b.

Corallum trochoid, attached by a basal peduncle. Greater diameter of calice, 59.5 mm.; lesser diameter, 41 mm.; height, 38.5 mm.; wall solid, finely and closely costate; costae low, equal or alternating in size, about 13 in 5 mm. or 26 in 10 mm. Calice, flaring, shallow, slightly excavated.

Septa very numerous and crowded, about 16 in 5 mm., 32 in 10 mm; at the calicular edge, thicker than the width of the interseptal spaces. Of the septa about every eighth seems to extend to the axial fossa, and 35 were counted around the fossa, but the number of septa probably exceeds 280. The margins are obscurely, very finely, dentate, subentire. Synapticulæ small, numerous, crowded.

Columella very small, 2 mm. in diameter, in a small fossa; a few papillae are recognizable.

Locality and geologic occurrence.—Cuba, station 7522, Mogote Peak, 0.5 mile east of east boundary of United States Naval Reservation, Guantanamo, south side of peak, altitude about 375 feet a. t., collected by O. E. Meinzer (type).

Panama, station 6587, Tonosi, collected by D. F. MacDonald.

Type.—No. 325228, U.S.N.M.

The only other species of Trochosoris described from the American Tertiary formations is T. catadupensis Vaughan \(^1\) from the Eocene at Catadupa, Jamaica. This is a much smaller species than T. meinzери and does not appear closely related.

The specimen obtained by Doctor MacDonald at Tonosi, Panama, is broken and poor, but the identification of it with the Cuban specimen seems certain.

Genus AGARICIA Lamarck.


Type-species.—Madrepora undata Ellis and Solander.

AGARICIA AGARICITES (Linnaeus).

1902. Agaricia agaricites Verhill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 146, pl. 26, figs. 2, 3; pl. 27, figs. 1, 2, 2a, 3, 3a, 5, 6, 6a, 7, 7a.

Locality and geologic occurrence.—Canal Zone, station 6039, Pleistocene, Mount Hope, collected by D. F. MacDonald, abundant.

This species in its typical form is generally present on the living West Indian and Floridian reefs, and is usual in the Pleistocene reefs of the same region.

**AGARICIA AGARICITES var. PURPUREA** Le Sueur.

1820. *Agaricia purpurea* Le Sueur, Mus. Hist. nat. Paris Mém., vol. 6, p. 276, pl. 15, figs. 3a, 3b, 3c.

1902. *Agaricia purpurea* Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 149, pl. 27, figs. 4, 4a, 4b.

1902. *Agaricia agaricites* var. gibbosa Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 148, pl. 27, figs. 1, 1a.


**Locality and geologic occurrence.**—Canal Zone, station Nos. 5849 and 6039 Pleistocene, Mount Hope, collected by D. F. MacDonald, abundant. This variety is widespread on the living reefs in the West Indies and Florida.

*Agaricia agaricites* var. *purpurea* is one of the corals on which I made many experiments at Tortugas, Florida. The following is an account of one experiment: ¹

The result of one experiment with *Agaricia* gave unexpectedly important information on the influence of environment on variation. On the piers of the Fort Jefferson dock a thin, unifacial, subcircular, or reniform *Agaricia*, attached by the center of the lower surfaces, is rather abundant. This seems to be a variety of *Agaricia fragilis* (Dana). On the reefs off Loggerhead Key an *Agaricia* of massive form, several inches in diameter and of somewhat less height, is abundant. This appears to be the same as *Agaricia crassa* Verrill. One specimen of the thin *Agaricia fragilis* form attached to a tile in June, 1910, had by June, 1911, assumed the *Agaricia crassa* growth-form. This specimen was attached by its entire lower surface and seems to have had its growth-form influenced by the wide basal attachment. It is evident that there is here one species of *Agaricia* that under different conditions assumes different growth-forms. In very quiet water it is thin, orbicular, or reniform, with a slight basal attachment at its center, while on the reefs it is more strongly attached and has a more massive growth-form. But, in the quiet waters, the massive growth-form may be produced by giving the normally thin form a wide base of attachment, or there is a reaction to contact. On the reefs, when the water is strongly agitated, there is probably a clinging of the peripheral polyp to the basal support; this causes the basal attachment to cover a larger area than in the more quiet waters; then upward growth from this wide base would produce the massive form.

**AGARICIA AGARICITES** var. **CRASSA** Verrill.

1902. *Agaricia crassa* Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 145, pl. 30, fig. 6; pl. 34, fig. 2.


As has been stated this is in reality only a vegetative growth form of Agaricia agaricites var. purpurea. It is especially abundant on the reefs off the west side of Andros Island, Bahamas.

**AGARICIA AGARICITES** var. **PUSILLA** Verrill.


**Locality and geologic occurrence.**—Canal Zone, station 6039, Pleistocene, Mount Hope, collected by D. F. MacDonald, moderately abundant. This variety was originally based on specimens from Colon, Panama.

**AGARICIA ANGUILLENSIS**, new species.

Plate 108, figs. 2, 3, 4.

Corallum rather low, consisting of crissate, divided, and lobed fronds. Height or extension from the center, 44 ± mm. Thickness, 3 to 4 mm; thinner on the edges.

Calices unifacial, subconcentrically arranged, mother calice excentric. In the type-specimen, the distance from the mother calice to the edge of the frond is 35 mm., with five rows of calices, the outermost calice 6 mm. from the margin, making 7 mm. the average distance between the rows, the distance varies from 5 or 6 to 9 mm. The lower side of the rows is very slightly swollen; the ridges are almost suppressed. Transverse diameter of calices 3 to 7 mm. On the upper side the septo-costae are directly continuous without elevation to the next series. Under side of frond finely striate.

The septa vary in number from 15 to 38, alternately larger and smaller, arranged in three cycles; 6 to 12 septa are decidedly larger and thicker than the others. The septo-costae are solid and coarse, alternately larger and smaller. Synapticulae abundant.

Calicular fossa shallow. Columella stout, composed of two or three large papillae that fuse to form an axial tubercle or an axial lamella.

**Localities.**—Island of Anguilla, West Indies; collected by P. T. Cleve.

**Type.**—University of Upsala; duplicates in the United States National Museum (Cat. No. 324971).

One of the striking characters of this species is the slight turgidity of the lower side of the calices; otherwise it closely resembles *Agaricia dominicensis*, the species next to be described.

**AGARICIA DOMINICENSIS**, new species.

Plate 109, figs. 1, 1a.

The type is a fragment of a frond, 27.5 mm. long, 23 mm. wide, and from 1 to 2.5 mm. thick on the lower edge, exclusive of the calicular
protuberances. The width of the frond as given is the true width, for the specimen is not broken on its lateral edges. Common wall solid, naked. Calices are confined to one surface. The outer surface is longitudinally finely costate; 16 costae, alternating in size, were counted within 5 mm. in two areas. The costae are low, triangular in profile, their bases meeting or with an exceedingly fine costal thread between them. These costal threads are not included in the count of costae within 5 mm. as given above. A row of small granulations along each costal edge.

Calices swallow-nest-like, tend to be arranged in concentric rows and series; lower side protuberant about 3 mm. Distance between calicular series 4 to 7 mm. In the same series adjacent calices confluent but with separate centers; isolated calices may form part of the same row. Transverse diameter of isolated calices from 2.5' to 4 mm.

Septa in largest isolated calices 24 in number, 10 of which extend to the columella; as a rule alternately longer and shorter, and alternately more and less exsert. Septal margins over the edges of the protuberant side of the calices steeply arched but not pointed.

Septo-costae with very thin edges, as a rule alternately taller and lower; 16 within a linear distance of 5 mm. The septo-costae from the upper side of a lower calice or calicular series extend as septo-costae to the next higher calice or calicular series and continue as the septa of the higher calice or series. Synapticulae are highly developed.

Columella a wide, thin, prominent, axial plate.

Locality and geologic occurrence.—Santo Domingo, station No. 7778, Rio Gurabo, zone G, collected by Miss C. J. Maury (type), associated with Placocystus variabilis Duncan.

Cuba, station 3461, gorge of Yumuri River, Matanzas, collected by T. W. Vaughan.

Type.—No. 324973, U.S.N.M., presented by Miss C. J. Maury.

Agaricia dominicensis differs from A. anguillensis by the greater tumidity and prominence of the lower lips of the calices or calicular series; in fact, the lower edge of the calices in A. dominicensis is carried upward so that usually it is as high as or higher than the upper side of the calicular aperture. It also differs from A. anguillensis in its thin, prominent, platelike columella.

The living Agaricia nobilis Verrill, found in Florida, Turks Island (West Indies), and Porto Rico, is near A. dominicensis. A. nobilis has still a more prominent calicular lip, and more prominent and strongly alternating septa and septo-costae.

---

1 Conn. Acad. Arts and Sci. Trans., vol. 11, p. 150, pl. 25, figs. 1, 2, 1902. See also Agaricia elephantotus Vaughan, U. S. Fish Com. Bull. for 1900, vol. 1, p. 219, pl. 17, fig. 1.
The three species, naming them in geologically ascending series, A. anguillensis, A. dominicensis, and A. nobilis, seem to form an evolutionary series, the lower side of the calices becoming progressively more produced and more prominent, while the alternation in the size of the septa and the septo-costae increases.

Genus PAVONA Lamarck.


Type-species.—Pavona cristata Lamarck = Madrepora cristata Ellis and Solander = Madrepora cactus Forskál.

PAVONA PANAMENSIS, new species.

Plate 110, figs. 1, 1a, 1b, 2, 2a, 3, 3a.

This species is so variable that formal descriptions of the two extremes will be presented.

The first specimen to be described (pl. 110, figs. 1, 1a, 1b) is from station 6016, Empire, Canal Zone.

Corallum massive or forming thick plates, maximum thickness of type 37 mm.

Calices in more or less definite series; diameter, about 4 mm.; distance between series as much as 3.5 mm. Intercalicular areas arched or flat.

Septa strongly alternating in size; about 10 prominent, tall septa reach the columella; between each pair of these is a lower, smaller septum, occasionally three small between two larger septa; edges of the larger septa steep around the columella fossa.

Septo-costae continuous from calice to calice, strongly alternating or in places subequal in size; synapticulae visible between them.

Columella formed by the fusion of the inner ends of the large septa; in some calices it appears to be a central tubercle.

Dissepiments well developed; 7 within 4 mm.

The next specimen (pl. 110, figs. 2, 2a) is from station 6015, also in Empire, Canal Zone.¹

Corallum forming nodular masses or encrusting dead coral or other such objects. The size and form are shown by plate 110, figures 2, 2a. Another specimen has an attached base and flat upper surface.

Calices irregularly distributed or in short, indistinct series; diameter of the apertures usually range between 2 and 3 mm., as the outline in plan is subelliptical or oval the two diameters at right angles are rarely equal in the same calice; depth about 1.5 mm.; distance apart ranges from a mere dividing wall up to 2.5 mm., about 1 mm. usual. Intercalicular areas flat between fully developed calices.

Septa, number in fully grown calices 24 to 26; of these about half or more than half extend to the columella; around the calicular edge,

¹ Compare the illustrations of this specimen with the figures of D'Achiardi's Reussastraea granulosa, Corall. eocen. Frull, p. 67, pl. 13, figs. 2a, 2b, 2c, 1875. Reussastraea is a synonym of Pavona.
they are thick and subequal, within the calice there is indefinite alternation in size, and there may be irregular grouping, but usually the small septa do not fuse to the sides of the larger. The septal margins within the calices fall steeply to the bottom of the relatively large fossa.

Septo-costae continuous from one calice to the next; they are low, subequal, and synapticulae are visible between them.

Columella formed by the fusion of the inner ends of the long septa; it is styliform in many calices, and in some it is distinctly compressed.

A specimen from station 6016, represented by plate 110, figures 3, 3A, is intermediate in its septal and septo-costal characters between the two other specimens above described.

Localities and geologic occurrence.—Canal Zone, stations 6015 and 6016, in the Emperador limestone, quarry, Empire, collected by T. W. Vaughan and D. F. MacDonald.

Cotypes.—Nos. 325232, 325334, 325335, U.S.N.M.

This species has its nearest relative in the living *P. clivosa*, from Pearl Island, Bay of Panama.

**Genus LEPTOSERIS** Milne Edwards and Haime.


**Type-species.**—*Leptoseris fragilis* Milne Edwards and Haime.

**LEPTOSERIS PORTORICENSIS**, new species.

Plate 107, figs. 2, 2A, 2B.

Corallum forming a rather thick unifacial frond. The type-specimen is a fragment and does not give a definite idea of the size to which the corallum grew. It is 45 mm. long, of the same width, and 5.5 mm. thick. The back is without calices; it is naked and finely costate, about 23 costae to 1 cm. The costae are subequal in size, alternately larger and smaller, or every fourth may be slightly larger than those intervening. The costal edges are narrower than the bases and are finely beaded. Intercostal furrows of about the same width as the costae.

Calices not very definitely arranged, occurring in clusters or in irregular transverse series. Considerable areas are without calices. Each calice is surrounded by from 6 to 9 prominent septo-costae, as tall as 2 mm., and 1 mm. thick. Between these on the upper (distal) side often there are smaller ones. New calices may originate by budding from the costate area. Diameter of fully developed calices, about 4 mm. The septo-costae in the noncaliculate areas are coarse, prominent, and equal. Number to the centimeter, 10; height as much as 1 mm.; thickness of base, as much as 0.7 mm. Edges rather acute and beaded. Intercostal furrows usually narrower than the costae. Synapticulae present.
Columella absent, or slightly developed and false.

Locality and geologic occurrence.—Porto Rico, station 3191, 4 miles west of Lares, in the Pepino formation, collected by R. T. Hill.

Type.—No. 325231, U.S.N.M.

It is possible that this species may ultimately be referred to the genus Mycedium, to which it is very close.

Genus PIRONASTREA D'Achiardi.

1875. Pironastraca D'Achiardi, Corall. eocen. del Friuli, p. 76, pl. 15, figs. 2a, 2b, 3a, 3b, 3c, 3d.

Type-species.—Pironastraea discoides D'Achiardi, from the Eocene at Brazzano, Russitz, Cormons, and Rosazzo, Italy.

The species described below as Pironastraea anguillensis is essentially typical of the genus except that the basal epitheca is incomplete, occurring only as shreds in both the type-specimens from Anguilla and in a specimen from Porto Rico, collected by Mr. Bela Hubbard, of the New York Academy of Sciences Porto Rico expedition. The columella of P. discoides, according to D'Achiardi, is a single papilla.

The following generic diagnosis is based on the two West Indian species, P. anguillensis and P. antiquensis, descriptions of which are subsequently given:

Corallum more or less massive or forming thick undulating plates which expand from a subcentral basal attachment. Lower surface mostly naked, a few epithecal shreds are present, finely costate; common wall synapticular in origin, but in places it is almost or quite solid. Upper surface caliculate.

Calices usually form subconcentric series, some are circumscribed. In the series calicinal centers either distinct, or indistinct as in Pachyseris. Separated by rounded collines, of equal slopes on both the peripheral and proximal sides; no interserial walls.

Septa lamellate, with few or no perforations; apparently some perforations near the columella, where the trabecular fusion is incomplete. Septal margins with obtuse, crowded dentations, which are compressed transversely to the septal planes, and are more conspicuous around the axial fossa, where the calicinal centers are distinct, or along the bottom of the valley where the calicinal centers are indistinct. Columella false, in places a few papillae may be recognized. Septo-costae equal in size, directly confluent across the collines.

Synapticularae greatly developed, small, crowded.

Geologic occurrences.—Oligocene of Anguilla, Antigua, Cuba, and Porto Rico.

There seems to be only one genus of corals with which comparisons need to be made. Milne Edwards and Haime\(^1\) proposed Oroseris\(^2\) for

---

\(^1\) Polyp. foss. Terr. paléozoïques, p. 130, 1851.

\(^2\) A synonym of Comoseris D'Orbigny, according to Gregory, Juras. Cor. Cutch., pp. 154-156, 1900.
a genus, designating as the type-species *O. plana* M. Edwards and Haime, which is a new name for *Agaricia sommeringii* Michelin (not Goldfuss), from the middle Oolite of Meerin and Hannonville (Meuse). A part of the description of *O. plana* is as follows: "Quelques collines minces et peu saillantes entre lesquelles on voit souvent plusieurs séries de centres calcinaux. Ceux-ci sont bien distincts et peu profonds."

The multiple series of calices between collines and the very distinct calicinal centers appear to be valid generic differences. Furthermore in the distinct calices of *Pironastraea* the columella is false but clearly papillary, whereas in *Oroseris* the columella is rudimentary. There may be additional differences in septal structure not ascertainable from the short description of the type-species of *Oroseris*.

*Pironastraea* differs from *Pachyseris* by its more distinct calicinal centers; but apparently it is the ancestor of the latter genus.

**PIRONASTRAEA ANGUILLENSIS,** new species.

Plate 111, figs. 1, 1a, 1b; plate 112, figs. 1, 1a.

Corallum forming plates as much as nearly 5 cm. thick, and more than 12 cm. across. Width of valleys measured between collines summits from 2.5 to 5.5 mm., about 4 mm. usual; height of collines above the bottom of the axial furrow or of the columella pit about 3 mm. Distance between distinct calicinal centers ranges from 3 to 4 mm.

Septa numerous, from 38 to 45 in fully developed calices, most of them extend to the axis, some grouping in 3's at the calicular ends. On a septum 2 mm. long about 10 crowded, knot like dentations. Septo-costae equal, crowded, 18 were counted within 5 mm.

The columella fossa, where the calicinal centers are distinct, is a small pit, less than 0.5 mm. in diameter.

Synapticulae abundant, crowded, 7 or more to an interseptal loculus.

**Locality and occurrence.**—Anguilla, stations 6893, 6894, 6966, Crocus Bay, T. W. Vaughan collector. A specimen from station 6966 was obtained in place between 30 and 50 feet above the base of the bluff on the west side of Crocus Bay.

Porto Rico, Lares Road, zone C, collected by Mr. Bela Hubbard of the New York Academy of Sciences Porto Rico Expedition.

**Type.**—No. 325174, U.S.N.M., pl. 111, figs. 1, 1a, 1b.

**Paratype.**—No. 325175 U.S.N.M., pl. 112, figs. 1, 1a.

---

1 Iconograph zoophytol., p. 105, pl. 23, fig. 2, 1843.
Corallum massive. Type a small specimen, 48 mm. long, 32 mm. wide, and about 30 mm. thick. Subsequently two larger specimens, apparently referable to this species, will be described.

Width of calicinal series, measured between colline summits 5.5 mm. to 7.5 mm. Valleys shallow, about 1.5 mm. deep. Collines with broader bases than in \textit{P. anguillensis}, some colline-profiles are more triangular than in the latter species. Distance between calicinal centers in the same series about 4.5 mm.

Septa numerous, about 48 in a calice 6 mm. in diameter, between 12 and 14 extend to the axis, other septa shorter, irregularly fused in pairs or in groups of three. Around the calicular edges all septa are subequal; their thickness about the same as or slightly less than the width of the interseptal loculi. The septal margins with bluntish, crowded dentations, 20 were counted in a length of 3.4 mm.

Septo-costae subequal, crowded, each of three counts in different places gave 22 to 5 mm. of linear distance. Synapticulae numerous, crowded, 9 were counted in a distance of 2.5 mm. along the course of a septum.

Columella false, papillary, not sunken in a definite pit.

\textit{Locality and occurrence}.—Antigua. Type (pl. 112, figs. 2, 2a) from the Antigua formation, station 6854, Rifle Butts, T. W. Vaughan collector; and station 6880, west side of Otto's estate, T. W. Vaughan collector. The last-mentioned specimen is silicified and broken, but as it presents the general aspect of the type of \textit{P. antiquensis}, and has from 18 to 22 septo-costae to 5 mm., the specific identity of the two specimens appears certain.

Cuba, station 7514, about 5 miles nearly due east of monument H 4 on the east boundary of the United States Naval Reservation, Guantanamo, altitude about 400 feet a. t., collected by O. E. Meinzer. The latter specimen is represented by plate 113, figures 1, 1a.

\textit{Type}.—No. 325177, U.S.N.M.

\textit{Paratype}.—No. 325179, U.S.N.M.

\textit{P. antiquensis} differs from \textit{P. anguillensis} in its more massive growth form, wider valleys, lower collines, more numerous septo-costae, and the absence of a columella pit. The calicinal centers in the specimen from station 7514, near Guantanamo, Cuba, are usually joined by an axial septum extending from one to the next center, producing the appearance of an axial lamella. The lamella, however, is not a columella, for the calicinal centers are usually recognizable, and when they are distinct there are a few papillae in the columnellar area. It appears that the well-developed axial lamella is one of the specific characters, but the suite of specimens, three in all, is too small to be sure of this.
Genus SIDERASTREA de Blainville.


1815. Astrea Oken, Lobsch. der Naturg., Th. 3, Abth. 1, p. 75.


1890. Siderastrea Verrill, In Dana’s Corals and Coral Islands, ed. 3, p. 424.


Type-species.—Madrepora radians Pallas.

In the last publication cited in the synonymy given above I said in discussing the genus Pavona: Two of these species [of Pavona], P. clavus Dana and Siderastrea maldivensis Gardiner, have been referred to the genus Siderastrea, type species Madrepora radians Pallas; and they superficially resemble that genus. Upon closer scrutiny an additional resemblance is found in the distinct, continuous corallite walls, but there are important differences. The septal margins of the species [of Pavona] discussed in the foregoing remarks are entire or microscopically dentate, and the septal lamellae are absolutely solid. In the 5 or 6 species, specimens of which I have studied, there is persistently a lamellate columella or a compressed styliform columella. The septal margins of Siderastrea are pronouncedly dentate, the dentations rounded, one dentation corresponding to each septal trabecula. The younger septa are distinctly perforate, the perforations not being confined to the inner edges."

It would seem that this clear statement of certain characters of Siderastrea should have stopped the erroneous reference to it of such species of Pavona as P. clavus Dana and P. maldivensis (Gardiner) Vaughan, yet Felix in his Die fossilen Anthozoen aus der Umgebung von Trinil (Java) persists in the erroneous reference to it of species belonging to another genus or other genera. He places in Siderastrea (misspelling the generic name) S. blanckenhorni, new species, which from his figures and his description, is certainly not Siderastrea, S. columnaris, new species, S. maldivensis Gardiner, and S. micromata, new species, no one of which belongs to Siderastrea.

This is not the only misuse or misunderstanding of the generic names of corals by Felix in the paper cited. In others of his publi-

---

1 For a discussion of the known living species of Pavona, see Vaughan, Some shoal-water corals from Murray Island (Australia), Cocos-Keeling Islands, and Fanning Island, Carnegie Inst. Washington Publ. 213, pp. 122–139, 1913. Notes on P. maldivensis (Gardiner) Vaughan are given on page 138, and it is illustrated by plate 56, figs. 3, 3a, 3b.
3 Idem, plate 27, figs. 6, 6a.
4 Idem, p. 333.
cations, he does not follow the accepted canons of systematic zoology, an instance being in his application\(^1\) of \textit{Parastrea},\(^2\) originally named by Milne Edwards and Haime, to a species, \textit{Parastrea grandiflora}, erroneously referred to \textit{Parastrea} by Reuss. There are in the United States National Museum specimens of this species received from Professor Felix; they belong to a genus of fungid corals related to \textit{Diploastrea} Matthai, but I am not decided as to their generic identification. However, they most emphatically do not belong to \textit{Parastrea}. Other instances of similar errors in Felix’s work might be mentioned.

In order to present properly the systematic affinities of the species of \textit{Siderastrea} that need to be considered in this paper, it is desirable to discuss all Oligocene and later species known from the West Indies, Central America, and the southeastern United States. \textit{S. stellata} Verrill from Brazil is also included.

\textit{Siderastrea} is represented in the living Caribbean and Floridian fauna by \textit{S. radians} (Pallas) and \textit{S. siderea} (Ellis and Solander). The fossil species hitherto described from the West Indies are as follows:

\begin{itemize}
  \item \textit{S. conferta} (Duncan)\(^3\) (as \textit{Isastraea}) from Antigua.
  \item \textit{S. crenulata} var. \textit{antillarum} Duncan \(^4\) from Santo Domingo.
  \item \textit{S. grandis} Duncan \(^5\) (syn. of \textit{S. siderea}) from Jamaica.
  \item \textit{S. pariana} (Duncan)\(^6\) (as \textit{Astraea}) from St. Croix, Trinidad.
  \item \textit{S. confusa} (Duncan)\(^7\) (as \textit{Isastraea}) from St. Croix, Trinidad.
  \item \textit{S. hexagonalis} Vaughan\(^8\) from the Eocene Clayton limestone, Prairie Creek, Alabama.
  \item \textit{S. clarki} Nomland \(^9\) from the Oligocene \textit{Agasoma gravidum} zone, Contra Costa County, California.
  \item \textit{S. mendenhalli} Vaughan,\(^10\) Pliocene, Carrizo Creek, California.
  \item \textit{S. californica} Vaughan,\(^11\) Pliocene, Carrizo Creek, California.
  \end{itemize}

Neither the Californian species nor the Eocene \textit{S. hexagonalis} will be specially considered here.

Duncan’s \textit{S. crenulata} var. \textit{antillarum} is probably a synonym of \textit{S. siderea}; his \textit{S. grandis} is certainly a synonym of \textit{S. siderea}. Addi-

---

\(^1\) Palaeontographica, vol. 49, p. 181, 1903.


\(^4\) Idem, p. 435.

\(^5\) Idem, p. 411, pl. 16, figs. 5a, 5b.


\(^7\) Idem, p. 14, pl. 2, fig. 6.

\(^8\) U. S. Geol. Survey Mon. 39, p. 155, pl. 18, figs. 1-4, 1900.


\(^10\) U. S. Geol. Survey Prof. Pap. 98-T, p. 374, pl. 101, figs. 3, 3a, 4, and var. \textit{minor}, Idem, p. 375, pl. 102, fig. 1, 1917.

\(^11\) Idem, p. 375, pl. 102, figs. 2, 2a, 3, 4.
tional specimens of *S. pariana* and *S. confusa* from St. Croix, Trinidad, are needed before those species can be adequately characterized, but the original descriptions of them are included. Therefore, the following old names are adopted in the discussion here given:

*S. radians* (Pallas), living.

*S. siderea* (Ellis and Solander), living; fossil in the Miocene Bowden marl of Jamaica and in deposits of similar age in Santo Domingo and Cuba.

*S. stellata* Verrill, living.
*S. conferta* (Duncan), fossil.
*S. pariana* (Duncan), fossil.
*S. confusa* (Duncan), fossil.

I am describing as new five species and one variety as follows:

*S. pourtalesi*, upper Oligocene or lower Miocene of Santo Domingo.

*S. pliocenica*, Pliocene Caloosahatchee marl, Florida.

*S. hillboroensis*, lower Miocene Alum Bluff formation, Florida; Oligocene Chattahoochee formation.

*S. silecensis*, Oligocene Tampa formation, Florida, and Chattahoochee formation, Florida and Georgia; lower Miocene, Alum Bluff formation, Florida.

*S. dalli*, Pliocene Caloosahatchee marl, Florida.

These species may be divided into five groups on the basis of the number of septa. The first group has only three cycles of septa and contains one species; the second group has the fourth cycle of septa incomplete; the third normally has four complete cycles and occasionally a few quinaries; the fourth has uniformly a few quinaries in fully developed calices; the fifth has from 12 to 43 quinary septa in fully developed calices. The following synopsis of some striking characters may aid in recognizing the different species:

**SYNOPSIS OF CHARACTERS OF SPECIES OF SIDERASTREA.**

Only 3 cycles of septa ................................................. 1. *S. pariana* (Duncan).
Fourth cycle of septa incomplete.

- Columellar fossa a pronounced pit.
- Calices rarely 4 mm. in diameter.  
  - Columella composed of from 1 to 3 fused papillae. 2. *S. radians* (Pallas).
  - Calices deformed, lesser diameter 2 to 3 mm., length as much as 6.5 mm., or more.
  - Columella finely papillary 3. *S. stellata* Verrill.

- Columellar fossa only moderately deep.
- Calices 2.5 to 5 mm. in diameter.
  - Columella false 4. *S. confusa* (Duncan).
- Columellar fossa shallow, calices shallow and open.
  - Wall delicate, interseptal loculi relatively open. 5. *S. pourtalesi*, new species.
  - Wall stout, interseptal loculi narrow, largely closed by granulations and syapticulae (fourth cycle complete in some large calices).

Fourth cycle of septa normally complete, a few quinaries in large calices.

Columellar fossa not very deep; lesser diameter of calices from 4 to 6 mm.; tertiary septa fuse to secondaries distinctly back from the columella; about 4 septal teeth to 1 mm. (fourth cycle of septa incomplete in some calices).

7. S. hillsboroensis, new species.

Columellar fossa deep, rather narrow at the bottom; calices 3 to 5 mm. in diameter; tertiary septa normally fuse to secondaries distinctly back from the columella; 6 to 8 septal teeth to 1 mm. . . . 8.1 S. sideraea (Ellis and Solander).

Four complete cycles and normally some quinaries septa.

Columellar fossa rather deep and wide bottomed; calices 5 to 7, even 8 mm. in diameter; tertiary septa fuse to secondaries near or at the columella; septa and septal teeth less numerous than in No. 11; septal teeth not transversely compressed and frosted as in No. 10 . . . . . . . . 9. S. silicensis, new species.

Columellar fossa shallow, calices widely open; calices 5 to 6.5, even 8 mm. in maximum diameter; tertiary septa fuse to secondaries near the columella; septal teeth numerous, crowded, transversely compressed, finely frosted . . . . . . . . 10. S. dalli, new species.

Four complete cycles of septa and many quinaries.

Columellar fossa shallow or rather deep and narrow; calices from 4.25 to 6, up to 8.5 mm. in maximum diameter; septa numerous, up to 91 in large calices, thin crowded; septal teeth small, crowded . . . . . . . . 11. S. conferta (Duncan).

The foregoing is intended to aid in the preliminary placing of a species with reference to the other members of the genus, and is not a complete summary of characters. The details of the mural characters, the relative thickness and crowding or remoteness of the septa, the septal trabeculae, the dentation of the septal margins, the distribution and size of the synapticulæ, and the details of the columella, all need to be considered. For these additional details the descriptions and the rather elaborate illustrations must be consulted.

1. SIDERASTREA PARIANA (Duncan).


Original description.—"The corallum is massive and rather tall and its upper surface is flat. The corallites are slender, tall, crowded, and equal. The calices are small, and the fossa is rather deep. The columella presents one rounded process. The septa are in six systems and there are three cycles; they are alternately large and small, and the smallest usually unite to the large septa; they are faintly dentate. The laminae present on their sides sets of granules in horizontal but wavy lines. The endotheca is rare. The diameter of the calices is one-twelfth inch [2 mm.]"

Locality.—St. Croix, Trinidad.

1 S. siderea var. dominicensis, new variety, is like S. siderea except that it has larger calices and correspondingly a number of quinary septa.
2. SIDESTREA RADIANS (Pallas).

Plate 114, fig. 1.

1834. Astréa astroites Ehrenberg, Cor. Roth. Meer., p. 95 (of separate).
(Not Explanaria galaxea Ehrenberg= Cyphastraea savignyi Milne Edwards and Haime.)
1846. Siderina galaxea Dana, U. S. Expl. Exped. Zooeh., p. 218, pl. 10, figs. 12, 12b, 12c (not figs. 12a, 12d).

This is one of the best known species of Antillean corals. Its most important characters may be summarized as follows: Calices more or less deformed or subhexagonal; diameter from 2 to 4 mm.; septa in 3 complete cycles; fourth cycle normally incomplete. Outer part of septal margins flattened above, inner part falls steeply, almost perpendicularly, to the bottom of the columellar fossa; septal dentations relatively coarse, 12 to 14 on long septa. Columella usually composed of two or three solidly fused papillae. All of these characters are shown on plate 35, figure 1.

Locality and geologic occurrence.—Canal Zone, stations 5850 and 6039, Pleistocene, Mount Hope, collected by D. F. MacDonald. Common on the living and Pleistocene reefs and reef flats of eastern Central America, the West Indies, and Florida; on the living reefs and reef flats of the Bermudas.

37149—19—Bull. 103—17
3. SIDERASTREA STELLATA Verrill.

Plate 115, figs. 2, 2a, 2b.


This species resembles S. radians in usually having the fourth cycle of septa incomplete, in the flattened outer margins and very steep inner margins of the septa, and a deep columellar fossa. It differs, as a comparison of the figures shows, by having deeper calices, which may be meandriform, by its more coarsely dentate septa, and by its much less developed, finely papillate columella. It is a very distinct species and is not a synonym of S. siderea, as Gregory supposed.¹ The specimen figured (pl. 115, figs. 2, 2a, 2b) is No. 36859, U.S.N.M.

Locality and geologic occurrence.—"It is widely distributed on the coast of Brazil; Bahia, Abrolhos reefs, etc.;"¹ living.²

4. SIDERASTREA CONFUSA (Duncan).


Original description.—"The corallum is short, and covers much space. The corallites are very irregular in size, and the calices also. The fossa is moderately deep, and presents a false columella. The septa are thick, and unite laterally in sets of three, four, or six. The free margin is faintly dentate. The largest calices have four cycles of septa in six systems; but usually only three cycles are found in smaller calices. The diameter of the calices is from one-tenth to four-tenths inch 2.5 to 10 mm."

Locality.—St. Croix, Trinidad.

5. SIDERASTREA POURTALESI, new species.

Plate 115, figs. 1, 1a.


The specimen identified by Pourtalès as Siderastrea galaxea (Ellis and Solander)=Siderastrea radians (Pallas), the older name, is not that species, but as it is closely related the following is a comparative diagnosis.

In growth, form, size of calices, and septal arrangement, Siderastrea pourtalesi is similar to S. radians, but the wall is very thin, even interrupted, zigzagging between the thick outer ends of the wedge-shaped septa. The intersectal spaces are relatively wide and are

conspicuously open. Synapticulae are present, but they are rather scarce, and are delicate. The delicate wall and synapticulae and the relative openness of the interseptal loculi constitute striking differences from the appearance presented by S. radians.

Locality.—Santo Domingo, collected by W. M. Gabb.

Type.—Museum of Comparative Zoology.

6. SIDERASTREA PLOCEHICA, new species.

Plate 118, figs. 2, 2a, 2b, 3.

Twelve specimens, all of them excellent, serve as the basis of the following specific diagnosis. One is designated as the type in the collection.

The corallum usually forms a rather small rounded head, but a few are elongate, and one is flattish, sublamellate. The heads attain a diameter of between 45 and 50 mm. About a third of the specimens show signs of having been attached or have not calices uniformly distributed over the whole outer surface of the corallum.

The corallites are rather large, and are rather uniformly hexagonal or pentagonal; usual diameter is 4.5 to 5 mm.; intercorallite wall distinct and zigzag in plan. The calices are shallow or superficial.

Septa thick, usually in almost four complete cycles, the fourth cycle is as a rule absent in one or two systems. Septal margins dentate, each dentation rounded, corresponding to the upper termination of a septal trabecula, the number of dentations on a septum of the first cycle varies from 8 or 9 to 13. The length of such a septum is almost 2.5 mm. Septal grouping is as usual in the genus, the members of the first cycle are continued directly to the columellar space and do not form parts of septal groups: the members of the second cycle, also, are continued directly to the columellar space, but each member of this cycle is the middle of a septal group, the members of the third cycle bend toward it, and the members of the fourth bend toward the included member of the third. Along the course of each trabecula is a regular row of granulations, which are compressed in a plane transverse to the longitudinal course of the trabecula. Septal perforations are frequent near the inner margins of the septa, usually occurring in the intertrabecular spaces, but in places a large perforation interrupts a trabecular course. The perforations become rarer as the wall is approached. Completely imperforate septa are very rare or do not exist at all.

Both synapticulate and dissepimental endotheca is present. In places as many as four or five vertical rows of synapticulae can be distinguished. Very thin dissepiments are abundant. The wall is formed by synapticulae that are so elongated in a vertical row that
they fuse and produce a continuous wall with only an occasional perforation.

The columella is papillary, about two papillae being larger than the others. In worn specimens it is very prominent, appearing compressed styliform.

**Locality and geologic occurrence.**—Florida, Caloosahatchee River, collected by W. H. Dall; Shell Creek, Florida, collected by Doctor Griffith; Pliocene.

**Type.**—No. 325184, U.S.N.M.

**Paratype.**—No. 325185, U.S.N.M.

The most striking differences between *S. pliocenica* and *S. radians*, to which it probably has the greatest affinity, are its larger and much shallower calices. *S. californica* Vaughan from the Pliocene of Carizo Creek, California, is a nearly related species.


Plate 117, fig. 2.

**Description of the type.**—Corallum massive, composed of long, prismatic corallites. No entire corallum is available for description, but the height may certainly exceed 10 cm.

Diameter of a large corallite, 5.5 mm.; of a smaller one, 4 mm. The two measurements indicate the range in diameter.

Septa normally in 4 cycles, the fourth cycle complete or almost complete, arranged as follows: The six primaries extend directly to the columella and are free from fusion with other septa: the secondaries also extend to the columella, near which the terciaries fuse to sides of the included secondaries: the quaternaries fuse to the sides of the included tertiary system about halfway between the wall and the columella. The fourth cycle is incomplete in a few quarter systems of some calices. The primaries and secondaries are of about equal thickness; the terciaries slightly thinner, and quaternaries still thinner. The number of dentations on the septal margins was estimated from the number of septal trabeculae, as the septal margins are not preserved; it is 9 or 10.

Synapticulae well developed; in each interseptal loculus; three or four are usually conspicuous between the wall and halfway from it to the columella. Although the upper septal margins are not preserved, it seems probable that there is a flattened area between adjacent calicular fossae in perfect specimens.

Columella false, but strongly developed by the axial fusion of the inner ends of the primary and secondary septa.

**Localities and geologic occurrence.**—Station No. 4890, Tampa brickyard, 5 miles northeast of Tampa, Florida, in the Alum Bluff formation, G. C. Matson collector, the type; in the Alum Bluff formation at station No. 3836, near Alachua, Florida, T. W. Vaughan collector;
and at White Springs, Florida, T. W. Vaughan and L. W. Stephenson, collectors. Station 7076, in the Chattahoochee formation, 12 miles below Bainbridge, Georgia, on the east bank of Flint River, collected by C. W. Cooke and W. C. Mansfield.

Type.—No. 325183, U.S.N.M.

Paratype.—No. 325155, U.S.N.M.; the specimen described below.

The diagnosis of *S. hillshoroensis* was written and the figures made to illustrate it before an interesting specimen from 12 miles below Bainbridge came to my notice. This specimen, which is a subcylindrical segment of a more or less columnar corallum, has a maximum horizontal diameter of 160 mm., and a vertical thickness of 75 mm. The entire corallum was rather large. The septal margins over considerable areas are somewhat elevated around the calicular fossae and the rims are separated by depressed interspaces that in places are as much as 2 mm. across. Adjacent corallites, however, are separated by simple common-walls. The number of septa in fully developed calices ranges from a few less than to about four complete cycles, grouped as in the types of the species. The septal dentations are strikingly large. The following table gives the dimensions of several corallites, the number of septa, the number of septal teeth within 1 mm., and the character of the columella:

*Dimensions of corallites, etc., in Siderastrea hillshoroensis.*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>5 by 7.5 mm.</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>4.5 by 6.6 mm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>5.5 by 6 mm.</td>
<td>48</td>
<td>Weak. 1 mm.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>6 by 6.75 mm.</td>
<td>50</td>
<td>Do.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>5.25 by 7 mm.</td>
<td>48</td>
<td>Do.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>4.5 by 6.5 mm.</td>
<td>48</td>
<td>4 in 1 mm.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>6 by 6.25 mm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>6 by 6.5 mm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>6 by 6.25 mm.</td>
<td></td>
<td>4 in 1.5 mm.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>6 by 6.5 mm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*S. hillshoroensis* has some corallites of nearly the same size as those of *S. silecensis*, but they average smaller; it has thicker and relatively fewer septa, which fuse into groups farther from the columella; and the septal teeth are distinctly coarser.

**8. SIDERASTREA SIDERE A (Ellis and Solander).**

Plate 114, figs. 2, 3; plate 122, figs. 1, 2, 2a, 2b, 3, 3a.


This species forms much larger masses than *S. radians*, the other abundant living species of *Siderastrea* in the West Indies and Florida, and is a common exposed-reef coral. The calices average larger than in *S. radians*, usually 4 to 5 mm. in diameter, occasionally smaller, 3 to 3.5 mm. in diameter. The intercorallite walls are more acute and the septal margins are more sloping; but, as is shown on plate 114, figure 3, on some areas the corallite wall may occur in a slight depression (pl. 114, fig. 2). The septa are normally in four complete cycles, arranged as in figure 3, on plate 114. The tertiary septa fuse to the secondaries, and the quaternaries to the tertiaries nearer the wall than in *S. silecensis*, the next species to be described. The septal margins are more finely dentate than in *S. radians*, and usually the columella is distinctly, finely papillate.

The foregoing notes are on shallow-water specimens, and apply to specimens ranging in locality from Barbados to the Bahamas in the West Indies, from Central America, and from Florida. About one-half mile south of Loggerhead buoy, Tortugas, in water between 8 and 9 fathoms, I dredged three specimens of *S. siderea* that show very interesting variation. The size and shape of the calices, the character of the wall, the number of septa, and the axial fossae are as usual in the species; but the septa are thicker, the septal pectinations are more conspicuous, and the columellar papilae are solidly fused or there is a single, stout, compressed axial tubercle. A group of calices is shown on plate 122, figure 1. These specimens agree in all essential particulars with a specimen from the Bowden marl of Jamaica, a description of which follows:

*Description of specimen from Bowden, Jamaica* (pl. 122, figs. 3, 3a).—Corallum with a rounded upper surface and a flattish base: epithe-
cate around the edge. Transverse diameters, 36 by 38 mm.; height 26 mm.

Calices irregularly polygonal, excavated on top of the corallum, but shallow near its edges. Length of largest calices, 5.5 mm.; width of largest calices, 3.5 to 4 mm.; 4 to 4.5 mm. about the usual diameter; depth between 2 and 2.25 mm. The area between adjacent calicular depressions is relatively acute, the wall usually traceable along the summit as a slightly raised zigzag or straight line.

Septa thicker than the width of the interseptal loculi; four complete cycles and in the larger calices some quinaries; primaries and secondaries extend to the columella, subequal, or the primaries slightly larger; tertiaries fuse to the included secondary about two-thirds the distance from the wall to the center of the calice or very near the columella; quaternaries fuse to the included tertiary about one-third or one-half the distance from the wall to the calicular center; quinaries where present fuse to the included quaternary.

Septal margins slope gently from the wall to about half the distance toward the calicular center and then incline steeply to the outer edge of the columella. The dentations are small, crowded, and bluntish or rather acute, more pointed near the columella, compressed in planes transverse to the septal planes; 15 were counted on a septum 2.5 mm. long; in other words, 6 within 1 mm.

Synapticulae crowded near the wall, 3 within 1 mm. measured down the septal slope from the wall edge.

Columella small, false, papillary; a central, styliform papilla noticeable in many calices.

Description of a specimen collected by Miss C. J. Maury in Santo Domingo, Rio Cana, zone II (pl. 122, figs. 2, 2a, 2b).—Corallum a small mass, with a flattish base and a rounded upper surface. Diameter, 26 by 28 mm.; height, 15 mm.

Calices shallow, polygonal, usually one diameter longer than the other, separated by narrow, straight, or zigzag walls. Diameter of largest calice, 6 mm.; about 4 mm. a usual measure of the diameter.

In the largest calice (6 mm. in diameter) there are 52 septa, which, according to the usual practice of assigning septa to cycles, would represent 4 complete cycles and 4 quinary septa. Fifteen septa, 6 primaries, 6 secondaries, and 3 tertiaries, extend to the columella, and 2 other tertiaries fuse to the included secondary almost at the periphery of the columella. Where quinary septa are present it is difficult to distinguish between primaries and secondaries, and between the elongate tertiaries and the secondaries. In a calice 4 mm. in diameter the septal arrangement is more definite; there are 46 septa, the quaternaries not being developed in one quarter system. The tertiaries fuse to the secondaries either rather near
the columella and the quaternaries to the tertiaries about halfway between the wall and the columella, or somewhat nearer the columella. At the wall the thickness of the septa and the width of the interseptal loculi are nearly the same, but farther within the calice the septa are thinner and the loculi are wider.

Next the wall the septal margins are usually flattened from above, producing a flat area ranging from about 0.5 to about 1 mm. wide, its inner edge marked by a ring of synapticulae, and the wall forms a more or less median slightly raised ridge. From this area the margins slope slightly to the bottom of the calicular fossa. The peripheral flat zone is not present in all calices; in many there is a gradual slope or a gently convex curve from the wall to the bottom of the calice. On the septal margins are fine, crowded, bluntish dentations, which in many instances are compressed transversely to the septal plane. About 16 were counted on a septum 2 mm. long; 12 were counted on another septum 1.5 mm. long. The number, therefore, is between 8 and 9 for a distance of 1 mm. The septal faces are closely beset with blunt granulations. Synapticulae well developed near the wall.

Columella rather small, with a delicately papillate upper surface in the best-preserved calices.

This Santo Domingan specimen has greatly puzzled me, perhaps partly because it is immature. The calices are shallow, not having a distinct axial fossa, as in typical S. siderea, and the septal dentations are more numerous than is usual in S. siderea. As the calices of the Bowden specimen are excavated on the top of the corallum and superficial near the lower edge, the shallowness of the calices of the Santo Domingan specimen does not seem a sufficient basis for referring it to a different species. Although the septal dentations are finer than the average in S. siderea, they are not finer than the dentations on the outer prolongations on some of the septa of the specimens represented by plate 35, figures 2, 3, in which there are 8 or 9 fine teeth within 1 mm. outside the calicular fossa. For these reasons it seems to me that the Santo Domingan fossil should be referred to S. siderea; and I believe that the coral designated as Siderastraea cremulata var. antillarum 1 by Duncan should also be referred to S. siderea. Duncan says that his variety antillarum is near S. siderea. I examined Duncan's type in the collection of the Geological Society of London. It is a flattened mass, rounded above. Calices irregularly polygonal or hexagonal, separated by sharp walls; diameter 4 to 5 mm. Septa in four complete cycles, margins beaded. Columella papillary, in some calices terminated by several stout knobs.

Fossil specimens obtained by me at station 3446, in the La Cruz marl, first deep cutting east of La Cruz, near Santiago, Cuba, differ

in no noteworthy character from typical *S. siderea*. One specimen from this locality is 187 mm. across.

**Localities and geologic occurrence.**—Miocene: Jamaica, Bowden marl, received from Hon. T. H. Aldrich. Santo Domingo, Rio Cana, Zone H, collected by Miss C. J. Maury. Cuba, La Cruz marl, station 3446, near Santiago, collected by T. W. Vaughan.

Pleistocene: Canal Zone, at station 5849, Mount Hope; and Costa Rica, station 6251, Monkey Point, collected by D. F. MacDonald; Moin Hill, Costa Rica, collected by H. Pittier.

This species is general in the Pleistocene and living reefs of the West Indies, eastern Central America, and Florida.

The stratigraphic range of *S. siderea* is from the horizon of the Bowden marl to the present.

8a. **SIDERASTREA SIDEREA** var. **DOMINICENSIS**, new variety.

*Plate 114, figs. 4, 4a.*

This variety differs from typical *S. siderea* by having much larger calices, which are as much as 6 mm. in diameter in a nearly hexagonal calice, and 4.5 by 8 mm. in diameter in a much deformed calice; and corresponding to the greater size of the calices, there are many quinary septa. Otherwise there seems to be no important difference, for the septal slopes, the septal dentations, the columellar pit, and the papillary columnella are about normal.

*S. siderea* var. *dominicensis* resembles *S. conferta* (Duncan) in possessing more than 4 cycles of septa, but according to the size of the calices the septa of *S. conferta* are more numerous, more crowded, and have more finely dentate septal edges; and the calices of *S. conferta* are shallower and more open.

**Locality and geologic occurrence.**—Haiti, living, collected by Langston, no more definite information.

**Type.**—No. 36909, U.S.N.M.


*Plate 116, figs. 1, 1a, 2, 3; plate 117, figs. 1, 1a, 1b; plate 118, figs. 1, 1a.*


The following is a description of the type of the species (pl. 116, figs. 1, 1a):

Corallum massive, with domed upper surface. Greater diameter of specimen 170 mm.; lesser diameter 140 mm.; thickness, originally more than 85 mm.

Calices polygonal, separating wall usually slightly raised. The peripheral part of the septal margins is flattened, producing between adjacent calicular fossae a flat area which ranges from 0.5 to 1.5 mm. in width. Diameter of an adult calice, measured between the thecal
summits; 5 mm.; some oblong calices are as much as 7 mm. long and 5 mm. wide. Depth of calices, 1.5 mm.

Septa, number in a calice 5 mm. in diameter, 50—i. e., 4 complete cycles and 2 quinaries; in a calice 6 mm. long and 4.5 mm. wide, the number is 48, precisely 4 cycles. The usual number of septa is 4 complete cycles, with a few quinaries in large calices. Around the calicular margins the septa are subequal in size, the outer ends of the quaternaries being only slightly smaller than those of the members of the lower cycles. The interseptal spaces average slightly wider than the thickness of the septa. Within the calices the primaries and secondaries are only faintly larger than the tertiaries. There is the usual septal fusion of terciaries to secondaries and quaternaries to terciaries, but the terciaries may almost or actually reach the columella area while the quaternaries extend more than half way from the wall to the columella.

The upper flattened part of the septal margins is beaded; within a distance of 1 mm., 5 rounded dentations were counted; between the place where the septa drop downward in the calicular fossa and the columella the number of dentations on the long septa is between 8 and 10; the total number on the large septa is, therefore, between 13 and 15. Synapticulacae well developed, rather coarse, as would be expected from the relatively coarse septal trabeculae.

Columella weakly developed; upper surface papillary, but in many instances crossed by directive septa which meet in the corallite axis.

Locality and occurrence of type specimen.—Station 3694, pine woods, Waukulla, Florida, T. W. Vaughan collector; Chattahoochee formation.

Type.—No. 325187, U.S.N.M.

The following is a description of a young, encrusting corallum without a locality label, but almost certainly from the "silex" bed at Tampa, Florida. (See pl. 116, fig. 3.)

The calicular cavities are slightly excavated, between 0.75 and 1 mm. deep; separated by intervening flattish areas which are from 1.5 to a little more than 2 mm. across and are faintly furrowed where adjacent corallites meet. The corallite wall may usually be recognized as a raised thread-like ridge in the intercorallite furrow. Corallite diameter from 5 to 6.5 mm.

Septa in 4 complete cycles with 6 or a few more quinaries in the larger calices. The septal dentations are serrate or rounded, about 13 on the long septa.

Columella with a papillary upper surface, but some calices show considerable stereoplasmic deposit around the papillae with tendency toward the formation of a compact columella.

A specimen from the "silex" bed at Ballast Point, Tampa, collected by C. W. Cooke, has some calices that duplicate those of the specimen
just described, but in other calices the septa and columella are thicken-
ed, the columella in some calices being a more or less papillate
compressed axial plug. The variation from the normal is similar to
the variation exhibited by the specimens of *S. siderea* from a depth
of about 9 fathoms south of Tortugas, described on page 444.

Another specimen from Ballast Point has calices up to as large as
5 by 6.5 mm. in diameter. A large calice has 64 septa. Except in
having rather large calices and correspondingly more septa, this
specimen does not seem to differ in any important particular from
the type of the species.

Plate 117, figures 1, 1a, 1b, illustrates a variant from Coronet
Phosphate Mine, station No. 6043, G. C. Matson collector. The
calices in it are from 7 to a little more than 8 mm. in diameter. A
calice, 6.5 by 8 mm. in diameter, of this specimen has 66 septa.

A specimen from station 6084, Withlacoochee River, 3 miles below
Valdosta, Lowndes County, Georgia, has in a calice 6 by 7 mm. in
diameter 64 septa and in a calice 5.5 by 7 mm. in diameter 72 septa.
This specimen very closely approaches *S. conferta* (Duncan), but
appears to have on the average fewer septa than *S. conferta*. Perhaps
these specimens that have over 60 septa should be separated from
*S. silecensis* and either referred to a new species or to *S. conferta*.
At one time I referred them to *S. conferta*, but their average fewer
septa according to the size of calices as compared with *S. conferta*,
led me to consider them and the specimen next to be described as
belonging to a different species.

Description of a specimen from station 3381, Flint River, 4 miles
below Bainbridge, Georgia (pl. 118, figs. 1, 1a).—Corallum subdiscoid
in form. Its greater transverse, diameter 45 mm.; lesser transverse
diameter, about 38 mm.; thickness, 14 mm. Upper and lower sur-
face, subplane, somewhat undulated.

Calices irregularly hexagonal or pentagonal in shape, fairly large,
range in diameter from 4 to 6.5 mm.; rather shallow or superficial.

Septa numerous, in one calice 6.5 mm. long by 4.5 mm. wide 58
were counted. There are, applying the ordinary method of distrib-
buting septa into cycles according to the number, four complete
cycles and a fair number of members of a fifth. The various cycles
are not distinctly marked. The septal margins in places slope from
an acute ridge to the bottom of a moderately deep calice; in other
places the calices are shallow, superficial, the septal margins flatt-
tened from above, no ridge being present. The dentations on the
septal margins are rounded; there are about 10 within 2 mm. Some
septa are perforated between the trabeculae, but it seems probable
that these perforations are of secondary origin, resulting from the
solution of the septa in the thinnest places during fossilization.

Synapticulae are very abundant, especially well developed in
several, at least two or three, vertical series near the outer boundary
of the corallites. The boundary between adjoining calices is formed by a vertical row of synapticuculae, considerably larger than the others. Columella papillary, fairly well developed.

Localities and geologic occurrence.—Chattahoochee formation, basal part, station 3381, Little Horse Shoe Bend, Flint River, 4 miles below Bainbridge, Georgia, collected by T. W. Vaughan; Chattahoochee formation, probably near the base, station 6084, Withlacoochee River, 3 miles below Valdosta, Lowndes County, Georgia, collected by L. W. Stephenson; Chattahoochee formation, upper part (stratigraphically the same as the Tampa formation), station 3694, Waukulla, Florida, collected by T. W. Vaughan.

Tampa formation, the "silex" bed, Ballast Point, Tampa, stations 2115, collected by F. Burns; station 7754, an excellent specimen collected by C. W. Cooke.

Alum Bluff formation, station 6043 Coronet Phosphate Mine, near Plant City, Florida, collected by G. C. Matson.

Specimens of this species have been obtained at other localities in Georgia and Florida in the Chattahoochee and Alum Bluff formations. It is abundant around Alachua, Florida.

Siderastrea silecensis so closely resemble S. conferta (Duncan) that for some time I referred the specimens of it to that species, but in calices of the same size the septa in S. conferta are more numerous, more crowded, and thinner, and have more finely dentate margins. In a calice, 4.5 by 8.5 mm. in diameter, of a specimen of S. conferta from Antigua there are about 80 septa, a larger number than was counted in any calice of S. silecensis.

10. Siderastrea Dalli, new species.

Plate 119, figs. 1, 1a, 2.

Corallum forming a mass rounded above. The type has a length of about 122 mm. and is 75 by 82 mm. in diameter in its median part.

The corallites are large, hexagonal or pentagonal in shape. The usual diameter is from 5 to 6.5 mm.; a large corallite is 5.75 by 8 mm. in diameter. Wall between the corallites usually distinct, thin. Calices, shallow.

Septa, rather thin, or fairly thick, very crowded. There are four complete cycles and a fair number of the members of a fifth cycle. The large calice, 5.75 by 8 mm. in diameter, has 68 septa. The septal grouping need not be described, as it is that common for the genus. Septal dentations fine, compressed transversely to the septal planes, finely frosted, from seventeen to twenty or more teeth on the members of the first cycle. No compound or double dentations were seen. The septal faces, closely granulate; perforations similar to those in S. pliocenica.
Synapticulæ in three or four vertical rows—in the outer portion of the interseptal loculi, there may be even more. Very thin, nearly horizontal dissepiments present. The wall is similar to that of *S. pliocenica*, but thinner.

Columella, papillary. The papillae are fine, more delicate than in *S. pliocenica*.

**Locality and geologic occurrence.**—Florida, station No. 3300, Shell Creek, collected by F. Burns (type); station 2094, Caloosa-hatchee River, Florida, collected by W. H. Dall; Pliocene.

**Type.**—No. 325196, U.S.N.M. (pl. 119, figs. 1, 1a).

**Paratype.**—No. 325195, U.S.N.M.

This species is separated from *S. pliocenica* by its generally more delicate structure, more numerous septal dentations, and more numerous septa. It differs from *S. siderea* (Ellis and Solander) by its larger and shallower calices and its more numerous septa.

The closely crowded, transversely compressed, and finely frosted septal dentations of *S. dalli* give it an appearance very different from any other American species of *Siderastrea*. The number of septa is in corallites of the same diameter about the same as in specimens of *S. silecensis*.

11. **Siderastrea conferta** (Duncan).

Plate 117, fig. 3; plate 120, figs. 1, 2, 2a, 3, 4; plate 121, figs. 1, 1a, 2, 2a.


The original description of *I. conferta* is as follows: "Coral-lites very close, tall, slender, straight, and prismatic; a transverse section shows the wall to be very thin. The breadth of the corallites varies from three-tenths to one-tenth inch [= 7.5 to 2.5 mm.]. Septa very numerous; linear; the primary extend to the centre of the corallite, the secondary less so, and the others join the larger septa at a very acute angle; all are very slender and excessively crowded. There are eighty-two septa in the larger corallites, sixty in the smaller. The septa of one corallite do not join those of the next, but end sharply at the wall. Endotheca plainly exists, linear, appearing, in transverse section, to divide the interseptal loculi into several cells. The reproduction is by submarginal budding. The sclerenchyma has been replaced by dark homogeneous silica, and the interspaces by porellanous and opaline silica."

"From the Chert-formation of Antigua." Coll. Geol. Soc.

"This is a very remarkable form. Unfortunately no calices exist; but the transverse view of the corallites is excellent. If the specimen
had been found in Oolitic rocks, it would have passed for a small variety of *Isastraec tenuistriata*.

I examined the type of this species in the Geological Society of London collection (No. 12,929), and it is represented by plate 120, figure 1. It belongs to the genus *Siderastrea*. There are more than four cycles of septa. The septal trabeculae are narrow, and produce fine dentations on the septal margins. The estimated number of teeth on the margins of the longer septa is about 20; the synaptic
ticulae are fine and are crowded in two or three rings near the wall, which is narrow and continuous. The columella is weakly developed and evidently had a finely papillary upper surface.

I collected in Antigua, station 6888, one-half mile north of McKin
non's mill, in the Antigua formation, one satisfactory specimen of this species. It is of massive, subcolumnar growth form, is about 105 mm. tall, and is 82 by 92 mm. in diameter near the top. The basal part is appreciably narrower than near the summit. The calices are shallow; corallite walls thin. A calice 4.5 by 8.25 in diam
eter has about 80 septa. Septa composed of small trabeculae and correspondingly have finely dentate margins. Synapticulae delicate and crowded.

This species is very abundant in the Oligocene deposits of the West Indies and the Canal Zone. Description of or notes on specimens from the different localities follow. The next specimen to be de
scribed is essentially typical, and as it is in a better state of preservation than the one from Antigua, it is more satisfactory for purposes of illustration.

*Description of a specimen from near Lares, Porto Rico* (pl. 120, fig. 2, 2a).—Corallum massive, rounded above, basal portion somewhat expanded. Greater diameter of base, 106 mm.; lesser diameter of base, about 65 mm.; height, 65 mm.

Calices polygonal, rather large, diameter (measured from summit to summit of wall) from 4.7 to 7.4 mm., 5 to 6 mm. the usual diameter. Near the edges the calices are shallow, higher up on the corallum they are excavated and moderately deep. The outer ends of the septa are arched on the upper part of the corallum, may be somewhat flattened near the wall; lower down they may be depressed across a wide area, with a very shallow calicular cavity; in a few instances a depression corresponds in position to the upper edge of the wall. Wall usually distinct, narrow, zigzag.

Septa very crowded, thin and numerous, 70 in a calice 4.6 by 7.4 mm. in diameter, 76 in one 5.75 by 7.6 mm., 74 in one 5.5 by 6.3 mm. in diameter. They are so crowded that it is difficult to make out the cycles. The primaries appear to be free, the other septa form groups around the secondaries. Septal margins finely beaded; about 26 dentations on a large septum, an actual count for an entire
septal length could not be made, but 6 teeth within 0.7 mm. were counted on the outer part of a septum. This would be more than 8 teeth to 1 mm. Synapticulæ abundant.

Columella not greatly developed; upper surface finely papillary.

I collected at Crocus Bay, Anguilla, a suite of 22 specimens very closely similar to the Porto Rican specimen. Several of these are illustrated by plate 117, figure 3; plate 120, figures 3, 4; and plate 121, figures 2, 2a. The calice represented by plate 117, figure 3, is 4.25 by 6.6 mm. in diameter, and has 68 septa; the larger calice illustrated by plate 120, figure 3, is 7 by 9.5 mm. in diameter, and has 91 septa; the calice illustrated by plate 120, figure 4, is 5.5 by 7.3 mm. in diameter, and has 64 septa; and one of those figured on plate 121, figure 2a, is 4.5 by 6.3 mm. in diameter, and has 75 septa.

Specimens of what seem undoubtedly to belong to the same species were collected in the Culebra formation, station 6020c, near Las Cascadas, by Doctor MacDonald and me. Some specimens are as much as 14 inches (about 36 cm.) tall, and over 12 inches (about 31 cm.) thick. A part of the surface and an enlarged view of the calices are represented by plate 121, figures 1, 1a. A calice 4 by 5.7 mm. in diameter has about 72 septa.

A specimen collected by Gabb in Santo Domingo and identified by Pourtalès as Siderastraea siderea ¹ belongs to this species. The specimen has numerous thin, crowded septa; there are about 82 septa in a calice 4.5 mm. wide and 6.5 mm. long. It is the property of the Museum of Comparative Zoology, Harvard University.

Localities and geologic occurrence.—Island of Antigua, Antigua formation, Duncan's type; station 6888, one-half mile north of McKinnon's Mills, collected by T. W. Vaughan.

Porto Rico, Pepino formation, station 3191, 4 miles west of Lares, collected by R. T. Hill.

Canal Zone, Culebra formation, station 6020c, at Las Cascadas, collected by T. W. Vaughan and D. F. MacDonald.

Island of Anguilla, Anguilla formation, stations 6893, 6894, 6966, lower and middle beds, south and west sides of Crocus Bay, collected by T. W. Vaughan.

As has been remarked, S. silecensis Vaughan from Georgia and Florida is very close to S. conferta. In calices of the same size there are more septa and the septa are more finely dentate in S. conferta than in S. silecensis.

Family OULASTREIDAE, new family.

Fungid corals with the superficial aspect of the genera belonging to the family Orbicellidae. Corallites with distinct margins, usually separated by intercorallite areas that are crossed by confluent or

alternating septo-costae. Septa lamellate but irregularly more or less perforate. Both synapticulae and dissepiments present. Columella trabecular. Asexual reproduction by intercalicular gemmation.

The coral genera represented by Oulastrea Milne Edwards and Haime, Diploastrea Matthai, and Cyathomorpha Reuss appear to me to deserve recognition as a group of family value. The latter two of these genera have been confused with Orbicella, as will be made evident in subsequent remarks. It is unfortunate that the validity of neither Cyathomorpha nor of Diploastrea can be established at present. The reasons for the uncertainty will appear in discussions to follow.

Oulastrea crispata (Lamarck) Milne Edwards and Haime, the type species of Oulastrea 1 is represented in the United States National Museum by 30 specimens from Puerto Princesa, Palawan, collected by J. B. Steere, and from near Mariveles, Luzon, collected by Albert M. Reese, Philippine Islands. The description and figures given by Milne Edwards and Haime are really excellent, but they did not recognize that the genus belongs to the Madreporaria Fungidae. The septa are mostly solid, but there are some perforations, especially in the smaller septa. The walls of the corallites are synapticulate and perforate around the periphery of the corallum, but those of the interior corallites are continuous, with few or no obvious perforations. There are synapticulae between the peripheral septo-costae; within the corallite cavities synapticulae mostly occur near the inner edges of the septa, but some occur between the wall and the inner septal edges. Thin dissepiments are abundant. The septal teeth usually make two fairly definite, in some very definite, palar crowns that stand a little higher than the columellar papillae. These specimens are stained black and do not bleach when boiled with caustic potash.

As Oulastrea is the only genus referred to the family of the validity of whose name I can be reasonably certain, notes on the generic characters are given in some detail.

Genus CYATHOMORPHA Reuss.


Type-species.—Cyathomorpha conglobata (Reuss) Reuss = Astrea rochettina Michelin = Cyathomorpha rochettina (Michelin) Reis, fide Reis.2

As the validity of this genus name is in doubt the following remarks will be made on genera that appear to be either closely related or synonymous.

Brachyphyllia Reuss: type-species, B. dormitzeri Reuss.

In the first of the publications cited in the footnote ¹ below Reuss described and referred the following species to Brachyphyllia: B. depressa, B. dormitzeri, and B. glomerata. In the second paper ² cited Reuss proposed the name Agathiphyllia, referred Brachyphyllia depressa to it, and said "der Typus der Gattung Brachyphyllia bleibt mittin fortan Br. dormitzeri Reuss.* * * Sie wird durch die viel kleineren Zellensterne, die dünnen, am obem Rande gleichmassig fein gezähnten Radiallamellen und die wenig entwickelte, sehr feinkörnige Axe charakterisirt."

Agathiphyllia Reuss: type-species, A. explanata Reuss.

Reuss originally referred three species to Agathiphyllia: ³ A. depressa (Reuss) Reuss (first placed in Brachyphyllia), A. conglobata Reuss, and A. explanata Reuss. In 1868, ⁴ A. conglobata and one specimen previously referred to A. explanata are combined under A. conglobata, and made the type-species of a new genus, Cyathomorpha, which is separated from Agathiphyllia by possessing a conspicuous paliform crown. This procedure left two species, A. depressa (Reuss) and A. explanata Reuss, in Agathiphyllia. Reuss does not actually designate a type-species for Agathiphyllia, but, as he says, "Die Gattung Agathiphyllia dürfte sich daher auf die i.e. ⁵, Tab. 2, Fig. 8, 9 abgebildete A. explanata beschränken," I take A. explanata as the genotype, excluding the misidentified specimen of A. conglobata.

In an endeavor to ascertain the generic characters of Brachyphyllia, of course, B. dormitzeri must be studied. As there is no specimen of that species in the United States National Museum, Reuss's original description and the later one by Felix ⁶ were consulted, but neither are the details of the structure and mode of formation of the wall or of the septa, nor is the character of the endotheea given. At present it is not known whether Brachyphyllia is an imperforate coral belonging to the family Orbicellidae, or whether it is a fungid coral, related to or the same as Cyathomorpha.

Duncan ⁷ refers Agathiphyllia to the synonymy of Cyathomorpha without giving any reason for adopting the later instead of the earlier name. The type-species of Agathiphyllia, A. explanata Reuss, is from Oberburg, Styria. According to the figures, Agathiphyllia has not the wide paliform lobes of Cyathomorpha; but critical study of

---

³ Idem. vol. 28, p. 143, 1858.
⁴ Idem. vol. 23, p. 15, 1864.

37149—19—Bull. 103——18
authentic specimens of the type-species is needed to ascertain whether
the genus is or is not a fungid coral.

At present neither Brachyphyllia nor Agathiphyllia can be identified.

Cyathomorpha is a fungid genus that has the general appearance of
Orbicella, with which it has been confused.

The next description is of the genotype.

**CYATHOMORPHA ROCHETTINA** (Michelin) Reis.

Plate 123, figs. 1, 1a, 1b, 1c, 1d, 1e.


There is in the United States National Museum one young specimen
(No. 156900), from Crosara, Italy, received from the K. K. Museum
für Naturkunde, Berlin. Plate 123, figures 1, 1a, 1b, presents a view
each of the upper surface, of the side, and of the lower surface of this
specimen, natural size.

On the base and in places on the sides of the corallum the edges of
superposed layers are clearly seen, the lower edge of the outer layer
often flaring somewhat. There are prominent, steep-sided, distant
costae, crossed by transverse carinae; distance between costal crests
usually ranges from about 0.75 to 1.5 mm. In places the courses of
these costae are interrupted by what morphologically corresponds to
septal perforations. Between the larger are small costae, which for
the most part are represented by rows of spines. Exothecal dis-
septions are present. The walls in general appear solid, but near
the upper edges synapticulae and intercostal pits or perforations are
distinguishable. The spines, trabeculae, of the small costae in places
are joined to the large costae by synapticulae.

The larger septa are imperforate, at least for the most part, but the
last two or three cycles are clearly perforate, composed of imperfectly
fused trabeculae. Faces of large septa with carinae; synapticulae
well developed, especially near the columella.

Columella large, trabecular; upper surface papillary.

The foregoing notes are not intended as a description of the species:
their object is to emphasize the fact that *Cyathomorpha* is a fungid
coral and to indicate its important generic characters. Reis1 recognized
the presence of synapticulae in this species but did not refer it
to Madreporaria Fungida.

Localities and geologic occurrence.—Castel Gomberto, Crosara, and
Sassello, Italy; Reit-im-Winkel, Bavaria; lower to middle Oligocene.2

---

2 Idem., pp. 93, 94.
Corallum with a small base, above which it increased in diameter; upper surface rounded; calices confined to the upper curvature; base and sides below the level of the calices naked, not even shreds of epitheca were observed. Below the calices, the sides of the coral- lum grow outward by the superposition of costate layers, each outer layer resting on the costae of the next inner layer, except at the lower edge where it may flare outward. The layers range in thickness from 0.5 and 1.5 mm.; usually they are imperforate, but in places perforations and synapticulae can be clearly recognized. The costae are narrow, steep-sided, fairly prominent, acute or rounded on the edges; distance between costal summits from 0.75 to 1.5 mm. The type is 112 mm. in horizontal diameter and 80 mm. tall.

Corallites protuberant from 1.5 up to more than 10 mm., average 5 or 6 mm.; distance between thecal summits of neighboring corallites from 3 to 10 mm., or even more. Corallite walls with a rather sharp upper edge; mostly imperforate. Some perforations and synapticulae, especially near the upper edges. Septo-costae low, subequal, wide, flattish or rounded in profile.

Calices subcircular, broadly elliptical, or compressed elliptical in outline. A large subcircular calice on the type is 18 mm. in diameter; a small, but apparently fully developed calice, on the same specimen, is 10 by 13 mm. in diameter; the shorter diameter of young calices is only 8 mm. The calices of the type are larger than those of the other specimens of the species. In paratype No. 1 (pl. 125, fig. 1), the largest calice is 11.5 by 13.5 mm. in diameter; the smallest is 8 by 13 mm. in diameter. In paratype No. 2 (pl. 125, fig. 2), the largest calice is 13.5 by 16.5 mm.; the smallest, 10 mm. in diameter. Unless the calices are young or stunted the average of the two diameters is rarely below 10 mm. Depth of calices slight, about 4 mm. a maximum; columellar fossa not deep.

The number of septa in the calice represented by plate 125, fig. 1c, paratype No. 1, is 70. This calice is 11.5 by 13.5 mm. in diameter, and is of the size about normal for the species. It has four complete cycles of septa and 22 quinaries. About 8 of the septa are thicker than the others, and bear thick paliform lobes which are fully half the width of the septa. These 8 septa and about 15 thinner septa extend to the columella: the thinner septa also bear wide paliform lobes. In general in a half or quarter system the septa of the penultimate cycle fuse to the sides of the included member of the next lower cycle, while the members of the last cycle are small. All except the smallest septa bear paliform lobes. Septal margins low over the wall, subentire: within the calice the thicker
septa have subentire margins, the thinner septa have decidedly dentate edges. Larger septa solid; the thinner ones, especially those next to the last cycle, considerably perforate; septal faces granulate.

Synapticulae well developed, especially near the wall and near the columella; very obvious near the inner fusion of the septal groups. Some thin dissepiments present.

Columella rather coarsely trabecular, well developed, approximately one-third the diameter of a calice; upper surface sunken in a shallow central fossa.

Asexual reproduction by intercalicular budding.

Locality and geologic occurrence.—Antigua, in the Antigua formation, at stations 6881, Willoughby Bay (type and paratypes); 6854, Rifle Butts; 6856, south side of Friar's hill; 6888, one-half mile north of McKinnon's mill, collected by T. W. Vaughan.

Type.—No. 325204, U.S.N.M.

Paratypes.—No. 325205, U.S.N.M. (2 specimens).

That Cyathomorpha hilli is very nearly related to Cyathomorpha rochettina (Michelin) Reis, is shown by a comparison of the descriptions and figures here presented. C. browni, the next species to be described, differs from C. hilli by its prominent, acute costae, and by its septa higher than the second cycle being more strongly differentiated according to cycles.

It gives me pleasure to attach the name of Mr. Robert T. Hill to this handsome species.

**CYATHOMORPHA BROWNII, new species.**

Plate 126, figs. 1, 1a, 1b.

This species is similar to Cyathomorpha hilli in the general aspect of the corallum. It differs principally in having prominent, acute costae corresponding to all except the last cycle of septa, to which the corresponding costae are either very small or obsolete.

The calices range from about 8 to 13 mm. in diameter; average size smaller than in C. hilli.

In a calice 12.5 mm. in diameter there are 4 cycles of septa and in some systems the fifth is complete but it is represented by small, thin, rudimentary septa. Primaries and secondaries subequal; tertiaries and quaternaries shorter and thinner according to cycles. All septa except the last cycle bear thickened paliform lobes. The septa are thinner and the interseptal spaces relatively wider than in C. hilli.

Synapticulae present near the wall and near the inner ends of the septa. Apparently some thin dissepiments present.

Locality and geologic occurrence.—Antigua, in the Antigua formation, stations 6888, one-half mile north of McKinnon's mill (type,
and three other specimens); 6868, Pope’s Saddle, collected by T. W. Vaughan.

Type.—No. 325211, U.S.N.M.

This coral may ultimately be shown to intergrade with *Cyathomorpha hilli*; but according to the specimens available for study they are distinct.

*Cyathomorpha browni* is named for Prof. Amos P. Brown who paid considerable attention to the paleontology of the Central American and West Indian Tertiary formations.

**CYATHOMORPHA BELLII**, new species.

Plate 128, figs. 1, 1a, 1b.

Corallum more or less explanate, rounded above and flattish below; base without epitheca, similar in this character to *C. rochettina*.

Calices large, 11.5 mm. a usual measure of the diameter, range in diameter from 7.5 mm. (a small calice) to 12.5 mm.; distance apart from 3.5 to 10.5 mm.; calicular rims elevated up to as much as 5 mm., usually lower on the distal than on the proximal side. Calicular cavities relatively shallow in comparison with the diameter, depth about 2.5 mm. Corallite walls with few or no perforations except at the upper edge; appear to be originally synapticulate and subsequently compacted.

Costae at the calicular edge subequal or slightly alternating in size, corresponding to all septa; but just below the calicular edge the costae corresponding to the last cycle of septa tend to decrease in size and usually disappear at the base of the free corallite limb, while the costae corresponding to the lower cycles of septa tend to increase in height and extend as rather prominent plates on to or even across the intercorallite areas. Costal edges with low beading.

The septa in a calice 10 mm. in diameter are only 46 in number; in another calice 9.25 by 13 mm. in diameter there are 48 septa. Therefore, in comparison with the size of the calices, there are relatively few septa, barely four cycles. In general the following is the septal arrangement: primaries and secondaries extend to the columella, and have a circle of single or double paliform lobes; secondaries extend to or almost to the columella, but are thinner than the primaries and secondaries, and many bear a paliform lobe near the columella; the quaternaries are shorter and thinner, some of these bear pali. Over the mural summit the margins of all septa are subequally slightly exsert, about 0.6 mm. is a maximum, average between 0.25 and 0.5 mm. Large septa solid; higher cycles with perforations. Septal arch a gradual curve. Margins with some dentations.

Columella large, about 3 mm. in diameter or nearly one-third the diameter of the calice, trabecular, more or less whorled.
Synapticulae present, especially near the columella. Endothelial dissepiments highly developed and vesicular.

Locality and geologic occurrence.—Antigua, station 6854. Rifle butts, Antigua formation, collected by T. W. Vaughan.

Type.—No. 325218, U.S.N.M.

This species is dedicated to His Excellency Sir H. Hesketh Bell, Governor of the Leeward Islands at the time I collected in Antigua and other Leeward Islands. It was to his helpfulness that the success of my work was largely due.

On page 389 of this paper attention is directed to the resemblance between Orbicella costata (Duncan) and Cyathomorpha bellii.

CYATHOMORPHA SPLENDENS, new species.

Plate 128, figs. 2, 2a, 2b.

Corallum unifacial, calices on the upper surface; base naked, with wide, low costae. Maximum thickness of type 24.5 mm.; thickness to base of corallite 15 mm.

Calices shallow, but excavated; diameter, 17.5 by 20 mm.; margin elevated 4 mm. on one side, 9 mm. on the other side. Strong subequal costae correspond to all septa except those that are rudimentary.

Septa 54 in number, the quinaries rudimentary; primaries and secondaries larger than the septa of higher cycles.

Columella large, 8 mm. in diameter, surface coarsely papillate. Dissepiments greatly developed; synapticulae present.

Locality and geologic occurrence.—Antigua, station 6854, in the Antigua formation, Rifle Butts, collected by T. W. Vaughan.

Type.—No. 325219, U.S.N.M.

The description of this species is brief, because a more elaborate one would be largely a repetition of what has been said under the four preceding descriptions. The most nearly related species is C. bellii, from which it differs by the wider and lower costae of its lower surface, its much larger calices, and, in comparison with the size of the calices, its fewer septa.

CYATHOMORPHA ANGUILLENSIS, new species.

Plate 127, figs. 1, 2, 3, 4, 5.

This species is usually characterized by its large, distant, and prominent calices.

Dimension of calices of Cyathomorpha anguillensis.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater diameter</td>
<td>18.5</td>
<td>15</td>
<td>12</td>
<td>14.5</td>
<td>15</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>Lesser diameter</td>
<td>14.5</td>
<td>14.5</td>
<td>12</td>
<td>12.5</td>
<td>14</td>
<td>12.5</td>
<td>9.5</td>
</tr>
</tbody>
</table>
The young calices, of course, are smaller.  Distance apart 7 to 20 mm. Isolated calices may be decidedly prominent, 5 mm. or more in height. Depth, moderate.

The corallites externally are strongly costate; large, tall, thin costae alternate with much smaller ones. The intercostal spaces wider than the costae. Wall mostly dissepimental, but there are some synapticulae with intervening perforations similar to those in C. rochetiana.

Septa in the larger calices between 70 and 80, the various systems and cycles are not distinctly differentiated, about 24 reach the columella. Within the wall the septa are thin; in the thecal ring they are thicker: the costae are thicker than the inner portions of the septa. Pali before the members of the first three cycles of septa. Both synapticulae and dissepiments present.

Columella large, composed of twisted, interlacing, fused inner ends of septa. Its diameter about one-third the diameter of the calice.

Localities and geologic occurrence.—Island of Anguilla, West Indies, collected by P. T. Cleve: station 6969a, bottom bed, Road Bay, Anguilla, collected by T. W. Vaughan.

A specimen from station 7509, west of Ocuial Spring, conglomerate boulder on hill of limestone conglomerate, near Guantanamo, Cuba, collected by O. E. Meinzer, seems to be referable to this species: it is a large caliced species of Cyathomorpha, and I have found no differences between it and C. anguillensis.

Type.—University of Upsala (pl. 127, fig. 1): 4 specimens in the United States National Museum.

Three specimens belonging to the University of Upsala collection are typical, although they show some variation. Four other specimens show gradual decrease in both the size and prominence of the calice. These four specimens are figures on plate 127, figures 2, 3, 4, 5. With them before one it does not seem possible to separate sharply the large and prominent caliced specimens from those with smaller (7 mm. diameter) and only slightly prominent calices.

The specimens with smaller, less prominent calices closely resemble the specimens described below under the name C. roxboroughi.

**CYATHOMORPHA ROXBOROUGHI, new species.**

Plate 129, figs. 1, 1a, 1b.

Corallum massive, usually rather broadly and obtusely conical in shape. Type—greater diameter of base, 111 mm.; lesser diameter of base, 73 mm.; height, 103 mm. The rather large difference in the basal diameters is probably in part due to compression. A paratype has a greater basal diameter of 121 mm.; lesser basal diameter, 108 mm.; height, 96 mm. Base without calices: apparently some
shreds of epitheca. Costae of base, low, rather crowded, subequal, with clearly visible synapticulae between them.

Calices very shallow, quite or almost superficial, with margins ranging from flush with the intercorallite areas up to 3.5 mm. or more in height. In some corallites the free limb on the lower side is from 6.5 to 9 mm. long, while the margin of the upper side is only slightly elevated. The calicular outline is subcircular or broadly elliptical; the diameter ranges from 6 to 10 mm., 8 to 9 mm. usual for fully developed calices. Distance between calicular rims ranges from 4 to 13 mm. Intercalicular area flattish except near the peripheries of the calices where they slope upward rather steeply if the calices are elevated. Septo-costae correspond to all septa and are subequal at the calicular margins; lower down they are either subequal, low, broad, and with flattish or rounded summits, or they alternate in prominence; where there is such alternation the edges are usually acute. Transversely compressed granulations on some septo-costae, but usually the margins are almost smooth. The septo-costae are confluent between adjacent corallites or meet at a sharp angle; outer limits of corallites usually marked by a circumscribing ridge that joins adjacent septo-costae. Synapticulae distinct between the septo-costae, in both transverse and longitudinal sections. Walls with synapticulae near the upper edge.

Septa thick, lanceolate, in the wall, rapidly thinning within the calicular cavity. In a calice 8 mm. in diameter there are 38 septa, every other one of which extends to the columella. There are strongly developed, thick, prominent pali on the inner ends of all unbroken long septa, obscurely arranged in two crowns. Unless decidedly small the septa of the last cycle fuse to the sides of the septa of the next lower cycle; in some systems tertiaries fuse to secondaries and quaternaries to tertiaries. Septal margins subentire or obscurely dentate. Usually the lamellae are solid, but broken transverse sections of the corallites of a specimen not the type show some perforations. Synapticulae well developed.

Columella large, coarsely trabecular, in the center of the shallow flat-bottomed calice.

Asexual reproduction by intercalicular gemmation.

Locality and geologic occurrence.—Anguilla, at the following stations. 6962, 1 mile northeast of Boat Harbor (type); 6893, Crocus Bay, on roadside from Valley Post Office down the bluff (7 specimens); 6894, west side of Crocus Bay, probably from the lower part of the exposure (paratype); 6963, west side of Sandy Hill (2 specimens), collected by T. W. Vaughan. Professor Cleve obtained at least one and I obtained 11 identifiable specimens of this species in Anguilla.

Type.—No. 325250, U.S.N.M.

Paratype.—No. 325248, U.S.N.M.
This is the species to which I referred as *Diploastrea* from the lowest horizon of the exposure at Crocus Bay, Anguilla, in discussing the genus *Diploastrea* in my paper entitled: Some shoal-water corals from Murray Island (Australia), Cocos-Keeling Islands, and Fanning Island.¹ My remarks particularly applied to the paratype from station 6894.

*Cyathomorpha roxboroughi* closely resembles those specimens of *C. anguillensis* with smaller calices.

*C. roxboroughi* is named for His Honor T. L. Roxborough, who was administrator of St. Christopher while I was there and to whom I am indebted for many acts of courtesy and kindness.

**CYATHOMORPHA ANTIGUENSIS** (Duncan) Vaughan.

Plate 129, fig. 2; plate 130, figs. 1, 1a, 2, 2a, 3; plate 131, figs. 1, 1a, 1b, 2, 3, 4; plate 132, figs. 1, 2, 2a, 2b; plate 133, fig. 1.


1866. *?Astroria affinis* DUCHASSEING and MICHELOTTI, Sup. Corall. Antilles, p. 83 (of reprint).


This species was referred by me doubtfully to the synonymy of *Orbicella cavernosa* (Linnaeus) in my Fossil Corals from the Elevated Reefs of Curacao, Arube and Bonaire,² not having recognized at that time that the species is one of the Madreporaria Fungida.

**Original description.**—"Corallum large, turbinate, convex and gibbous above, with a very small base. Corallites long, close, rather crowded, but distinct and radiating from the narrow base. Walls well developed, moderately thick. Costae moderately developed, projecting more than the width of their base; they are plain where seen superficially, very nearly equal, and are not spined or toothed. In some corallites the fourth cycle of costae is wanting, but not in those that are fully developed. Calices circular, slightly raised.


appearing as truncated cones, sometimes compressed (at the side of the corallum they are distorted), unequal in size; margins thin. Fossa not deep, but variable. Columnella well developed, projecting at the bottom of the fossa: its component tissue is laminar and folded, and it is rounded above. Septa straight, very slightly exsert, delicate throughout, not larger at any point decidedly: but the largest are more delicate midway between the walls and the columnella; they are arranged in six systems of four cycles. The primary and secondary septa are equal: the tertiary a little smaller; those of the fourth order are very small, and barely developed in some calices, but they exist in all. The primary and secondary septa have a tooth near the columnella. Endotheeca tolerably developed. Exotheeca well developed, forming large and small cells, both square, though often divided by dissepiments. Reproduction by extracalicular gemmation. There is no epitheca.

"Dimensions."—Height of corallum several inches; diameter of calices from a little less than 3 lines to 4 [6.25 to 8.3 mm.]; thickness of septa one-sixtieth inch [0.4 mm.]. The dimensions of the elliptical calices are —length, 3½ lines [7.3 mm.]; breadth, 2½ lines [5.2 mm.]; depth of fossa, two-thirds of a line [1.4 mm.]. Exotheal cells from one-fourth to one-half line [0.5 to 1 mm.]. The lateral calices are very irregular, and the younger corallites have three cycles of septa.

"Fossilization."—Calices, as a rule, not filled up. Sclerenchyma light-brown in color, opaque, and siliceous, the central portions of the corallum evidently consisting of dark homogeneous flint, the sclerenchyma having been destroyed in the process of silification.

"From the Marl-formation of Antigua. Coll. Geol. Soc."

Plate 130, figures 2, 2a, presents illustrations of Duncan's type (No. 12942, collection of the Geological Society of London). Duncan was of the opinion that this species belonged to the genus Helioastraea Milne Edwards and Haime, which is a synonym of Orbicella Dana. It was my belief that the species was referable to Orbicella until I obtained a number of remarkably good specimens in Antigua. A selected series of these will be described in the following remarks:

The corallum forms rounded or discoid masses, the two largest I collected having the following dimensions: No. 1, horizontal diameter, 225 by 305 mm.; height, 155 mm. No. 2, horizontal diameter, 322 by 400 mm.; height, 131 mm. Specimen No. 1 has a more arched upper surface than No. 2 which is more discoid in shape.

On the lower surface of the corallum there is very little epitheca—only shreds in places. Costae are well-developed, subequal, interrupted here and there; intercostal furrows perforate, many synaptilae present, joining the outer ends of adjacent septa (see pl. 130, figs. 1, 1a).
The series of figures (pl. 131, figs. 1, 2, 3), shows the range in size, shape, depth, and distance apart of the calices. Except very young calices, which may be only 3 mm. in diameter, the range in diameter of these on the specimen represented by plate 129, figure 2, is from 5.5 to 10 mm.; on the specimen represented by plate 130, figure 3, one calice is 12.5 mm. in diameter. In shape the calices are subcircular, elliptical, deformed elliptical, or, where crowded, polygonal. The depth ranges from superficial to as much as 4.5 mm. or a little more, but on most specimens the calices are rather shallow. The distance apart ranges from 0.75 mm. to nearly 10 mm. Plate 131, figure 3, shows polygonal crowded calices and distant circular calices on the same specimen. Costae subequal or slightly alternating, correspond to all septa. Their margins, where perfectly preserved, are beaded, in places interrupted. Unless the calices are very crowded, synapticulae are obvious between the costae. The corallite walls are synapticulate and very perforate (see pl. 131, fig. 1a).

The septa are usually thin, in about 4 cycles, as many as 58 in large calices. Primaries and secondaries subequal, extend to the columnella; tertiaries rather long but usually do not reach the columnella; quaternaries, and quinaries where present, are shorter. In many calices some tertiaries fuse to the sides of the secondaries, and the quaternaries may fuse to the sides of the tertiaries; but there is much variation, in some systems there are no septal groups by fusion. The septal arches may be rather wide, the septal edges gradually curving over the calicular rim; or the arches may be narrow, the septal edges falling steeply to near the level of calicular bottom—both of these conditions occur on the same specimen. Primary and secondary septa appear imperforate, should there be perforations they are rare; higher cycles perforate. Septal faces with carinae and granulations. Margins of larger septa finely beaded; margins of members of higher cycles more conspicuously dentate. Prominent, rather wide, thickish, paliform lobes before the primary and secondary septa; an outer palar crown before the tertiary septa.

Columella fairly well developed, trabecular: upper surface papillary in the best preserved calices.

Synapticulae abundant within the corallite cavities. Endothecal disseipments also present.

Asexual reproduction by intercalicular budding.

Localities and geologic occurrence.—Antigua, in the Antigua formation, at stations 6854, Friar's Hill; 6856, Rifle Butts; 6881, Willoughby Bay; 6888, one-half mile north of McKinnon's Mill, collected by T. W. Vaughan, a total of about 35 specimens.

Porto Rico, in the Pepino formation, station 3191, 4 miles west of Lares, Porto Rico, collected by Robert T. Hill.
Cuba, station 7514, 5 miles east of monument H4 of U. S. Naval Reservation, Guatamano, altitude 400 feet a. t., collected by O. E. Meinzer.

Mexico, in the San Rafael formation, 4 miles east of Salitre Ranch, State of Tamaulipas, collected by W. F. Cummins and J. M. Sands.

The foregoing description, except the measurements of the large specimens, is based entirely on the five specimens represented by plate 129, figure 2; plate 130, figures 1, 1a, 3; plate 131, figures 1, 1a, 1b, 2, 3. Two of these specimens, plate 129, figure 2 and plate 130, figures 1, 1a, 3, are from station 6881, Willoughby Bay; and three, plate 131, figures 1, 1a, 1b, 2, 3, are from station 6854, Rifle Butts Antigua. The specimen from Salitre Ranch, Tamaulipas, Mexico, is so completely typical that no further notes on it are necessary. Two of the specimens from Porto Rico, plate 132, figures 1, 2, 2a, 2b, have thicker primary and secondary septa, and the costae corresponding to the last cycle of septa seem usually to be small or even obsolete in places. The rear side of the specimen, general view, plate 132, figure 2, has calices and costae so nearly typical that it can scarcely be regarded as more than a variant of C. antiquensis.

The specimen from station 7514, near Guatamano, represents the same variant as the Porto Rico specimens.

Duncan’s Astroria affinis, I believe, is based on a specimen of Cyathomorpha antiquensis that has crowded, polygonal corallites. Plate 133, figure 1, represents the type (No. 12938, Coll. Geol. Soc., London), and the following is the original description: “Corallites crowded. Walls very thin indeed. Transverse section of corallites polygonal, rarely forming short series. Columella slightly but decidedly developed. Septa alternately large and very small, linear, a little larger externally, with at least four cycles in six systems. Breadth of the calices four lines [8.4 mm.]; five septa to one line [2.1 mm.]. Endotheca abundant.


In my notes on the type, I say that A. affinis is undoubtedly the same as Duncan’s Astroria antiquensis type (No. 12936, Coll. Geol. Soc. London), illustrated by plate 131, figure 4 of this paper; but I am not certain that it is different from C. tenuis, the species to be considered next. The original description is as follows:

“Corallites not crowded, but close, tall. Walls rather thin. The transverse section of the corallites is in many cases circular; in others obscurely polygonal; some present short series, but rarely. Columella very indistinct. Septa alternately large and small, in six systems of four cycles, the fourth being occasionally deficient in two systems. Breadth of the corallites, from 2 to 3½ lines [4.2 to 7.3 mm.]. Length of the series, 6 lines [12.7 mm.]; five septa to a line [2.1 mm.]. Endotheca abundant.
"Fossilization like that of the other Astrorians, and rendering the details indistinct. It is closely allied to the other species of *Astroria* from Antigua.

"From the Chert-formation of Antigua. Coll. Geol. Soc."

**CYATHOMORPHA TENUIS** (Duncan) Vaughan.


This species, as well as *Astraea antiquensis* Duncan, was erroneously confused with *Orbicella* Dana. I obtained excellent material in Antigua, which shows that both the common corallum wall and the corallite walls are synapticulate. Three views of one of these species are given on plate 133, figures 3, 3a, 3b. Plate 133, figure 3, is a general view of the upper surface of the corallum; figure 3b shows the synapticulate character of the common wall; and figure 3a illustrates the costae and the synapticulae between them.

The following description is based upon four specimens collected by Mr. Robert T. Hill at a locality 4 inches west of Lares, Porto. They satisfy in all particulars Duncan's description of *C. tenuis* and differ in no important particulars from the Antiguan specimens.

The corallum is pulvinate, with the calices confined to the upper surface and sides.

*Dimensions of specimens of Cyathomorpha tenuis (Duncan).*

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Greater diameter</th>
<th>Lesser diameter</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m.m.</td>
<td>m.m.</td>
<td>m.m.</td>
</tr>
<tr>
<td>1</td>
<td>59</td>
<td>52</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>87</td>
<td>70</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>90</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>97</td>
<td>64</td>
</tr>
</tbody>
</table>

1 Specimens figured.

The calices of specimen No. 1 (pl. 132, figs. 3, 3a) are described, although those along the top have been somewhat deformed through lateral compression of the corallum. The calices on the upper part of the surface have slightly elevated margins; 0.75 m.m. is the maximum height. Some calices are rather deep, about 2 m.m.; the diameter of the most nearly circular ones ranges from 3.5 to very slightly more than 4 m.m.; the distance between adjacent calices is from a mere dividing ridge to 2 m.m.; the calicular edges, however, are usually distinct. Around each calice and joining adjacent ones are equal, acute costae, between which are synapticulae. On the
sides, near the lower edges, the calices flatten, become larger and more distant, and are either circular or faintly hexagonal in outline. Diameter from 4.5 to 5 mm.; distance apart, from 0.5 to 2 mm.; the range in the distance apart is the same as on the top, but the calices are more uniformly separated. The costae are distinct, low, and equal, with numerous intervening synapticulae.

The number of septa to a calice is the same for both the top and sides, ranging from 26 to a few over 30. They are relatively thin; that is, not so thick as the width of the interseptal loculi, except that they are thickened at the wall and the principals are thickened on their inner ends, bearing distinct paliform lobes. The primaries and secondaries are subequal, extend to the columella, and are paliformous: teriaries shorter and thinner within the calice; quaternaries, where present, still smaller. The wall is composed of peripheral synapticulae.

Columella only slightly developed.

The preceding description is based on a single specimen—No. 1 of the table. The principal variation shown by the other specimens is in the distance apart and size of the calices and the number of septa. In specimen No. 3 (see pl. 133, fig. 2) the calices are usually about 0.75 mm. apart; their diameter ranges from 3.5 to 5.7 mm., and, as would be expected, the calicular outlines are polygonal: there are in the larger calices as many as 40 septa, the fourth cycle, however, in these calices seems never to be complete, but it is complete in some large calices of the Antiguan specimens. Palar thickenings can be seen on the larger septa: columella poorly developed.

Localities and geologic occurrence.—Island of Antigua at numerous localities in the Antigua formation, collected by T. W. Vaughan.

Porto Rico, station 3191, in the Pepino formation, 4 miles west of Lares, collected by Robert T. Hill.

Cuba, station 3467, Camapu River, Manasas trail, collected by Arthur C. Spencer. Station 7511, between Ocujal and Palma, altitude about 500 feet a. t., near Guantanamo, Cuba, collected by O. E. Meinzer. Station 7514, 5 miles east of monument H4 of U. S. Naval Reservation, Guantanamo, Cuba, altitude 400 feet a. t., collected by O. E. Meinzer.

Prof. K. Martin, director of the Geologisch Reichs Museum, Leiden, submitted to me for determination some material from Serro Colorado, Arube, that I thought referable to this species. At the time I studied these specimens I was of the opinion the species belonged to the genus Orbicella. The specimens referred to O. tenuis in the paper cited are referred in the present paper to Antiguastrea cellulosa (Duncan) Vaughan (see p. 407).

Cyathomorpha tennis in some of its characters is very similar to Oulastrea. In fact I have vacillated between referring it to Cyathomorpha or to Oulastrea, particularly as there is in the New York Academy Porto Rican collection a species that resembles C. tennis, but is more appropriately referable to Oulastrea than to Cyathomorpha, and a specimen, poorly preserved but apparently the same species, was obtained by Mr. Meinzer at Mogote Peak, east of the U. S. Naval Reservation, near Guantánamo, Cuba, in beds of the same age as those in which the Porto Rican specimen was collected. As the Cuban material is not good enough for an accurate description, the discussion of this interesting species must be deferred.

Genus DIPLOASTREA Matthai.


Type-species.—Astrea heliopora Lamarck.

In my paper cited in the synonymy I wrote "Diplastrea is one of the most important genera of Oligocene corals in the southeastern United States and in the West Indies. Astrea crassolamellata Duncan, from Antigua belongs to it. It is also found in the lowest horizon at Crocus Bay, Anguilla; in Cuba at numerous localities; along Flint River near Bainbridge, Georgia; and in eastern Mexico."

I also remarked that Diplastrea might ultimately become a synonym of Cyathomorpha. I am referring the Crocus Bay specimen to Cyathomorpha roxboroughi Vaughan, new species (see page 461 of this paper), and am referring the Mexican specimen to Cyathomorpha antiguensis (Duncan) Vaughan (p. 466 of this paper). Diplastrea, Cyathomorpha, and Oulastrea are closely related genera. All are fungid corals that resemble in habit the genus Orbicella, and all have been confused with it. Diplastrea has more coarsely dentate and more perforate septa than Cyathomorpha, and it lacks the prominent, wide pali of Cyathomorpha; but the inner septal teeth of Diplastrea in many instances simulate pali. For the present at least it is desirable to treat each as a valid genus. According to Reuss (see p. 455 of this paper), Agathiphyllia differs from Cyathomorpha in not having pali; therefore, Diplastrea may be a synonym of Agathiphyllia.

Before discussing the species here referred to Diplastrea, mention will be made of two species—Brachiphyllia eckeli ¹ and Brachiphyllia irregularis ² described by Duncan from St. Croix, Trinidad. These, according to the figures, are fungid corals, and probably are referable to Diplastrea. The costae of the type-species of Diplastrea are either confluent or notched in the intercorallite areas. Brachiphyllia, until the type-species, B. dormitzeri, has been studied and

² Idem, p. 13, pl. 2, fig. 5.
described in more detail is an unidentifiable genus (see pp. 455, 456 of this paper).

**DIPLOASTREA HELIOPORA (Lamarck) Matthai.**

Plate 134, figs. 1, 1a, 1b, 1c.


Figures 1, 1a, 1b, 1c, plate 134, are intended to illustrate the generic characters of the genotype. Plate 134, figure 1, is a natural size view of the calices; figure 1b is a view of the calices enlarged four times. These figures illustrate the imperfect, synapticulate wall as seen from above, the dentate septal margins, and the trabecular columella. It should be noted here that the septal margins are not so prominent nor are they so coarsely dentate in all specimens. Plate 134, figure 1a, illustrates the costae of the edge of the lower part of the corallum, four times enlarged, and shows that the common wall originally is synapticulate and perforate. Plate 134, figure 1c, is a longitudinal section of the corallites, four times natural size, to illustrate the interrupted corallimites walls, the perforate character of the septa, and the synapticulae and dissepiments on the septal faces.

*Geographic distribution.*—*Diploastrea heliopora* is found on the living coral reefs of the Indo-Pacific from the east coast of Africa, French Somaliland, eastward at least as far as the Fiji Islands. The specimen here figured is from Djibouti, French Somaliland, collected by Dr. Charles Gravier.

**DIPLOASTREA CRASSOLAMELLA (Duncan) Vaughan.**

Plate 135, figs. 1, 2, 3, 4, 4a, 5, 5a, 5b; plate 136, figs. 1, 1a, 1b; plate 137, figs. 1, 2, 3, 4, 4a, 5.


The following are Duncan's original descriptions of the general characters of this species and of the typical form, and his synopsis of the seven varieties into which he subdivided it:

*General description.*—"A group of forms from the Maris presents the following structural characteristics: Corallum very massive and large, with an irregular upper surface, which is convex in some parts,
almost flat in others, and more or less largely gibbous in all; intercalicular groove very decided. Corallites usually very large, and never very small. Wall very delicate and indistinct; costae small; columella large. Septa variable in cyclical arrangement, the larger excessively developed at the wall and linear within. Endothea abundant, but not in excess, vesicular. Exothea not well developed, but decided and plentiful. Calices invariably found as casts. Impressions prove them to have been shallow. Coenenchyma well developed.

"These characters, common to many forms, are more or less varied in intensity in different specimens. The septal number varies in individuals of the same corallum, in one series of forms to a remarkable extent, although the corallites thus differing are nearly equal in diameter, and are nearly, if not quite, as advanced in development. In other forms it is fixed to four cycles in six systems; whilst in some there are three cycles in some systems, and only two in others, the corallum being large.

"The form which I consider typical of the species has four perfect cycles in six systems; but in some corallites the rudimentary sixth and seventh orders of a fifth cycle exist. The specific characteristics—the thick and great development of the septal laminae at their wall end, and the more or less linear, but entire, conditions of their internal parts—are seen in all these forms, in the primary, secondary, and tertiary septa, according to the relative septal arrangements. In some corallites with a low septal number, the primary septa alone are thus characterized; and as the higher cycles are seen, so the secondary and tertiary septa become enlarged and resemble the primary. The septa of the higher orders are either linear throughout or slightly enlarged at the wall; and as they approach the tertiary or quaternary, as the case may be, they are seen to become more equal to them in size. In examining these forms allowance must be made for their fossil condition; and attention must be given, in examining transverse sections of corallites, that they are quite at right angles to the corallite, for any obliquity will, of course, diminish the peculiar spear-shape or mace-shape of the septa, and render them more like a paddle, or a leaf with the stalk attached.

"The tendency of the higher orders of septa to become linear throughout, or to be less decidedly large at one end and thin elsewhere—that is, more or less uniformly thick, but in a less degree than is usual at the wall—is seen throughout the species; and in a gigantic variety, where the fully developed corallites have 12 or 14 septa in every system, the whole of the septa are less decidedly thick at the wall, and are either more or less so throughout, or present the usual form of the septa in a modified degree.
"This species is found throughout the great Marl formation, and presents every variety of siliceous fossilization, from that characterized by silicification of the sclerenchyma and infiltration of the interspaces by granular carbonate of lime, to that where all is siliceous and capable of polish. Destructive silicification almost invariably exists in a greater or less degree; and as the sections preserved were made, as a rule, for ornament or amusement, I have seldom seen accurately transverse and longitudinal views of the corallites.

"All the specimens, with the specific peculiarities mentioned, may be ranged in several groups; that which contains the detailed characters in their greatest intensity, generally, may be considered the typical form.

"a. Astraea crassolamellata, typical form.

"Corallum large, irregularly convex above. Corallites tall, large, crowded here and there, but not so much so higher up or at the surface. Calices circular, but more or less elliptical when on an irregularity of the surface; very large, and separated from each other by well-marked, furrow-shaped, polygonal tracts; tracts marked by costal elevations and by granules.\(^1\) Calices crateriform, not much elevated above the surface. Wall thin, and rendered insignificant by the great development of the septa at the margin. Fossa not deep. Costae numerous, and, considering the diameter of the septa at the wall, very small; they project but little, and are, as a rule, alternately large and small, not dentate, and often incline one to the other at their free edge. The larger costae present regular enlargements where the cross-tissue (dissepiments) of the exotheca joins them, when there are more than four cycles of septa, the smaller costae are irregular as regards their appearance and development. Columella large, of lax laminae, parietal; it does not project much at the bottom of the fossa, and occupies a large space in the corallite. Septa numerous, generally characterized by great enlargement at the wall, and linear appearance in the rest of their course, the higher orders being nearly linear at the wall also. The number of cycles varies with the stage of development of the corallite.

Analysis of the species.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Astraea crassolamellata (type).</td>
<td>Well marked...</td>
<td>Very thick at wall...</td>
<td>4, in some 5...</td>
<td>19 to 20 mm.</td>
</tr>
<tr>
<td>b. — var. magnifica</td>
<td>do...</td>
<td>do...</td>
<td>4...</td>
<td>127 mm.</td>
</tr>
<tr>
<td>c. — var. pulchella</td>
<td>Less well marked</td>
<td>do...</td>
<td>Variable...</td>
<td>8 to 12.7 mm.</td>
</tr>
<tr>
<td>d. — var. mobiles</td>
<td>do...</td>
<td>Very large at wall...</td>
<td>do...</td>
<td>Variable.</td>
</tr>
<tr>
<td>e. — var. minor</td>
<td>do...</td>
<td>Very thick at wall...</td>
<td>do...</td>
<td>Small, variable.</td>
</tr>
<tr>
<td>f. — var. magnifica</td>
<td>Less marked</td>
<td>do...</td>
<td>Do...</td>
<td>8 to 25 mm. and more.</td>
</tr>
<tr>
<td>g. — var. magnifica</td>
<td>Well marked...</td>
<td>Less thick, more linear.</td>
<td>4 to 6...</td>
<td>...</td>
</tr>
</tbody>
</table>

\(^1\) As none of the specimens exhibit, perfect calices many of these characters have, of necessity, been taken from casts.
"In young corallites there are six systems of three cycles. As growth proceeds the other orders of the fourth and sometimes of the fifth cycle are gradually added. Some systems are defective in certain orders, while others possess them. The largest corallites have four perfect cycles, and a fifth in two or three systems; the ninth order being usually wanting. It is difficult, in the larger corallites, to distinguish the systems on account of the resemblance of the primary, secondary, and tertiary septa to each other.

"The primary septa are very thick externally, but delicate and linear elsewhere; the linear part joins the rest suddenly, like the staff of a big-headed spear; at the junction the thick corners of the enlargement give off a lateral spine, like a piece of endotheca; near the costal end of the septa there are delicate lateral spines. The space between the sets of lateral spines is more or less square. The secondary septa are very like the primary.

"When there are more orders in the system than five—that is, when there are six, seven, eight, and nine—the tertiary septa equal the primary and secondary, the blunt end terminating in the linear portion a little nearer the wall. When there are four cycles, the tertiary septa are smaller than the primary and secondary; and when there are only three cycles, as in young corallites, the tertiary septa are linear throughout. The quaternary septa are linear and very slightly developed; when there are more septa than those of the fourth cycle, the quaternary resemble small tertiary septa. The remaining septa are very small and linear, and reach a very little way from the wall; they are apt to curve towards the septa nearest them. In examining the shape of the septa in this and in all the allied forms, particular attention must be paid that the section is quite transverse, as any obliquity will more or less alter the shape of the larger end.

"As regards the endotheca, the dissepiments are frequent and delicate, and not very much developed. The exotheca is tolerably well developed, but not in proportion to the size of the corallites. Its dissepiments form square cells. The free surface between the costae and calices has a few granules. Increase by extracalicular gemmation.


"Measurements.—Diameter of the calices in six specimens $\frac{3}{4}$ inch [19 mm.], in seven others $\frac{3}{4}$ inch [20 mm.], and in some from $\frac{3}{4}$ to $\frac{4}{5}$ inch [12.5 to 6.25 mm.]. The elliptical calices (situated on the sides of the corallum) are about $\frac{1}{10}$ inch [27.5 mm.] in longest diameter. The greatest thickness of the septa at the wall is $\frac{3}{16}$ inch [2.5 mm.]. Columella $\frac{3}{8}$ inch [5 mm.] in diameter."

It is obvious that Duncan had no really good specimens on which to base his original description of this species. I was fortunate in obtaining more than 60 specimens in Antigua, and have selected 14
of these as the basis of the following notes. Of Duncan's varieties, it seems to me that *magnetica*, *pulchella*, and *nobilis* should be combined with the typical form of the species; that his varieties *minor* and *nugenti* should be combined under one name, *nugenti*, preferred by me as it is desirable to preserve the record of the part Doctor Nugent played in making known the fossil corals of Antigua; and that variety *magnifica* should be retained without any important change.

**DIPLOASTREA CRASSOLAMELLATA** (Duncan) Vaughan. Typical.

Plate 135, figs. 1, 2, 3, 4, 4a, 5, 5a, 5b; plate 136, figs. 1, 1a, 1b; plate 137, figs. 1, 2, 3, 4, 4a, 5.

Plate 135, figure 1, illustrates, natural size, a polished surface of a typical specimen in Duncan's original sense; and plate 135, figure 2, illustrates natural size, a polished surface of Duncan's variety *nobilis*. Duncan did not recognize that the septa in such specimens are perforate and that synapticulae are abundant. These two figures will serve to validate the identifications here made, as reference to Duncan's original figures will show.

As I collected a series of specimens ranging from a solitary corallite to a fully developed corallum, the development of the corallite will be described.

 Specimen No. 1.—The only solitary corallite I collected (pl. 135, fig. 3) is inversely sub-conical in shape, the apex broken. It is 28.5 mm. tall, and is 16 by 18 min. in maximum diameter. The older calice was damaged and a smaller calice has formed above the older. On the outer surface is an incomplete, finely striate pellicular epitheca; subequal or alternately larger and smaller, more or less interrupted, beaded costae are seen in the areas not covered by the epitheca. The costal ends are joined by synapticulae, between which are perforations. The wall originally is synapticulate. Septal margins coarsely beaded. Primary and secondary septa solid for the most part; terciaries more perforate; quaternaries decidedly perforate. Columella well developed; surface coarsely papillary; fossa shallow. As the structural characters of this specimen are essentially identical for all other typical specimen of the species, descriptions of the epitheca, costae, and intercostal synapticulae need not be repeated.

 Specimen No. 2.—In this specimen the primary corallite has given rise to one lateral bud (pl. 135, figs. 4, 4a), between which and the parent corallite is a slightly depressed intercorallite area. Diameter of parent corallite, 24 mm. Septo-costae more or less confluent and continuous, interrupted with perforations, joined to one another by synapticulae; margins coarsely, rather irregularly beaded.

 Specimen No. 3.—There are seven corallites, separated by wide intercorallite grooves, in this specimen. Five corallites are shown
on plate 135, figure 5. The lesser diameter of the three larger corallites is 19 mm.; the greater diameter ranges from 21 to about 23 mm. The calices of this specimen are shallow. In the calice represented by plate 135, figure 5b, it will be seen that the primary and secondary septa are subequal and are thicker than the members of the higher cycles. There are about 86 septa in this calice—that is, there are 4 complete cycles and 38 quinaries. The primaries and secondaries are solid for the most part; the terciaries are somewhat thinner and near the columella they are represented by only partially fused septal tabeculae. The quaternaries are thinner and more perforate than the terciaries, to which they fuse by their inner ends rather near the columella. The quinary septa are still thinner and very perforate; they tend to fuse to the sides of the included quaternary. On the inner part of the largest septa are indefinite lobes or teeth, some of which simulate partially developed paliform lobes. Synapticularae are greatly developed, between both the costae and the septa; and there are endotheocal dissepiments.

*Specimen No. 4.—* This specimen is composed of seven corallites, plate 137, figure 1. It differs from specimen No. 3 principally by having deeper calices and on some of the large septa there are fairly well-developed paliform lobes.

*Specimen No. 5.—* Plate 136, figures 1, 1b, are two views, natural size, of a specimen that is essentially typical variety *nobilis* of Duncan. It differs from the typical form of the species by having somewhat smaller corallites and consequently less numerous septa. Specimens bridging the slight gap between specimens Nos. 4 and 5 might be described, but to do so seems unnecessary.

The foregoing descriptions apply to the typical form of the species; some variants will now be considered.

*Specimen No. 6.—* Plate 137, figure 3, represents a calice and intercalular areas in a specimen that differs from specimen No. 3 chiefly by the nonexsert calicular margins.

*Specimen No. 7.—* The calices represented by plate 137, figures 4, 4a, are of a specimen that practically intergrades with specimen No. 6. The calices illustrated are smaller and the septo-costae coarser than in specimen No. 6. Plate 137, figure 5, illustrates a closely similar specimen from the base of the Chattahoochee formation, on Flint River, about 4 miles below Bainbridge, Georgia. The calices of the Bainbridge specimens are excavated, thereby differing from specimen No. 7.

*Specimen No. 8.—* This specimen, plate 137, figure 2, has corallites that are more prominent and more isolated than in the other specimens described, and the costae on the free corallite limbs are mostly subequal.
Localities and geologic occurrence.—Island of Antigua, in the Antigua formation, at stations 6854, Rifle Butts; 6856, Friar’s hill; 6881, Willoughby Bay; 6888, one-half mile north of McKinnon’s Mill, collected by T. W. Vaughan. Previously collected by Robert T. Hill and by J. W. Spencer, in addition to the material originally studied by Duncan.


Cuba, station 3481, Rio Canapu, Manassas trail, collected by Arthur C. Spencer. Station 7506 west side of Ocujal Spring, near Guantanamo, Cuba, altitude between 200 and 250 feet, at contact with underlying conglomerate, collected by O. E. Meinzer. Fragments from station 7522, Mogote Peak, one-half mile east of east boundary of United States Naval Reservation, Guantanamo, elevation about 375 feet, a. t., collected by O. E. Meinzer, probably should be referred to variety magnifica (Duncan).

Georgia station 3381, 4 miles below Bainbridge, Flint River, in the base of the Chattahoochee formation, collected by T. W. Vaughan.

Panama, station 6587, Tonosi River, collected by D. F. MacDonald. A poorly preserved specimen from this locality seems referable to this species.

This is stratigraphically one of the most important coral species of the American Oligocene, for it seems to occupy almost the identical horizon everywhere it has as yet been found. Its stratigraphic position, as at present known, is middle Oligocene; but the possibility of some specimens being upper Eocene needs to be borne in mind (see page 206).

DIPLOASTREA CRASSOLAMELLATA var. MAGNIFICA (Duncan) Vaughan.

Plate 138, figs. 1, 2, 2a.


The following is Duncan’s original description: “In the smaller corallites of this variety the spear-shaped septa are seen; but in the larger, where there are from twelve to fourteen septa in a system, the primary, secondary, and tertiary orders are nearly equal in size. They have lost the extreme relative thickness between their extremities, and, although still very thin at the columella, they are not greatly developed at the wall. In some corallites the septa, in transverse view, are not straight, but form curving radii; and in all, the relation which the septa bear to the interseptal spaces and to the wall is very much exaggerated.

“Corallites circular in transverse section; they vary much in diameter, and are now and then crowded, but generally have much coenen-
chyma between them. The diameters of five corallites are as follows: \( \frac{5}{8} \) inch [21 mm.], \( \frac{3}{8} \) inch [17 mm.], 1 inch [25 mm.], \( 1\frac{1}{10} \) inches [27.5 mm.] \( \frac{3}{4} \) inch [12.5 mm.]. Walls very indistinct. Costae small, and appearing to be appended to all the septa. Exotheca is present and connects the costae. Septa numerous, especially in large corallites, where the cycles, which are small and rudimentary in the lesser, become well developed. In the smallest corallites there are six systems of four cycles, the fourth and eighth orders being very small. In medium-sized corallites there are six systems, four cycles in five systems, and in the sixth there are the rudimentary sixth, seventh, and eighth orders. The first, second, and third orders are nearly equal in size. In the largest there are six systems, and from twelve to fourteen septa in every system. Lateral teeth exist on all the primary septa at the place of greatest width. The higher orders in every system are very linear. Endotheca abundant, but not in excess. Columella large, well developed, and spongy. Coenenchyma formed of cells produced by the costae and the exothecal dissepiments."

Except that Duncan failed to recognize that this is a fungid coral his description is good.

I am introducing on plate 138 figures of two specimens of this variety, one specimen from Antigua (fig. 1); the other from Flint River, near Bainbridge, Georgia, (figs. 2, 2a).

Localities and geologic occurrence.—Antigua, in the Antigua formation, station 6881, Willoughby Bay, collected by T. W. Vaughan.


Cuba, station 7522, collected by O. E. Meinzer. It was stated on page 476, that the fragments obtained by Mr. Meinzer on Mogote Peak near Guantanamo seem referable to this variety.

Georgia, station 3381, 4 miles below Bainbridge, Flint River, in the base of the Chattahoochee formation, collected by T. W. Vaughan.

This variety has the same stratigraphic significance as the typical form of the species.

**DIPLOASTREA CRASSOLAMELLATA var. NUGENTI (Duncan) Vaughan.**

Plate 138, fig. 3, 3a.


Duncan's original description of variety *nugenti* is as follows: "The specimen upon which this variety is founded has no calices.
but the transverse views of the corallites are very distinct. Corallites one-third inch [8.3 mm.] in diameter, not crowded. Septa in six systems, two cycles in four systems and three in the other two. The tertiary orders are small, and often join the secondary near the columella. The primary septa are square and large at the wall, and not very linear, but staff-shaped within; their width at the margin is one-fifteenth [1.7 mm.] inch. The secondary septa are very much smaller and thinner than the primary, but nearly as large when the tertiary orders are present. Costae wide apart. Exothecal cells scalariform, wider than high; from one-thirtieth to one-sixtieth [0.8 to 0.4 mm.] inch high, and one-fifteenth inch [1.7 mm.] long. Endotheca abundant.

"This form has squarer headed septa, longer exothecal cells, costae wider apart, and a lower septal number than many of the forms of the species; and differs from the forms with three more or less incomplete septal cycles in the greater thickness of the inner part of the septal laminae, the broad exothecal cells, and in the disposition of the tertiary septa to join the secondary."

The original description of var. minor is as follows:

"Corallites tall, slender, crowded, distinct; walls circular, not thick. Calices circular, somewhat variable in size; the largest is three-tenths inch [7:5 mm.] in diameter. The larger septa are spear-shaped, the smaller linear; they are in six systems of two cycles; rarely three cycles in two systems in some corallites. Primary septa much larger than the secondary, but nearly equaling them when there is a third cycle. Columella large.

"The alternate large and small, spear-shaped and linear septa are very well seen in this form. The same details as in this form are found in several specimens with larger corallites."

It seems to me that varieties nugenti and minor should not be separated, and I am using nugenti as the varietal name. This variety is principally characterized by its small (diameter about 7 mm.) and relatively distant calices. The specimen represented by plate 138, figures 3, 3a, apparently has more compact structures than specimens more typical of the species. The compact appearance I believe is in large part due to secondary mineral changes, and to the surface having been worn, for some septal perforations are recognizable and synap- ticulae are distinct. An unfigured specimen referred to var. nugenti has perforate corallite walls and perforate septa, but the septa of a worn lateral corallite are mostly solid. As it is usual for the skeletal structures of stunted corals to be denser than those of specimens living under more favorable conditions, it is probable that nugenti is only a vegetational variant of typical D. crassolamellata.

Localities and geologic occurrence.—Antigua, in the Antigua formation at station 6881, Willoughby Bay (figured specimen), and 6854, Rifle Butts, collected by T. W. Vaughan.
MADREPORARIA PERFORATA.

Family EUPSAMMIIDAE Milne Edwards and Haime.

Genus BALANOPHYLLIA Searles Wood.


Type-species.—Balanophyllia calyculus Searles Wood.

BALANOPHYLLIA PITTIERI, new species.

Plate 139, figs. 1, 1a, 1b, 2, 2a.

Corallum compressed-cornute in form. The smaller of the two cotypes is 32 mm. long; greater diameter of calice, 4 mm.; lesser diameter of calice, 8.5 mm. (See pl. 139, figs. 1, 1a, 1b.) The larger cotype has both the lower and upper ends broken. It is 41 mm. long; greater diameter of lower end, 9.5 mm.; lesser diameter, about 7 mm.; greater diameter of upper end, 20.5 mm.; lesser diameter, 13 mm. (See pl. 139, figs. 2, 2a.)

Wall perforate between the costae, less perforate along the costae; becomes secondarily thickened; the interseptal loculi near the base are almost solidly filled. There is some pellicular epitheca, which may reach to within 3 mm. of the calicular edge. Costae relatively wide, with narrow interspaces, subequal, every fourth may be somewhat the more prominent where there are four cycles of septa; in general the costae corresponding to the primary and secondary septa are the more conspicuous. In profile they are flat or faintly carinate; about three ill-defined rows of granulations along them, or there are irregularly scattered granulations; where the costae are slightly carinate the median row is the more prominent.

Septa with typical balanophyllid arrangement; in the smaller cotype four complete cycles and a few quinaries; in the larger cotype, four complete cycles and many quinaries, a total of about 78 septa. Paliform lobes appear well developed before the secondaries.

Columella well developed, elongate, vesicular, protuberant in the bottom of the calice.

Locality and geologic occurrence.—Costa Rica, “Colline en démolition,” Limon, No. 618, H. Pittier collection. Station 6249, Hospital Point, Bocas del Toro, collected by D. F. MacDonald. The horizon is about that of the Bowden marl.

Cotypes.—Nos. 325014, U.S.N.M.

Family ACROPORIDAE Verrill.

Genus ACROPORA Oken.


Type-species.—Millepora muricata Linnaeus, s. s. = Madrepora cervicornis Lamarck.
ACROPORA PANAMENSIS, new species.

Plate 141, figs. 1, 1a, 1b, 2.

Corallum composed of rather thick branches, apices bluntish, or at least not acuminate. The specimen (the holotype) represented by plate 141, figure 1, is 58 mm. long; the diameter of its lower end is 13 mm.; upper end broken, compressed, 20 mm. wide, lesser diameter of fracture 8 mm.; diameter of end of a new lateral branch not yet fully formed about 4.5 mm. The diameter of the lower end of the specimen (paratype) represented by plate 141, figure 2, is 15 mm.

As the axial corallites are broken their characters are not known. Radial corallites of two kinds, protuberant and immersed or subimmersed. Protuberant corallites ascending, appressed, tubular, slightly compressed. Length as much as 4 mm., about 2.5 mm. probably an average; all intermediate lengths down to the immersed corallites. Greater diameter ranges from 2 up to 3.5 mm.; lesser diameter from 2 to 2.5 mm. Distance apart in vertical rows or spiral from 1 to 2.5 mm.; in horizontal plane, from 1.5 to 3 mm. Lower wall better developed than the upper, texture rather loose, of moderate thickness, outside strongly costulate with synapticulae clearly visible between the costules; upper edge not rounded or incurved in the cotypes. Upper wall short but traceable. Apertures with margins which slope downward and outward from the upper wall or they are short labiate, no nariniform or dimidiate apertures were observed. Two well-developed cycles of septa, primaries larger than the secondaries; upper directive more prominent than the lower; in some calices apparently there may be a few tertiaries. Immersed and subimmersed corallites smaller and with less developed septa than the protuberant corallites.

Coenenchyma porous, granulate, reticulate, costulate, and somewhat flaky.

Locality and geologic occurrence.—Canal Zone, station 2024b, crossing of Panama Railroad over Rio Agua Salud, between Bohio Ridge and New Frijoles, in the Emperador limestone, collected by T. W. Vaughan and D. F. MacDonald.

Antigua, station 6854, Rifle Butts, in the Antigua formation, collected by T. W. Vaughan.

Type.—No. 325042a, U.S.N.M.
Paratype.—No. 325042b, U.S.N.M.

This species belongs to the subgenus to which Brook applied the name Eumadrepora, that is, Acropora s. s., but it is not closely related to Acropora muricata (Linnaeus) and its relatives, A. prolifera (Lamarck) and A. palmata (Lamarck), of the Floridian and West Indian region.

ACROPORA SALUDENSIS, new species.

Plate 141, figs. 3, 3a, 4, 4a.

Corallum composed of relatively slender branches. The dimensions of the two cotypes which are branch segments are as follows:
Dimensions of branches of Acropora saludensis.

<table>
<thead>
<tr>
<th>Branch No.</th>
<th>Length, mm.</th>
<th>Diameter of lower end, mm.</th>
<th>Diameter of upper end, mm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>10 by 11</td>
<td>9 by 11</td>
</tr>
<tr>
<td>2</td>
<td>34</td>
<td>10.5 by 12</td>
<td>8 by 11.5</td>
</tr>
</tbody>
</table>

The diameters are given for the stem proper, exclusive of the corallite protuberances. The relatively greater width of the upper end of No. 2 is due to its apparently being at the base of a bifurcation. The form of the corallum was probably arborescent.

The characters of the axial corallites not distinguishable in the cotypes. The radial corallites, although not all of equal size, are nearly all protuberant, a few subimmersed but no immersed corallites were seen; however, immersed corallites might be present on the basal part of the corallum. The form is ascending appressed tubular; length measured along lower side, 2.5 to 3.5 mm.; lesser diameter 1.5 to 2.5 mm.; greater diameter 1.75 to 2.5 mm.; lateral compression relatively slight but apparent. Lower and side walls well developed, thick, rather dense, outer surface usually strongly costulate; upper edge of lower wall more or less rounded, somewhat uncinate in some corallites. Upper wall only slightly protuberant or obsolete. Apertures nariform or dimidiate. Primary septa well developed; secondaries recognizable in many calices, appear to be usually present.

Coenenchyma relatively dense, surface closely beset with coarse, somewhat elongate, more or less vermiculate granules, no well-defined costules.

Localities and geologic occurrence.—Canal Zone, Emperador limestone, at station 6024b, crossing of Panama Railroad over Rio Agua Salud between Bohio Ridge and New Frijoles (cotypes); and at station 6016, quarry, Empire, collected by T. W. Vaughan and D. F. MacDonald.

Antigua, station 6854, Rifle Butts, in the Antigua formation, collected by T. W. Vaughan.

Cotypes.—No. 325043, U.S.N.M. (2 specimens.)

This species belong in the same group of Acropora as A. squarrosa (Ehrenberg), A. rosaria (Dana), and A. murrayensis Vaughan,¹ and is referable to the subgenus Rhabdocyathus of Brook.

ACROPORA MURICATA (Linnaeus).


The nomenclature of the living West Indian and Floridian species of _Acropora_ is, in some respects, amusing. Brook in 1893, after studying the considerable collections in the British Museum of Natural History, reached the conclusion that the three previously recognized species from Florida and the West Indies, _A. cervicornis_ _A._ _prolifera_, and _A. palmata_, really represented only forms of one species, to which he applied the specific name _muricata_ of Linnaeus. Gregory in 1895¹ adopted the opinion of Brook, but in 1899 he visited the West Indian coral reefs and decided that all three supposed species were valid (see reference for 1900 in the foregoing synonymy). I studied a large suite of specimens and concurred with Brooks (reference for 1901 in synonymy), and Verrill in his paper for 1902 followed the same course. From 1908 to 1915 (inclusive) I had extensive field experience with the living coral reefs of Florida, the Bahamas, and some of the Lesser Antilles, and am convinced that Gregory’s opinion, based on field acquaintance with these corals, is correct. Very rarely indeed does one find a specimen that can not be instantly referred to its proper species. In some of my papers on the ecology and growth rate of Floridian and Bahaman corals,² I have referred to this species as _Acropora cervicornis_, because _cervicornis_ is a rather generally known name for it.

*Localities and geologic occurrence.*—Pleistocene at stations 5850, Mount Hope, and 6554, mud flat, 1 foot above ordinary high-tide level, Colon, Canal Zone; station 6251, Monkey Point, Costa Rica, collected by D. F. MacDonald; and Moin Hill, Limon, Costa Rica, “Niveau A.,” collection of H. Pittier.

This species is general in the West Indian and eastern Central American Pleistocene reefs, where they were not exposed to the beat of the heavy surf. Recent; eastern Central America, the West Indies, and Florida.

---
² Mostly in Yearbooks Nos. 9 to 11 of the Carnegie Institution of Washington.
ACROPORA PALMATA (Lamarck).


Localities and geologic occurrence.—Costa Rica, Pleistocene at station 6251, Monkey Point, collected by D. F. MacDonald. Also in the slightly elevated reefs around Colon Bay.

Acropora palmata is of general occurrence in the elevated Pleistocene coral reefs of eastern Central America and the West Indies; and is present on the living reefs of the same region and in Florida. In places, as in the Bahamas, it is one of the most important reef-forming corals, its strong skeleton enabling it to withstand the pounding of breakers.

Genus ASTREOPORA de Blainville.


Type-species.—Astrea myriophthalma Lamarck.

ASTREOPORA GOETHALSI, new species.

Plate 140, figs. 3, 4, 4a.

Corallum composed of rather large, subterete, subelliptical, or much compressed branches. The following are measurements of four broken branches:

<table>
<thead>
<tr>
<th>Branch No.</th>
<th>Length</th>
<th>Diameters of lower end</th>
<th>Diameters of upper end</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm.</td>
<td>mm.</td>
<td>mm.</td>
</tr>
<tr>
<td>1.</td>
<td>85</td>
<td>27 by 56</td>
<td>26 by 71</td>
</tr>
<tr>
<td>2.</td>
<td>134</td>
<td>42 by 52</td>
<td>28 by 55</td>
</tr>
<tr>
<td>3.</td>
<td>154</td>
<td>32 by 44</td>
<td>28 by 65</td>
</tr>
<tr>
<td>4.</td>
<td>186</td>
<td>16 (thick)</td>
<td>25 by 94</td>
</tr>
</tbody>
</table>

1 Width at bifurcation 22 mm. below upper end.

Calices subcircular or more or less distorted. Diameter ranges from 1 mm. in young, to 2 mm. in large calices, usual diameter from 1.5 to 2 mm. Distance apart from 1 to 1.5 mm. Calicular rims
slightly elevated, not quite 0.5 mm., due to the projection of the corallite walls beyond the coenenchymal surface. Distinct costae correspond to most, if not all, of the septa; irregular in size, but those corresponding to the primaries are usually the larger.

Septa in two complete cycles, with a variable number of ter- taries. Primaries usually well differentiated from the other septa, thicker, longer, and somewhat taller; in many calices a larger primary marks the plane of symmetry; secondaries and tertiaries small.

Columella poorly developed, in some calices a false columella formed by the fusion of the inner end of the primary septa is recognizable.

Coenenchyma with a flattish surface between corallites, vermiculately costate, with perforations between the costae in areas not covered by glassy-looking basal deposit, which in the cross-sections of some branches is solid, in the cross-sections of others there are platforms one above another.

Locality and geologic occurrence.—Canal Zone, stations 6015 and 6016, in the Emperador limestone, quarries, in the town of Empire, collected by T. W. Vaughan and D. F. MacDonal. The same or a very closely related species occurs at stations 3381 and 3383, respectively, 4 and 7 miles below Bainbridge, Georgia, in the base of the Chattahoochee formation, collected by T. W. Vaughan.

Cotypes.—No. 325036, U.S.N.M. (2 specimens).

Paratypes.—No. 325043, U.S.N.M. (4 specimens).

ASTREOPORA ANTIGUENSIS, new species.

Plate 139, figs. 3, 3a; plate 140, fig. 1.

Corallum forming large thick branches that may be more or less palmate. Plate 139, figure 3, represents a branch one-half natural size.

The calices are moderately deep, more or less irregular in outline, often subelliptical, the diameter ranges from 2 to 4 mm. Their margins elevated about 1 mm., and are distant from one another from 1.5 to 2.5 mm. Somewhat swollen around the base. Free limbs of corallites more or less distinctly costate.

The septal arrangement appears often to be irregular, sometimes two complete cycles and an incomplete third, in many calices the third cycle is complete, and occasionally a few members of the fourth cycle may be present. The absence of the smallest septa undoubtedly is often due to their destruction in fossilization.

Columella very poorly developed, in fact there may be none at all.

Coenenchymal surface usually formed by a compact basal deposit, but in places perforations may be recognized between costae.
Localities and geologic occurrence.—Antigua, Morris Looby's Hill, in the Antigua formation, collected by R. T. Hill.

Georgia, station No. 3381, Russell Spring, Flint River, Decatur County, Georgia, collected by T. W. Vaughan, in the base of the Chattahoochee formation.

Canal Zone, station No. 6026, 2 miles south of Monte Lirio, collected by T. W. Vaughan and D. F. MacDonald in the Culebra formation.

Type.—Museum of Comparative Zoology.
Paratype.—Ho. 325609, U.S.N.M.; also other specimens.

Comparison of the specimens from near Bainbridge, Georgia, with the smaller specimens from Antigua, fails to reveal any difference whatever between the specimens; and no noteworthy difference is seen between the other specimens and the best one from near Monte Lirio.

**Astreopora portoricensis**, new species.

Plate 140, figs. 2, 2a.

Corallum ramose, branches subcircular or elliptical in cross-section. Length of type, 56 mm.; greater diameter of lower end, 16 mm., lesser, 13 mm.; width of upper end (which is bifurcating) about 30 mm.

Calices moderately deep, usually deformed, one diameter longer than the other. A small calice has a greater diameter of 1.7 mm., lesser, 1.3 mm.; a rather large calice has diameters measuring 2.3 and 1.6 mm., respectively. The distance apart of the calices varies from 1.3 to slightly more than 2 mm. Calicular margins scarcely elevated; there is really no distinctly elevated rim.

Septa, in the larger calices, in three cycles, the last very small; their outer ends thick, the inner portions thin. Upper margins very slightly exsert.

Columella, poorly developed.

Coenenchymal surface usually coated by basal deposit, but in places costae with intervening perforations are obvious.

Localities and geologic occurrence.—Porto Rico, station 3191, 4 miles west of Lares, Pepino formation, collected by R. T. Hill.

Type.—No. 325306, U.S.N.M.

This species is very near *Astreopora antiquensis*; in fact, I am by no means sure that they are really distinct. The type of *A. portoricensis* has smaller and less prominent calices; but some of the specimens of *A. antiquensis* from Bainbridge, Georgia, have small calices. The critical difference, therefore, consists in the low, nonprotuberant calices of *A. portoricensis*, a difference which, according to the available material, is valid.
Genus ACTINACIS d’Orbigny.

1849. Actinacis d’Orbigny, Notes sur des Polyp. foss., p. 11.

Type-species.—Actinacis martiniiana d’Orbigny.

I have not been able to study the type-species of this genus, but judging from Reuss’s figures of A. martiniiana ¹ it is probable that the corals here referred to are correctly determined.

Besides the species described here, there is another species of Actinacis in the West Indies Tertiary formations, namely, the coral from the Eocene St. Bartholomew limestone, to which Duncan applied the name Astreopora panicea.² It will be considered in another paper.

The species to which Duncan applied the names Heliastraea exsculpta ³ (not Astraea exsculpta Reuss ⁴) and Heliastraea cyathiformis,⁵ and which I made under the latter name, the type species of Multicolumnastraee,⁶ deserves mention here. The intercorallite costae in Duncan’s Heliastraea cyathiformis are more or less vermiculate and are joined one to another by synapticulae, between which there are openings. This species is very close to Actinacis, but the coarse columnellar tuberes or pillars may warrant generic separation. The species, according to the stratigraphic data supplied by Mr. R. T. Hill, occurs in his Blue Mountain Series, of Cretaceous age, and his Catadupa beds, of Eocene age.⁷ It seems to me that the Catadupa beds are probably of Cretaceous age, for they contain no species of corals in common with the Richmond and Cambridge formations, while two of the five species recorded from them are common to the Blue Mountain Cretaceous.

ACTINACIS ALABAMIENSIS (Vaughan).

Plate 149, figs. 3, 3a.

1900. Turbinaria (?) alabamiensis Vaughan, U. S. Geol. Survey Mon. 39, p. 194, pl. 23, figs. 1, 2, 3; pl. 24.

The type-specimen (Cat. No. 158482) and the paratypes (Cat. Nos. 158480 and 158481, U.S.N.M.) clearly belong to the genus Actinacis, to which I suggested they might belong in the original account of the species. The following is the original description:

"Corallum massive, the masses may be more than 20 cm. across and 7 cm. thick, upper surface apparently convex or concave. Gen-

³ Idem. vol. 21, pp. 7, 8, 11, 1865.
⁵ Geol. Soc. London Quart. Journ., vol. 21, pp. 7, 8, pl. 1, figs. 1a, 1b, 1865.
⁶ Mus. Comp. Zool. Bull., vol. 34, pp. 235-237, pl. 37, figs. 5, 6, 7; pl. 38, fig. 1, 1899.
eral appearance of the corallum is as if composed of superimposed laminae. Calices shallow (?), crowded; diameter, 1.5 mm.; distance apart, quite constantly 1 mm. Coenenchyma, of superimposed irregularly perforate laminae. Wall, perforate. Septa, perforate, in three complete cycles; 12 septa reach the columella; the members of the third cycles usually fuse by pairs to the sides of an included septum (the first and second cycles can not be distinguished from each other, and therefore it can not be known whether the septa of the third fuse to the sides of the first or second). Sides granulate. Pali are probably present, but no detail could be made out. Columella very well developed, spongy.

"Locality.—Salt Mountain, 6 miles south of Jackson, Alabama.
"Geologic horizon.—'Coral limestone,' above Vicksburg beds."

I have not been able to decide positively whether this is an Actinacis or a Turbinaria. It probably belongs to the latter genus."

The following is a description of a species of Actinacis, referred to A. alabamiensis, from Flint River, near Bainbridge, Georgia:

Corallum forming large explanate masses, a foot or more across and 70 to 75 mm. thick. The perpendicular section shows a thinly lamellate structure.

Calices small. 1.3 to 1.5 mm. in diameter, usually separated by less than their own diameter of coenenchyma. The coenenchyma is composed of flexuous, perforate, granulated costae, which are fused into a reticulum by abundant synapticulae. The calices are distinctly differentiated from the coenenchyma, but a definite wall is only poorly developed; where it is present, it appears to be due to a zone of peripherally disposed synapticulae. The costae often lead directly across the coenenchyma from one calice to the next, thus joining the septa of adjacent calices.

Septa slightly less in thickness than the interseptal loculi. The usual number is about 20, the third cycle as a rule is incomplete, arranged with reference to a plane of symmetry. The presence of a directive plane and the grouping of the septa into pairs or groups of threes is characteristic. Pali occur at the junctions of the inner ends of the septa—it seems that the full number is 12. The interseptal loculi are conspicuously open; if any synapticulae are present, they are rare.

Columella well developed, composed of septal processes.

A species of Actinacis, apparently the same as A. alabamiensis, was collected by me in Antigua. It is represented by a small piece 61 mm. long, 33 mm. wide, and 25 mm. in maximum thickness. The upper surface is nodose; calices from 1.25 to 1.5 mm. in diameter; coenenchyma composed of a fine trabecular mesh work. This specimen seems to me to belong to the same species as the specimens from near Bainbridge, Georgia, that I am identifying as A. alabamiensis.
Localities and geologic occurrence.—Alabama, Salt Mountain, 6 miles south of Jackson, in the "coral limestone" above the top of the Vicksburg group, collected by T. W. Vaughan (the type).

Georgia, station 3381 and 3383, on Flint River, respectively 4 and 7 miles below Bainbridge, in the base of the Chattahoochee formation, collected by T. W. Vaughan.

Antigua, West Indies, station 6854, Antigua formation at Rifle Butts, collected by T. W. Vaughan.

This species is of a high order of importance in the correlation of American Oligocene deposits.

The septal arrangement in G. alabamiensis is similar to that of Porites in the presence of a plane of symmetry and the tendency of the septa to fuse by their inner ends in pairs. The septa themselves, however, are very different, being lamellate, almost imperforate, and sharply differentiated from the surrounding coenenchyma.

Professor Felix in his Anthozoen der Gosauschichten in den Ostalpen 1 has redescribed and figured A. haueri Reuss and A. martiniana d'Orbigny. He does not speak of the bilateral symmetry of the calices but both of his figures indicate such a condition, as in each there are two opposite elongate septa that connect with each other through the columella. I take it, then, that the calices of G. martiniana are bilaterally symmetrical with the septa grouped not very definitely in two's, three's, four's, or five's on each side of the median plane.

It seems probable that Actinacis may be intermediate in character between the families Acroporidae and Poritidae. These notes and suggestions are made in the hope that some one with the requisite material may make a more careful study of the Cretaceous species of the genus to determine the relations of those two families.

Family PORITIDAE Dana.

Genus GONIOPORA Quoy and Gaimard.


Type-species.—Goniopora pendunculata Quoy and Gaimard.

GONIOPORA HILLI, new species.

Plate 142, figs. 1, 1a.

Corallum composed of flattish plates, which may be more than 20 cm. wide and 4 cm. thick and appear to have grown in a subhorizontal position.

The calices are polygonal, from 3 to 4 mm. in diameter, from 1 to 1.5 mm. deep, separated by walls from 0.75 to 1.25 mm. thick. The walls are crossed by rather low costae, and in places there is some

---

1 Palaontographica, vol. 49, pp. 176-178, figs. 2, 3, 1903.
intercalicular reticulum, but it usually does not well up and form peaks, ridges, and crests between the calices.

Septa of the normal gonioporid number and arrangement, outer parts thick and subequal, all relatively narrow in their upper parts, and either fall steeply or slope to the level of the large columella tangle, which is joined by the primaries and secondaries and the secondaries fuse to the secondaries near it. Usually 3 or 4 teeth on the margins. Paliform lobes not greatly developed.

Columella tangle large, about 1.5 mm. in diameter, more than one-third the diameter of the calice; its upper surface forms the flattish or gently concave bottom of the calices.

**Localities and geologic horizon.**—Canal Zone, stations 6015 and 6016, quarries in the Emperador limestone, Empire, T. W. Vaughan and D. F. MacDonald, collectors.

**Type.**—Figured specimen No. 325058, U.S.N.M.

**Paratypes.**—No. 325057, U.S.N.M.

**GONIOPORA PANAMENSIS,** new species.

Plate 142, figs. 2, 2a, 2b.

Corallum forms thick plates, which may be more than 17 cm. wide and as much as 5 cm. thick in the center, thin on the edges. Growth form similar to that of *Goniopora hilli.*

Calices large, but irregular in size and distribution, because of the large development of intercorallite reticulum, which in some areas well upward and forms nipple-shaped peaks in the angles between the entirely circumscribed calices or forms ridges with calices on each side. The diameter of the calices ranges from 2.5 to 3.5 mm.; the intervening walls or ridges range up to 2.5 mm. thick, their length ranges up to 13 mm., where as many as three calices occur in a single valley, their height ranges up to 2 mm. Costae can be traced across the intercorallite walls and the ridges between calicinal series.

Septa rather thick, about 24, arrangement indefinite, but according to the gonioporid plan; they slope to the bottom of the calice or their outer part is narrow and falls steeply to the level or the columella tangle, to which the primaries and secondaries extend. Three or four dentations on the margin of each large septum. Paliform knots present, but lobes are not conspicuous.

Columella tangle well developed, but not so large as in *G. hilli.*

**Localities and geologic horizon.**—Canal Zone, stations 6015 and 6016, quarries in the Emperador limestone, Empire, collected by T. W. Vaughan and D. F. MacDonald.

Anguilla, station 6891, Crocus Bay, collected by T. W. Vaughan.

**Type.**—Figured specimen, No. 325053, U.S.N.M.

**Paratypes.**—No. 325054, U.S.N.M.
Corallum lamelliform, the lateral expansion far exceeding its thickness. The specimen selected as the type is a portion of a corallum, 90 mm. across and about 23 mm. thick. Another specimen is 49 mm. long, 35 mm. wide, and 7.5 mm. thick. The upper surface is plane or undulate. When the corallum is foliaceous, it may be irregularly flexed.

Calices polygonal, shallow, superficial or only slightly excavated. Usual diameter 2.5 to 3 mm. The wall, when somewhat worn, usually has a membraniform appearance, being almost continuous, interrupted in places, but forming a quite distinct boundary between adjacent calices. In other instances there may be no well-defined boundary to the calices. Two rows of synapticulae frequently reinforce the wall in the peripheral portion of the interseptal loculi.

Septa of variable thickness on the same specimen, usually moderately stout; on the thinner lamellae they are thick. The thickness of the septa seems to be correlated with the thickness of the colony. When the corallum is thick the septa are thin and vice versa. The normal number is 21, although there are in some places a few less, in others a few more. The usual arrangement is six primaries extending directly to the axis, with a triplet group of a secondary and two tertiaries between each pair. A directive plane could be observed in some calices, but the septa are too much damaged to permit discovering all the details of the arrangement. The margins are dentate, five to seven dentations on each longer septum. The faces with the usual granulations. Synapticulae rather abundant, but not greatly crowded, variable in thickness.

Columella tangle well developed.

The texture of the corallum is of variable firmness, depending upon the thickness of the septal trabeculae, the synapticulae, etc., however, it seems never to be especially dense.

Localities and geologic occurrence.—Georgia, station 3381, Blue Springs, 4 miles below Bainbridge; and station 3383, Hale’s Landing, 7 miles below Bainbridge, Flint River, Decatur County, in the base of the Chattahoochee formation, collected by T. W. Vaughan.

Cuba, station 7523, Mogote Peak, 250 feet a. t., ½ mile east of U. S. Naval Reservation, Guantanamo, Cuba, collected by O. E. Meinzer.

Type.—No. 325031, U.S.N.M.

Besides the lot of specimens referred to the species in the foregoing description, three other types or kinds of *Goniopora* occur on Flint River at Blue Springs and Hale’s Landing. It is impossible with the material at hand to decide whether they are distinct species or only varieties or forms of *G. decaturensis*. However, as it seems
very probable that two of these are only varieties of *G. decaturensis*, they are named and described as such.

**Goniopora decaturensis var. silicensis**, new variety.

Plate 143, figs. 2, 2a.

This is a specimen 113 mm. long, 54 mm. wide, and 20 mm. thick. The upper surface is slightly undulated, there is one deep depression, but it may have been caused by a burrowing animal or the surface may have been corroded.

Calices 2.5 to 4 mm. in diameter, larger than in typical *G. decaturensis*. Septa decidedly thin; texture light and fragile.

**Locality and geologic occurrence.**—Georgia, station 3381, Flint River, Blue Springs, 4 miles below Bainbridge, in the base of the Chattahoochee formation, collected by T. W. Vaughan.

**Type.**—No. 325026, U.S.N.M.

**Goniopora decaturensis var. bainbridgensis**, new variety.

Plate 143, figs. 3, 3a.

Two small, inflated, rounded specimens are referred to this variety. No. 1, length 26.5 mm., width 25 mm., thickness 13.5 mm.; No. 2 (type), length 33 mm., width 24 mm., thickness 19 mm.

Calices superficial, about 3 mm. in diameter.

Septa moderately thick.

These specimens are separated from typical *G. decaturensis* solely on the growth form.

**Locality and geologic occurrence.**—Georgia, station 3381, Flint River, Blue Springs, 4 miles below Bainbridge, in the base of the Chattahoochee formation, collected by T. W. Vaughan.

**Type.**—No. 325029, U.S.N.M.

**Goniopora regularis** (Duncan).


Duncan’s material of this coral is very poor, consisting of casts and mineral replacements of the original skeleton; and, as I pointed out in my paper cited in the synonymy, he incorrectly gave the dimensions of the corallites. The diameter is not “⅛ line” [=about 1 mm.] as stated by Duncan, but is usually 2 mm., with a range from 1.5 to 2.5 mm. I have three photographs of Duncan’s type (No. 12949, Coll. Geol. Soc. London), and after having made a large collection in Antigua identify with certainty the species represented by Duncan’s poor specimen. It is a species of *Goniopora* and is one of the commonest corals in Antigua, where I obtained about 30 good specimens.
The corallum is usually more or less turbinate in shape, rising from a narrow base, expanding upward, with a lobulate, but somewhat flattish upper surface. The dimensions of the largest specimen are as follows: Least diameter of fracture on basal surface, 5 cm.; height 18.5 cm.; diameter of upper surface 22 by 25.5 cm. Some specimens are more or less columniform; others are glomerate.

The calices are from 2 to 2.5 mm. in diameter and are separated by distinct, straight walls, or there is some costate intercorallite reticulum.

The septal formula is normal for Goniopora, but the septa are more distinctly lamellate than is usual. There is a wide, detached, septal granule, that is usually compressed in the septal plane and is plate-like. Pali well developed; plate-like in many calices.

This species will be described in detail and figured in a forthcoming report.

Localities and geologic occurrence.—Antigua, at nearly every exposure of the coral reef in the Antigua formation, collected by T. W. Vaughan.

Porto Rico, zone C, near Lares, collected by Bela Hubbard, of the New York Academy Porto Rico investigations.

Arube, Serro Colorado.

GONIOPORA REGULARIS var. MICROSCOPICA (Duncan).


Duncan based Alveopora microscopica on a silicified specimen (No. 12951, Coll. Geol. Soc. London), of which I have a photograph. This is a small caliced species of Goniopora, with rather strikingly lamellate septa. I obtained in Antigua three specimens that I identify with Duncan's species, which probably is only a variant of Goniopora regularis. G. microscopica has a more regularly rounded corallum and smaller calices, 1.25 to 1.5 mm. in diameter; otherwise I detect no important differences.

Locality and geologic occurrence.—Antigua, stations 6856, Friar's Hill, and 6881, Willoughby Bay, Antigua formation, collected by T. W. Vaughan.

GONIOPORA JACOBIANA, new species.

Plate 144, figs. 1, 1a, 2, 2a, 3, 3a.

A description of the type (pl. 144, figs. 1, 1a), is as follows: Corallum obtuse, columniform. Horizontal diameter 160 by 165 mm.; height 133 mm. +, top damaged, when perfect probably about 210 mm. tall. Successive shells of skeletal substance are recognizable.

Calices shallow, polygonal in outline, usual diameter slightly more than 3.5 mm. Intercorallite walls rather narrow, with some reticulum, septa traceable through it, in places about 1 mm. wide.
Septa thin, formula complete, arrangement typical. Margins with an average of 5 or 6 delicate teeth between the columella and the wall, 8 teeth were counted on each of a few septa. There is no conspicuous palar crown.

Columella tangle weakly developed; apparently a central tubercle was present in a number of the calices.

Locality and geologic occurrence.—Cuba, station 3446, La Cruz marl, first deep cutting east of La Cruz near Santiago, collected by T. W. Vaughan (type).


Type.—No. 325077, U.S.N.M.

There are two undescribed species of *Goniopora* that are nearly related to *G. jacobiana*. One of them is from the Chipola marl member of Alum Bluff formation, Chipola River, Florida. Its calices are of the same size and its septa are fragile as in *G. jacobiana*, but the intercorallite reticulum is a more curly mesh-work in which the radial skeletal elements are obscure or are less conspicuous than in *G. jacobiana*. This difference in the reticulum seems to constitute a valid specific distinction. The other closely related species is from the Bowden marl, Bowden, Jamaica. As the calices of the Bowden specimen average about 2.3 mm. in diameter, they are distinctly smaller than in *G. jacobiana*. The radial elements are obvious in the intercorallite reticulum, but it is somewhat flaky. The Bowden specimen may belong to *G. jacobiana*, but with the small amount of material for comparison, it must, for the present be considered distinct.

In addition to the two species mentioned, there is a somewhat similar species found abundantly in the calcareous marl of Anguilla, where I collected about 50 specimens of it. This species forms columniform or gibbous masses, composed of successive caps. It is not so massive as *G. jacobiana*, the columns are more slender, and its calices are more excavated.

The only observed difference between the type of *G. jacobiana* and the specimen from White Springs, Florida, identified with that species, is that the calices of the White Springs specimen may be somewhat deeper. To refer specimens so similar in habit and structural detail to different species appears unjustifiable.

*Goniopora imperatoris*, new species.

Plate 142, figs. 3, 3a.

Growth form as a compressed, lobate column, 54 mm. tall, 22 mm. thick, 37 mm. wide (excluding a lateral lobe which is about 13 mm. long).
Calices sunken between a rather regular mural network, diameter of calicular openings 1.5 to 2.5 mm., diameter measured between mural summits 2.5 to 3.5 mm., depth about 0.75 mm., separating walls from 0.75 to 1.25 mm. wide. The walls are rather flat-topped and are composed of costal prolongations of the septa joined together by synapticulae. In places there is considerable intercorallite reticulum, but it does not form protuberances between the calices; where the surface is well preserved, subequal costae extend across the walls.

Septa of normal gonioporid arrangement, in the typical formula; above the bottom of the calices they are narrow, extending down the insides of the walls as short ribs, which bear about three inwardly projecting dentations; at the bottom of the calice they widen and the primaries and secondaries extend to the columellar tangle. Well developed paliform lobes occur just inside the junction of the ter tiaries with the secondaries and form a crown around the periphery of the columellar tangle. Width of interseptal loculi less than the thickness of the septa.

Columellar tangle well developed, large, forms a flattish bottom to the calices, width about one-half the calicular diameter.

**Locality and geologic occurrence.**—Canal Zone, station 6016, quarry, in the Emperador limestone, Empire, collected by T. W. Vaughan and D. F. MacDonald.

Anguilla, stations 6893, 6894, 6966, 6967, all coralliferous beds at Crocus Bay; station 6969a, bottom bed, Road Bay, collected by T. W. Vaughan.

**Type.**—No. 325049, U.S.N.M.

This species really should have been based on the Anguillan material, of which I collected 34 identifiable specimens. In fully developed colonies the branches are subcircular or elliptical in cross section, and range from 30 to 55 mm. in diameter. The distance between mural summits ranges up to 4.5 mm. but is usually less.

**GONIOPORA CANALIS,** new species.

Plate 146, figs. 1, 2, 3.

Corallum composed of compressed branches. The following are measurements:

**Dimensions of branches of Goniopora canalis.**

<table>
<thead>
<tr>
<th>Branch No.</th>
<th>Length mm.</th>
<th>Greater diameter of lower end mm.</th>
<th>Lesser diameter of lower end mm.</th>
<th>Maximum width mm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41</td>
<td>20</td>
<td>6.5</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>41</td>
<td>20</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>22</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td></td>
<td>7.5</td>
<td>20+</td>
</tr>
</tbody>
</table>
The lower end of each specimen and the tops of Nos. 3 and 4 are broken. Some coralla are evidently formed of rather thin, branching plates.

Calices polygonal, usual diameter 3 mm., young calices about 2 mm. in diameter, an occasional large one as much as 4 mm.; depth from 1 to 1.25 mm.: separated by walls from 0.75 to 1.25 mm. thick. The walls are crossed by costae and usually form a fairly regular network around the calicular cavities, but in places there is considerable intercalicular reticulum. In places there are low, rather indefinite ridges which may extend the length of as many as four calices. The tops of the walls are rounded or subacute.

The septa are normal gonioporid in number and arrangement; they are thick at the wall, becomes thinner toward the center; their upper part narrow, gradually sloping to the columella tangle, which is joined by the primaries and secondaries; margins with about 6 fine dentations.

Columella tangle not very conspicuous.

Locality and geologic horizon.—Canal Zone, station 6016, quarry in the Emperador limestone, Empire, collected by T. W. Vaughan and D. F. MacDonald.

Anguilla, station 6966, middle bed, Crocus Bay, collected by T. W. Vaughan.

Cotypes.—Nos. 325052, U.S.N.M. (3 specimens).

I am not certain the G. canalis is really different from G. imperatoris.

GONIOPORA PORTORICENSIS, new species.

Plate 146, figs. 4, 5.

Corallum ramous, branches rounded in cross section or very compressed, a branch of the latter form is 34 mm. wide with a maximum thickness of about 9 mm.

Calices polygonal, shallow, usual diameter 2 mm. The outer ends of the septa are flattened and fused together, separating the calicular depressions by a wall about 0.5 mm. thick.

Septa delicate, very perforate, in three complete cycles. Margins finely and delicately denticulate; about five small thin teeth on a long septum. Pali appear to be poorly developed, not specially differentiated from the ordinary septal dentations.

Columella weakly developed.

Locality and geologic occurrence.—Porto Rico, station 3191, 4 miles west of Lares, Pepino formation, collected by R. T. Hill.

Antigua, stations 6854, Rifle Butts; 6881, Willoughby Bay, in the Antigua formation, collected by T. W. Vaughan.

Type.—No. 325061, U.S.N.M.

Paratype.—No. 325060, U.S.N.M.
This species resembles compressed specimens of *Goniopora clevei* Vaughan, from which it is distinguishable by its thin septa, with delicately dentate margins.

**Goniopora clevei**, new species.

Plate 145, figs. 1, 2, 2a, 3, 4, 5, 5a, 6, 6a.

Corallum branching. The type (pl. 145, figs. 2, 2a) is an irregularly shaped portion of a branch, selected because it permits the septal arrangement to be definitely determined. It is 44 mm. long; greater diameter of lower end, 12 mm.; of bulged portion, 15.5 mm. Probably some of the irregularity of form may be caused by erosion. Another broken specimen, a paratype, is represented by plate 145, figure 1.

Calices shallow, circular, or subcircular, 2 to 2.4 mm. in diameter. They may be close together or separated by reticulate and costate coenenchyma, as much as 1 mm. across; usually in the type, which is worn, they appear distinctly separated from the bounding coenenchyma and sharply defined by a peripheral zone of synapticulae.

There are 12 large lamellate septa with typical poritid arrangement, solitary directive, four lateral pairs, and a directive triplet; the inner ends of the laterals in the triplet are directed toward, but not actually fused, to the inner end of the principal directive. The outer ends of these larger are often bifurcated, or costae (these are to be considered rudimentary septa) exist between them, in some instances bringing the number up to 24. Pali well developed, six in number.

Columella tangle rather dense, with an axial tubercle.

*Locality and geologic occurrence.*—Island of Anguilla, West Indies, P. T. Cleve, collector (type); stations 6893, 6894, 6966, Crocus Bay, and 6970, 130 to 140 feet above sea level, east end of Road Bay, Anguilla, collected by T. W. Vaughan.

Canal Zone, station 6016, in the Emperador limestone, collected by T. W. Vaughan and D. F. MacDonald.

Antigua, station 6854, Rifle Butts, Antigua formation, collected by T. W. Vaughan.

*Type.*—University of Upsala.

*Paratype.*—University of Upsala.

*Paratypes.*—Nos. 325111 (3 specimens), 325115 (1 specimen), U.S.N.M.

It was decidedly difficult to decide whether this species should be referred to *Porites* or *Goniopora*. Bernard says: “These fossils with 12 central rays might almost be considered as transition forms toward *Porites* having to all appearance only 12 septa; but whenever it can be distinctly seen that a certain number of these septa fork before they reach the wall, I assume that the forking is the vestige of the fusion of the septa characteristic of *Goniopora*, and that therefore there are more than 12.”

---

While in Anguilla in 1914 I collected about 40 identifiable specimens of this species, and am illustrating a series on plate 145, figures 3, 4, 5, 5a. The branches are thickish and blunt-ended, having some resemblance in growth form to the thicker-branched forms of *Porites porites*, such as are common on the reefs on the east side of Andros Island, Bahamas. The calices of these specimens are not perfectly preserved, but in many a third cycle of septa is clearly recognizable. I therefore am convinced that the species is referable to *Goniopora*.

Doctor MacDonald and I collected in the quarries at Empire, Canal Zone, a number of specimens that seem completely to agree with the Anguillan specimens. One of these is represented by plate 145, figures 6, 6a.

Flattened specimens of *G. clevei* resemble specimen of *G. portoricensis*, but the latter has thinner and more delicately dentate septa, and in it the tertiary septa are more developed.

**Goniopora cascadensis**, new species.

Plate 146, figs. 6, 6a, 6b, 7, 8, 9.

Corallum composed of relatively slender, subterete branches. A branch segment 40 mm. long is 9 by 10 mm. in diameter at the lower end and 8 by 9 mm. in diameter at the upper end, showing 1 mm. decrease in diameter for 40 mm. in length: but branches may be thicker, up to as much as 15 mm. in diameter.

Calices slightly excavated, polygonal, from 1.75 to 2.5 mm. in diameter, separated by more or less discontinuous walls, in some places a straight or zigzag wall ridge is traceable, but in other places there seems to be none. Where there is a wall ridge, rather coarse mural denticles corresponding to the outer ends of the septa are present. In places mural reticulum is present and coarse radial skeletal structures are clearly traceable through it.

There are 12 large septa which extend to the columellar tangle, and about 12 small septa which fuse in pairs to the sides of an included septum (assumed to a secondary) about halfway between the wall and the columellar tangle. The septal granules seem to be arranged according to the following scheme: A ring of outer granules which are adherent to or only slightly detached from the wall, a ring of intermediate granules which correspond in position to the place of fusion of the small (tertiary) septa to the sides of the secondaries, and an inner ring of granules which form paliform knots around the periphery of the columella tangle. The intermediate and inner rings seem constantly recognizable, but the outer ring is not always definitely developed. The interceptal loculi are about as wide as the thickness of the septa.

Columella tangle well developed; width more than one-third the diameter of the calice. In some calice a central styliform process is distinguishable.
Locality and geologic occurrence.—Coral Zone, station 6020c, in the Culebra formation at Las Cascadas, collected by T. W. Vaughan and D. F. MacDonald.

Anguilla, station 6967, Crocus Bay, collected by T. W. Vaughan. Antigua, station 6854, Rifle Butts, Antigua formation, collected by T. W. Vaughan.

Type.—No. 325072, U.S.N.M. (pl. 146, figs. 6, 6a, 6b).

Paratypes.—No. 335074, U.S.N.M. (3 specimens).

This species is one of those that is intermediate between *Porites* and *Goniopora*. As there are short tertiary septa within the wall, according to Bernard's treatment of such forms, it is referred to *Goniopora*.

The types are from Las Cascadas, Canal Zone. The calices of the specimens from Anguilla are not so well preserved as those of the cotypes, but the identifications seem reasonably certain, as there is agreement in all general characters and in the observed detail.

Genus *Porites* Link.


Type-species.—*Madrepora porites* Pallas.

*Porites porites* (Pallas).


1912. *Porites clavaria* Vaughan, Carnegie Inst. Washington Yearbook No. 10, pp. 148, 152, 156, pl. 4, fig. 4e; pl. 6, figs. 3, 4.


This is one of the species of corals to which most attention was given during my studies of the Floridian and Bahamian reef corals, and it is referred to in most of my reports in Yearbooks No. 7-14, inclusive, of the Carnegie Institution of Washington, usually as *Porites clavaria*, because that is the more generally known name.

Locality and geologic occurrence.—Recent throughout the coral-reef areas of the West Indies, the eastern side of Central America, Florida, and the Bermudas.

Pleistocene, in the elevated West Indian reefs.
Miocene, Santiago, Cuba, in the La Cruz marl, at station 3441, east of La Cruz, near crossing of the road from Santiago to the Morro over the railroad, collected by T. W. Vaughan. As these specimens agree in all details that I can discover, with the thicker-branched forms of _Porites__, I am referring them to that species. This adds another to the considerable list of living species recognized in the La Cruz marl.

_Porites furcata_ Lamarck.

1913. _Porites furcata_ Vaughan, Carnegie Inst. Washington Yearbook No. 10, p. 156, pl. 5, figs. 5c, 6c, 7, 8; pl. 6, figs. 1a, 1b, 2a, 2b.

Localities and geologic occurrence.—Canal Zone, Pleistocene at stations 5850 and 6039, Mount Hope, and 6554, dug out of mud flat, about 1 foot above ordinary high-tide level, Colon, collected by D. F. MacDonald.

Costa Rica, Moin Hill, Niveau _a_, H. Pittier collection.

_Porites furcata_ is a common Pleistocene species. It is usual in the material behind elevated, sea-front reefs of the West Indies and eastern Central America, and it is one of the most abundant corals on the flats inside the living coral reefs in the same region and Florida. It has not been found in Bermudas.

_Porites baracoxensis_, new species.

Plate 147, figs. 1, 1a.

Corallum composed of slender branches. The type, a fragment of a branch, is 26 mm. long; lower end, subcircular in cross section, 6.25 mm. in diameter; 8.5 below upper end, the diameter is 6 by 8 mm., showing some flattening just below a bifurcation.

Calices polygonal, excavated but rather shallow; diameter from 1.25 to 2.25 mm., about 1.75 mm. usual. Wall straight, acute or with rather coarse knots corresponding to the outer ends of the septa; a distinct mural shelf is present in all or nearly all calices.

Septa arranged into a solitary directive, four lateral pairs, and a ventral triplet. There is a circle of septal granules detached from the wall and fused by their bases, forming a mural shelf on the inner margin of which the granules stand up as compressed knots or as

---

1 See Verrill, Conn. Acad. Arts and Sci. Trans., vol. 11, p. 158, 1902.
plates. Usually there are six pali; that is, normally there are pali before the lateral pairs, the solitary directive, and the triplet. In a few calices there is a palus before each member of the triplet, making eight pali in all; and in a few calices there is no recognizable palus before the solitary directive, the total number of pali being only five. The pali are solidly fused in the bottom of the calice one to another and to the columella tangle. No columellar tubercle was seen in any calice.

Locality and geologic occurrence.—Miocene, Cuba, station 3476, marl, Baracoa, collected by T. W. Vaughan (type).

Miocene, Jamaica, Bowden marl, Bowden, received from Hon. T. H. Aldrich.

Type.—No. 325069, U.S.N.M.

There is no other previously described species of Porites, fossil or living, in tropical or subtropical America closely resembling P. baracoaeensis. Superficially it looks like the living P. furcata Lamark or P. divaricata Le Sueur; but the definite mural shelf, above which the wall stands at its distal edge and the special granules on its inner edge, is distinctive.

PORITES BARACOÆNÆSIS var. MATANZÆNÆSIS, new variety.

Plate 147, figs. 2, 2a, 3, 4.

Corallum composed of attenuate branches of small diameter. A fragment 15 mm. long is 3 mm. in diameter at one end and 3.25 mm. in diameter at the other. The maximum diameter of a branch seems to be about 3.75 mm., except where there is some flattening just below a bifurcation. The length of branches exceeds 20 mm., and probably is as much as 40 to 50 mm., or even more.

Calices polygonal, very shallow or even surficial; diameter from 2 to 2.75 mm. Wall slightly elevated, continuous and acute or with knots corresponding to the outer ends of the septa. Usually there is a distinct mural shelf.

The septal characters are the same as those of P. baracoæensis, except that the pali are less conspicuous and the septa in the upper half of the calice are usually elongated and have between three and five teeth on their margins between the wall and the columella tangle. But in some calices the upper septa are not produced, and in these the septal characters are the same as in typical P. baracoæensis. Because of the presence of calices presenting the same characters as those of typical P. baracoæensis, a varietal designation seems all that is justifiable.

Locality and geologic occurrence.—Miocene, Cuba, station 3461, marl, gorge of Yumuri River, Matanzas, collected by T. W. Vaughan.

Type.—No. 325067a, U.S.N.M. (pl. 147, figs. 2, 2a.).
Paratypes.—Nos. 325067b, U.S.N.M.

Apparently the specimens from Yumurí gorge lived in deeper or quieter water than those from Baracoa, for the differences are of the kind incident to such differences in ecologic conditions. The specimens of *Stylophora granulata* from the Yumurí gorge are decidedly more attenuate than those from Baracoa; and the specimens referred to *Madracis mirabilis* are very slender and fragile.

**PORITES DOUVILLEI**, new species.

Plate 149, figs. 2, 2a; plate 151, figs. 1, 1a.

Corallum composed of compressed, more or less coalescent branches. Plate 151, figure 1, represents a part of a corallum 66 mm. long, 15 mm. in maximum thickness, and 40 mm. wide; the specimen, represented by figure 2 of plate 149, is 35.5 mm. long and 11 mm. in maximum thickness.

Calices shallow, polygonal, 1.25 to 2 mm. in diameter, 1.5 mm. probably about an average; separated by usually continuous, straight, membraniform walls, along the top of which are a few mural denticles corresponding to the outer ends of the septa; where the septa are distally forked there may be a denticle for each fork.

Septa forming four lateral pairs, two on each side of the plane of symmetry, a solitary directive, and a ventral triplet with the inner ends of its members free from each other. A ring of thickish septal granules is detached from the wall, standing about half way between it and the palar ring; the outer ends of a number of septa fork between the septal granule and the wall. Pali well-developed, formula complete or suppressed on one or more members of the triplets, suggestions of trident formation in some calices. Synapticae in two rings, the outer corresponds in position with the septal granules and is usually incomplete, the inner is the palar synapticular ring and normally is complete.

Columella tangle consists of a central tubercle joined by radii to the pali.

*Locality and geologic occurrence.*—Canal Zone, station 6016, quarry in the Emperador limestone, Empire, collected by T. W. Vaughan and D. F. MacDonald.

*Cotytes.*—Cat. No. 325106 (2 specimens), U.S.N.M.

**PORITES TOULAI**, new species.

Plate 150, figs. 1, 1a, 2, 3, 4.

Corallum composed of elongate, rather slender, subterete, or only slightly compressed branches. The following measurements of broken branches indicate the shape and size.
Measurements of branches of *Porites* toulai.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Length (mm)</th>
<th>Diameter of lower end (mm)</th>
<th>Diameter of upper end (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.5</td>
<td>7 by 8</td>
<td>6.75 by 7.5</td>
</tr>
<tr>
<td>2</td>
<td>46</td>
<td>12.5 by 14</td>
<td>12 by 14</td>
</tr>
<tr>
<td>3</td>
<td>74</td>
<td>11 by 17</td>
<td>8 by 10.5</td>
</tr>
</tbody>
</table>

Specimen No. 3 has been somewhat compressed by pressure.

Calices shallow, diameter about 1.75 mm., a few large calices have a greater diameter of as much as 2.5 mm. There is a pronounced tendency for the calices to occur in rather short, longitudinal series. One series is 5.5 mm. long and contains 4 calices, one of which is immature; another series, which is slightly curved, is 7.5 mm. long and contains 5 calices. The calices within a series are separated by indistinct walls; in fact, between some no definite wall is recognizable, the distal ends of septa from one calicular center being continuous with the distal ends of the septa belonging to the next center. Such series are formed by fission. The walls between adjacent series are definite; a wall-ridge is usually but not invariably recognizable, it is interrupted and straight or somewhat zigzag. There is in places a considerable development of intercalicular or interserial reticulum, in which the radial (costal) skeletal elements are conspicuous.

The septal arrangement is irregular as would be expected in a coral in which asexual reproduction is largely by fission. Groups of calices from two specimens are shown on plate 150, figures 1a, 4. The scheme where complete seems to be a solitary directive, two lateral pairs on each side of the plane of symmetry, and a ventral triplet in which the inner ends of the lateral members converge toward the included directive and join it by synaptilae, but such a schematic arrangement is rarely recognizable. There are usually from 10 to 14 septa fusing in pairs or in threes, with a solitary septum, the directive plane being indicated in many calices by an elongate septum, to the inner end of which the columellar tubercle may be attached. Usually coarse septal granules slightly detached from the wall form a ring, and the pali form a ring surrounding the columellar tangle. There is indefiniteness and irregularity in the pali as there is in the septa; the normal number seems to be five or six. There are an outer ring of synaptilae, more or less fused to or detached from the wall, and an inner palar ring.

There is a well developed, rather prominent columellar tubercle, which is joined by radii to the inner ends of the septa.

*Locality and geologic occurrence.*—Canal Zone, station 6016, quarry in the Emperador limestone, Empire, collected by T. W. Vaughan and D. F. MacDonald.

*Type.*—Cat. No. 325105a, U.S.N.M. pl. 150, figs. 1, 1a.

*Paratypes.*—Cat. No. 325105b, U.S.N.M. (3 specimens).
PORITES ASTREOIDES Lamarck.

1912. *Porites astreoides* Vaughan, Carnegie Inst. Washington Yearbook No. 10, pp. 148-156, pl. 4, figs. 3a, 3d, 3e; pl. 5, figs. 5b, pl. 6, figs. 1e, 2e.

This is one of the coral species to which I devoted much attention during my field studies in Florida and the Bahamas. The results of my observations and experiments have mostly been published in Yearbook Nos. 7 to 14, inclusive, of the Carnegie Institution of Washington.

**Localities and geologic occurrence.**—Canal Zone, Pleistocene, station 6039, Mount Hope, collected by D. F. MacDonald. This species is general in both the living and the Pleistocene coral reefs of the Caribbean region and Florida. It is also found living both in the Bermudas and on the Brazilian reefs.¹

I collected in the Miocene La Cruz marl in and near Santiago, Cuba, a number of specimens of a massif species of *Porites* that I can not distinguish from *P. astreoides*. The station numbers are 3436 and 3438, south side of the city along the trocha; 3446, first deep cutting east of La Cruz, along the railroad.

**PORITES PANAMENSIS, new species.**

Plate 148, figs. 1, 2, 3, 3a.

The type is the upper part of a plate, which is 90 mm. tall, 75 mm. wide, and 28 mm. in maximum thickness near the lower end. One side is nearly flat, while on the other there are two low gibbosities. (See pl. 148, fig. 3.) Calices excavated but not very deep, circumscribed, 1.5 to 2 mm. in diameter, or confluent in short series of about three calices. Wall coarse, rather ragged in appearance, forms a considerably interrupted, usually straight, occasionally zigzag, elevated ridge with coarse knots along its top. As asexual reproduction is largely by fission, there are no definite walls between many calicinal centers.


37149—19—Bull. 103—21
There is irregularity in the number and arrangement of the septa resulting from the formation of new calices by fission. They are usually rather thick and in many calices are bent in an irregular way. In fully developed calices there are 12 septa with the usual solitary directive, four lateral pairs, and a directive triplet. The laterals of the triplet are more or less free from the directive of the group, but usually appear to converge toward its inner end. Septal granules irregular in development, rarely forming a definite, clear-cut ring, more or less attached to the wall. Pali from six to eight in number, irregular in development. No definite outer synapticular ring, but a few synapticularae correspond in position to the septal granules; palar synapticular ring better developed.

There is a columellar tubercle rising in the middle of an irregular columellar tangle.

**Locality and geologic occurrence.**—Canal Zone, stations 6015 and 6016, quarries in the Emperador limestone, Empire, collected by T. W. Vaughan and D. F. Macdonald.

**Type.**—No. 325063, U.S.N.M.

**Paratypes.**—Nos. 325064, U.S.N.M. (2 specimens).

The type and three other specimens are plates with undulations or low gibbosities on the sides. This growth-form grades into nodose columns (see pl. 148, fig. 1, for growth habit, and fig. 2 for an enlarged view of the calices of another specimen of similar growth-form). As the good suite of specimens shows that these are only intergrading growth-forms of the same species and as they occur together at station 6016, separate nomenclatorial designation appears unnecessary.

**PORITES ANGUILLENSIS, new species.**

Plate 149, figs. 1, 1a, 1b (type); plate 150, fig. 5.

The following is a description of the type: Corallum composed of thin, more or less undulate, separate laminae, resting one on another. The underside epitheca to the edge, the epitheca minutely, regularly, and concentrically striate. The type-specimen consists of two such laminae, both broken. The greatest thickness of the two is about 15 mm., the greatest width 58 mm. One lamina is 5 mm. thick in its thickest portion, the edge is thinner.

The calices are shallow, subcircular, 1.7 to 2.3 mm. in diameter, separated by flat coenenchymal walls, 0.8 to 1 mm. across. The coenenchyma is perforate, but rather compact and costate.

Septa rather thick, normal number 12, with solitary directive, four lateral pairs, and the laterals on the sides of the principal directive loosely fused to it or continued to the columella tangle. Pali, usually six in number, before the lateral pairs, on the ends of the solitary and principal directives. As a rule, there is a prominent dentation at the inner edge of the wall. Synapticularae well developed,
three rows in the wall, and a ring of thick ones, coinciding with the palar ring, around the axis of each corallite. Trabeculae of columellar tangle coarse; axial tubercle present. In longitudinal section there are in 3.5 mm. about 11 synapticulae; in the same distance about 10 vertical rods. The spaces of approximately the same thickness as the solid parts, except that the median portion of a synapticula is thinner than its ends.

Locality and geologic occurrence.—Island of Anguilla, West Indies, collected by P. T. Cleve; Crocus Bay, Anguilla, collected by T. W. Vaughan.

Canal Zone, station 6016, in the Emperador limestone, Empire, collected by T. W. Vaughan and D. F. MacDonald.

Type.—University of Upsala.

Duplicate specimen from the Cleve collection and other specimens in the United States National Museum.

This is an abundant species at Crocus Bay, Anguilla, where I collected it in both the lower and the upper part of the exposure on the south side of the bay. The epitheca is not always distinct on the lower surface, but I can not be sure whether it has been worn off or was not developed.

One of the two specimens from Empire, Canal Zone, is represented by plate 150, figure 5. The calicular characters are obscure but they seem to be the same as those of P. anguillensis. The general facies of the specimens is identical with that of P. anguillensis.

Subgenus SYNARAEA Verrill.


Type-species.—None was designated by Verrill; therefore I select as the type-species Porites eros a Dana, the first species in Verrill's list of those referred by him to Synarea.

PORITES (SYNARAEA) HOWEI, new species.

Plate 151, figs. 2, 2a, 3, 3a, 4.

Corallum composed of rather small, slightly or greatly compressed, even subpalmate, branches, on some of which longitudinal carinae are well developed. Plate 151, figures 2, 3, 3a, are natural size illustrations of two specimens. The thickness of the lower end of the specimen represented by figure 2 is 6 mm., of the upper end of the same specimen about 5.5 mm.; the width and length of the specimen are indicated by the figure.

The calices are small, about 1 mm. in diameter, and occur more or less in series from 5 to 18 mm. long between reticular coenenchymal ridges, that range in thickness from a merely dividing partition up to 2 mm. wide, and in height up to a maximum of about 1 mm.

Septa small, 12 in number, with the usual poritid arrangement. The laterals of the triplet converge toward the inner end of the direc-
tive and fuse to it at the periphery of the columellar tangle. A
circle of fairly prominent septal granules distinguishable just within
and more or less attached to the wall. Pali small, but distinct and
relatively prominent, usually six in number, on the inner ends of
the two directives and before the lateral pairs. The synapticular
rings are very clearly distinguishable, apparently there are two, the
outer of irregular development.

Columellar tangle well developed, with a small, erect central
tubercle.

Locality and geologic occurrence.—Canal Zone, station 6016, quarry
in the Emperador limestone, Empire, collected by T. W. Vaughan
and D. F. MacDonald.

Cotypes.—No. 325113, U.S.N.M. (3 specimens).

PORITES (SYNARAEA) MACDONALDI, new species.
Plate 152, figs. 1, 2, 3, 3a, 4, 5, 5a.

Corallum begins growth as an explanate plate with humps and
gibbosities on its upper surface, by continued growth the protuber-
ances rise into crests and compressed columiform lobes. The series
of illustrations on plate 152, figures 1, 2, 3, 4, 5, indicate the growth-
forms.

Calices of moderate size, average about 1.5 mm. in diameter, occur
separately or in series, usually in series which range in length from
the diameter of two or three calices up to 18 mm. long with 11 calices.
Within the series, although the calicinal centers are clearly demarked,
the walls between adjacent calices are only slightly developed,
but the series are separated by distinct fairly continuous walls,
which are costate on top, or by coarsely reticular coenenchyma. In
many places the reticulum rises upward between calices, especially
at their corners, and forms papillae, similar to those in the papillate
species of Montipora. Such papillae may be single, with a basal
diameter of about 1 mm. and a height also of about 1 mm., or they
may fuse and form ridges as much as 7 mm. long and 1.5 mm. thick
at the base. The reticulum composing the papillae is of coarse
texture.

As new calices are largely formed by fission, the septal arrangement
is not definitely schematic. Where it appears possible to recognize
a ventral directive, the laterals of the triplet are joined to it by
synapticulae at the periphery of the columellar tangle. There is a
ring of septal granules slightly detached from the wall, and corre-
sponding to it in position is an incomplete ring of synapticulae;
pali are present, but usually indefinite in development, in one calice
there appear to be eight; palar synapticulae indefinite.
Columellar tangle composed of indefinite, confused processes from the inner ends of the septa among which an axial plate is recognizable in a few calices.

**Locality and geologic occurrence.**—Canal Zone, station 6016, quarry in the Emperor limestone, Empire, collected by T. W. Vaughan and D. F. MacDonald.

Anguilla, station 68, Crocus Bay, collected by T. W. Vaughan.

**Cotypes.**—No. 325046a, U.S.N.M. (4 specimens.)

The identification of the specimen represented by plate 152, figures 5, 5a (No. 325046b, U.S.N.M.), is not positive.

## Class HYDROZOA.

**Order HYDROCORALLINAE** Moseley.¹

**Family MILLEPORIDAE** L. Agassiz.

**Genus MILLEPORA** Linnaeus.

**MILLEPORA ALCICORNIS** Linnaeus.


**Locality and geologic occurrence.**—Canal Zone, Pleistocene, stations 5850 and 6039, Mount Hope, collected by D. F. MacDonald. One of the two specimens is partly incrusted by *Polytrema mineaceum* (Linnaeus). *Millepora alcicornis* is found living on the West Indian and Floridian coral reefs nearly everywhere there are such reefs and in the Bermudas. According to Hickson, there is only one living species, which is Indo-Pacific as well as Atlantic in its distribution.

**EXPLANATIONS OF PLATES.**

**PLATE 68.**

**West Indian Shore Lines.**

<table>
<thead>
<tr>
<th>A. Five Islands Harbor, Antigua</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>273</td>
</tr>
</tbody>
</table>

| B. Spencer Bay, Antigua        | 273  |

| C. Publiken Bay, St. Bartholomew | 275  |

| D. St. Jean Bay, St. Bartholomew | 275  |

**PLATE 69.**

**West Indian Shore Lines.**

<table>
<thead>
<tr>
<th>A. Pointe Blanche, St. Martin</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>276</td>
</tr>
</tbody>
</table>

| B. East side of Crocus Bay, north side of Anguilla | 276  |

| C. Calls Pond, Anguilla        | 277  |

| D. Shore, south side of Anguilla, looking toward St. Martin | 276  |

¹ These organisms are not corals, but, as they are usually associated with corals and contribute calcium carbonate to reefs, accounts of them are frequently included in discussion of Madreporia.
Plate 70.
West Indian Shore Lines.
A. Looking into the mouth of Charlotte Amalia Harbor, St. Thomas............. 279
B. Cliffs on southern shore of St. Thomas............................................. 279
C. Alluvial plain at head of an embayment, St. Thomas............................. 279
D. Mountains on north, limestone plain on south, St. Croix.......................... 258

Plate 71.
West Indian Shore Lines.
A. Santiago Harbor, Cuba, looking into the harbor; slightly elevated coral reef
rock in left foreground.......................................................... 264
B. Santiago Harbor, Cuba, looking seaward through its mouth........................ 281
C. Yumuri gorge, Matanzas, Cuba..................................................... 284
D. Yumuri Valley above the gorge.................................................... 284

Plate 72.
Views of Isle of Pines, Cuba.
A. The general plain.............................................................................. 286
B. Daguilla, a monadnock of hard rock............................................... 286
C. Lower part of course of Santa Fe River............................................. 286

Plate 73.
Model of Gulf of Mexico and Caribbean Sea.............................................. 299

Plate 74.
Stylophora imperatoris, new species.
Figs. 1, 1a. Two views of the type, from station 6016, Empire, Canal Zone.
1. Corallum, natural size................................................................. 334
1a. Calices, ×8. The slightly protuberant upper calicular margins
are at the right in the figure.......................................................... 334
2. A second specimen from station 6016, ×3........................................... 334
3. A third specimen from station 6016, natural size.................................. 334
4, 4a. Two views of a specimen from station 6894, lowest bed, Crocus
Bay, Anguilla.................................................................................. 335
4a. Calices, ×3. Compare figures 2 and 4a.............................................. 335
5. Specimen, natural size, from station 5853, Canal Zone.......................... 335

Plate 75.
Figs. 1, 1a. Stylophora panamensis, new species. Two views of the type.
1. Corallum, natural size................................................................. 335
1a. Calices, ×8................................................................................. 335
2, 3, 4. Stylophora goethalsi, new species.
2. Type, corallum, natural size............................................................ 338
3. Tip of a branch, natural size............................................................ 338
4. Calices of another specimen, ×8...................................................... 338
5, 5a, 6, 6a, 7a. Stylophora macdonaldi, new species.
5. Tip of a branch, natural size; 5a, the same, ×3................................. 339
6. A part of a branch, natural size; 6a, the same, ×3............................. 339
7. Part of another branch, natural size; 7a, calices of the same, ×8........... 339
Plate 76.

Figs. 1, 1a. *Stylophora portobellensis*, new species, two views of the type.  
1. Corallum, natural size ............................................. 338  
1a. Calices, X 3 ....................................................... 338  
2, 2a. *Stylophora canalis*, new species, two views of the type.  
2. Corallum, natural size ............................................. 341  
2a. Calices, X 8 ....................................................... 341  
3, 3a, 3b. *Pocillopora arnoldi*, new species, three views of the type.  
3, 3a. Branch, natural size ........................................... 343  
3b. Calices, X 8 ....................................................... 343  
4, 4a. *Astrocoenia portoricensis*, new species, two views of the type.  
4. Corallum, natural size ............................................. 350  
4a. Calices, X 5 ....................................................... 350  

Plate 77.

Figs. 1, 1a. *Pocillopora baracoaensis*, new species.  
1. Branch, natural size ............................................. 344  
1a. Calices, X 5 ....................................................... 344  
2. Corallum, natural size ........................................... 344  
2a. Calices, X 5 ....................................................... 344  
3, 3a, 3b. *Thysanus hayesi*, new species.  
3. Calicular surface, X 2 ............................................. 424  
3a. Base, X 2 ....................................................... 424  
3b. Side, X 2 ....................................................... 424  

Plate 78.

Figs. 1, 1a. *Astrocoenia portoricensis*, new species, two views of form with subterete branches.  
1. Branch, natural size ............................................. 351  
1a. Calices, X 5 ....................................................... 351  
2, 2a. *Astrocoenia d'achiardii* Duncan.  
2. Branch, natural size ............................................. 346  
2a. Calices, X 5 ....................................................... 346  
3, 3a, 4, 4a. *Astrocoenia decaturensis*, new species.  
3. View, natural size, of the corallum; 3a, calices, X 5, of the type from near Bainbridge, Ga ............................................. 348  
4. View, natural size, of the corallum; 4a, calices, X 5, of a specimen from Antigua ............................................. 348  

Plate 79.

Figs. 1, 1a, 2. *Astrocoenia guantanamensis*, new species.  
1. Corallum, natural size; 1a, calices, X 5, of type, from Guantanamo, Cuba ............................................. 347  
2. Specimen from Tonosi, Panama; calices, X 5 ............................................. 347  
3, 3a. *Astrocoenia meinzeri*, new species.  
3. Corallum, natural size ........................................... 349  
3a. Calices, X 5 ....................................................... 349  
4, 4a, 4b. *Dichocoenia tuberosa* Duncan.  
4. Corallum, natural size ........................................... 360  
4a. Costae, X 4 ..................................................... 360  
4b. Calices, X 3 ..................................................... 360
PLATE 80.

Figs. 1, 1a, 1b, 2, 3. Archokelia limonensis, new genus and species. Page.
1. Corallum, natural size; 1a, calice, \( \times 4 \); 1b, axial corallite, \( \times 4 \), of the type .................................................. 353
2, 3. Views, natural size, of two paratypes ................................. 353
4, 5, 6, 6a. Asterosmilia hilli, new species.
4. Corallum, \( \times 2 \) .................................................................. 355
5. Corallum, \( \times 2 \frac{1}{2} \) ................................................................. 355
6. Corallum, \( \times 2 \frac{1}{2} \), 6a, calice, \( \times 3 \), of the same specimen ....... 355
7, 7a, 7b. Orbicella annularis (Ellis and Solander), three views of the specimen identified by Milne Edwards and Haime as Heliastroa stellulata (Ellis and Solander).
7. Corallum, five sixths natural size ........................................... 373
7a. Calices, \( \times 3 \frac{1}{2} \) ................................................................. 373
7b. Longitudinal section of corallites, \( \times 3 \frac{1}{2} \) ................................ 373

PLATE 81.

Orbicella annularis (Ellis and Solander).
Figs. 1, 1a. Two views of a typical specimen from Tortugas, Florida.
1. Corallum, natural size ....................................................... 366
1a. Calices, \( \times 3 \) ................................................................. 366
2. Variant with nodular surface, \( \times \frac{1}{2} \), from Tortugas, Florida ................ 367

PLATE 82.

Orbicella annularis (Ellis and Solander).
Figs. 1, 1a. Variant from Mayaguez, Porto Rico.
1. Corallum, \( \times \frac{1}{2} \) ................................................................. 368
1a. Calices, \( \times 3 \) ................................................................. 368
2. Variant, discoidal in form, \( \times \frac{3}{2} \), from Fort Taylor, Key West, Florida ........ 368

PLATE 83.

Orbicella annularis (Ellis and Solander).
Fig. 1. Calices of Verrill's type of Orbicella hispidula, \( \times 3 \) ..................... 368
2. Calices, \( \times 3 \), of a specimen from Port Castries, Saint Lucia .......... 369
3, 3a. Two views of a specimen of Orbicella hispidula Verrill, from the reef east of Coconaut Point, Andros Island, Bahamas.
3. Corallum, \( \times \frac{1}{2} \) ................................................................. 368
3a. Part of the surface, natural size ............................................ 368

PLATE 84.

Orbicella annularis (Ellis and Solander).
Fig. 1. Calices of the type of Echinopora franksi Gregory, \( \times 3 \) ............... 371
2. Corallum of columnar growth-form from Tortugas, Florida, natural size. 367
3, 3a. Two views of a variant with columnar growth-form from Westpunt, Curacao.
3. Corallum, natural size ....................................................... 371
3a. Calices, \( \times 3 \) ................................................................. 371
GEOLOGY AND PALEONTOLOGY OF THE CANAL ZONE.

PLATE 85.

Orbicella limbata (Duncan).

Figs. 1, 1a. Two views of an original specimen of Duncan's Plesiostraca ramea.
1. Corallum, natural size. ........................................... 376
1a. Calices, X3. .......................................................... 376
2, 2a, 2b. Three views of the same specimen in the Museum of Comparative Zoology.
2. Longitudinal section, natural size. ............................. 377
2a. Longitudinal section, X5. ......................................... 377
2b. Calices, X3. .......................................................... 377
3. Calices, X3, of another specimen. ............................... 377
4, 4a. Two views of one of the original specimens referred to by Duncan as Phyllocoenia sculpta var. tegula.
4. Surface of corallum, natural size. ............................... 377
4a. Calices, X3. .......................................................... 377

Plate 86.

Figs. 1, 1a. Stylangia panamensis, new species.
1. Corallum, natural size. ............................................. 410
1a. Costae, X4 .......................................................... 410
2, 3, 4, 5. Orbicella imperatoris, new species.
2. Calices of a cotype, X3½ .......................................... 378
3. Calices of a second cotype, X3½ ................................ 378
4. Longitudinal section of the corallites of a cotype, natural size .................. 378
5. Calices of a specimen from Ciénaga, Cuba, X3½ .................... 378
6, 6a. Septastra matsoni, new species.
6. Corallum, natural size. ............................................. 411
6a. Calices, X4 .......................................................... 411

Plate 87.

Orbicella cavernosa (Linnaeus).

Four views of the same specimen.
Figs. 1. Calices of one end, natural size. Corallites protuberant; costae low, thick, equal or subequal ............................. 381
1a. Calices of the other end, natural size. Corallites low; last cycle of costae very small or obsolete, costae of lower cycles tall and thin. 382
1b. Longitudinal section of corallite, X2 ........................... 381
1c. Exothecal cells, X2 .................................................. 381

Plate 88.

Orbicella cavernosa (Linnaeus).

Fig. 1. Marginal calices, natural size, of a specimen from 9 miles northwest of Key West, Florida ........................................... 380
2. Calices natural size of a specimen from Tortugas, Florida ..................... 380
3, 3a, 3b. Three views of the specimen labeled Orbicella compacca Rathbun, from Brazil (lat. 12° 48' S.; long. 38° W.). This is probably a valid variety of O. cavernosa.
3. Upper surface of corallum, natural size ................................ 384
3a. A group of calices, X2 .............................................. 384
3b. Longitudinal section of corallites, X2 ................................ 384
Plate 89.

Figs. 1, 1a. *Orbicella cavernosa* var. *endotheca* (Duncan); two views of one of Duncan’s original specimens.

1. Outer surface; 1a, longitudinal section of corallites, each natural size. 384

2. *Orbicella cavernosa* var. *cylindrica* (Duncan); calices, natural size, of one of Duncan’s original specimens. 385

3. *Orbicella aperta* (Verrill). Calices natural size. 386

Plate 90.

*Orbicella bainbridgensis*, new species.

Four views of the type.

Figs. 1. Upper surface of the corallum, natural size. 386

1a. Calices, ×4. 386

1b. Longitudinal section of a corallite, ×4. 386

1c. Exotheca, ×4. 386

Plate 91.

Figs. 1, 1a. *Orbicella costata* (Duncan). Cross-section of corallites of one of Duncan’s original specimen. Figure 1, natural size; figure 1a, ×3. 388

2. *Orbicella costata* (Duncan). View natural size of a specimen from Antigua. 388

3, 3a. *Orbicella costata* (Duncan). Two views, each natural size of another specimen from Antigua. 388


Plate 92.

*Orbicella costata* (Duncan).

Fig. 1. Specimen from 4 miles west of Lares, Porto Rico, natural size. 388

2. Specimen from Culebra formation, Las Cascadas, Canal Zone; calices, ×4. 388

3. Specimen from Anguilla, natural size. 388

Plate 93.

*Orbicella costata* (Duncan).

Two views of the same specimen from Anguilla.

Fig. 1. Calices, ×4. 388

1a. Corallum, natural size. 388

Plate 94.

*Orbicella canalis*, new species.

Figs. 1, 1a. Two views of the type.

1. Corallum, natural size. 389

1a. Calices, ×4. 389

2, 2a. Two views of a paratype from the Canal Zone.

2. Corallum, natural size. 389

2a. Calices, ×4. 389

3, 3a. Two views of a varietal form from Anguilla.

3. Corallum, natural size. 389

3a. Calices, ×4. 389
GEOLOGY AND PALEONTOLOGY OF THE CANAL ZONE.

Plate 95.

*Orbicella tampensi*, new species.

1. Corallum, natural size, of the type ........................................ 390
2, 2a. Two views of the same paratype. ........................................ 390
2. Corallum, natural size ......................................................... 390
2a. Calices and costae, ×2 ...................................................... 390
3, 3a. Two views of another paratype, Wagner Free Institute of Science. 390
3. Corallum, natural size ......................................................... 390
3a. Calices and costae, ×2 ...................................................... 390

Plate 96.

*Orbicella tamensi* var. silicensis, new variety.

General view of the type, natural size, Wagner Free Institute of Science. 390

Plate 97.

1. *Orbicella brevis* (Duncan). View, natural size, of the type, Geological Society of London 391
2. *Orbicella intermedia* (Duncan). View, natural size, of the type, Geological Society of London 393
3, 3a. *Orbicella iridans* (Milne Edwards and Haime). Two views of the same specimen. 395
3a. Corallum, natural size ....................................................... 395
3a. Calices and costae, ×2 ...................................................... 395
4, 4a. *Orbicella canalis*, new species. Two views of the same specimen. 389
4. Calice and costae, ×4 .......................................................... 389
4a. Corallum, natural size ....................................................... 389

Plate 98.

Figs. 1, 2, 2a. *Orbicella insignis* (Duncan).

1. Cross-section of corallites of one of Duncan’s original specimen, ×2, Geological Society of London 393
2. Cross-section of corallites; 2a, longitudinal section, showing endotheca and exotheca of a specimen from Serro Colorado, Aruba. Both figures ×2. 393
3. 3a. *Antiguastrea cellulosa* (Duncan).
3. Corallum, natural size; 3a, calices, ×2, of a typical specimen, from Antigua. 403
4. 4a. *Antiguastrea cellulosa* var. *curvata* (Duncan).
4. Corallum, natural size; 4a, calices, ×2, of the same specimen from Antigua. 408

Plate 99.

*Antiguastrea cellulosa* (Duncan).

Figs. 1, 1a. Two views of a specimen with protuberant, separate corallite limbs, from Willoughby Bay, Antigua.

1. Corallum, natural size ....................................................... 403
1a. Calices, ×4 ................................................................. 403
2, 2a. Two views of a specimen from Cathedral, St. John, Antigua. Calices on one end excavated; on the other end shallow, tumid around the margins.
2. Corallum, natural size ....................................................... 404
2a. Calice, ×6 ................................................................. 404
3, 3a. Two views of a second specimen from Cathedral, St. John, Antigua. Calices shallow, distant, tumid around the margins.
3. Corallum, natural size ....................................................... 405
3a. Calices, ×6 ................................................................. 405
Plate 100.

*Antiguastrea cellulosa* (Duncan).

Fig. 1. Photograph of thin cross-section of corallites, ×6; shows the large, lamellar columella. Specimen from Cathedral, St. John, Antigua... 405

2. Photograph of thin cross-section of corallites, ×6; columella not so wide as in figure 1. Specimen from Cathedral, St. John, Antigua... 405

3, 3a. Two views of a specimen from station 6856, Friar’s Hill, Antigua.

3. Corallum, natural size

3a. Calices, ×6

4, 4a. Two views of a specimen of the kind designated *Isastrea turbinata* by Duncan.

4. Corallum, natural size

4a. Calices, ×4

Plate 101.

Figs. 1, 1a. *Antiguastrea cellulosa* var. *silecensis*, new variety. Two views of the type, from Flint River near Bainbridge, Georgia.

1. Upper surface of the corallum, natural size

1a. Calices, ×3

2, 2a. *Antiguastrea cellulosa* (Duncan). Two views of the same specimen, from the Byram calcareous marl, Vicksburg, Miss.

2. Part of upper surface of the corallum, natural size

2a. Calices, ×4

Plate 102.

Figs. 1, 1a. *Antiguastrea elegans* (Reuss) Vaughan. Two views of a specimen from Fontana della Bova di San Lorenzo, Italy, out of beds of Rupelian (middle Oligocene) age.

1. Upper surface, natural size

1a. Calices, ×4

2. *Favia macdonaldi*, new species. Corallum, upper surface, natural size. Enlarged view of cross-section of corallites shown on plate 103, fig. 1.

2a. Calices, ×4

Plate 103.

Fig. 1. *Favia macdonaldi*, new species. Cross-section of corallites, ×2. General view of corallum, plate 102, fig. 2.

2, 2a. *Favites mexicana*, new species. Two views of the same specimen.

2. Corallum, natural size

2a. Calices, ×4


3. Upper surface of a cotype, natural size

4. Upper surface of the second cotype, natural size; 4a, part of surface of the same, ×4

Plate 104.

Figs. 1, 1a. *Maeandra dumbeii*, new species. Two views of the type.

1. Upper surface, natural size

1a. Part of surface, ×4


2. Lower surface, natural size, of the type. Upper surface, illustrated by plate 105.

2a. Part of lower surface of a paratype, ×2
Plate 105.

Manicina willoughliensis, new species. Upper surface, natural size. Lower surface illustrated by plate 104, figure 2.

Plate 106.

Figs. 1, 1a, 1b. Syzygophyllia hayesi, new species. Three views of the type.
1. Calicular surface, natural size.
1a. Side view, natural size.
1b. Epitheca, X5. Specimen photographed in horizontal position; the top toward the right.
2, 2a, 2b. Trochosera meinzeri, new species. Three views of the type.
2. Corallum, side view, natural size.
2a. Calice, natural size.
2b. Septa, X5.

Plate 107.

Figs. 1, 1a. Maeandra portoricensis, new species. Two views of the type.
1. Upper surface, natural size.
1a. Part of upper surface, X2.
2, 2a, 2b. Leptoseris portoricensis, new species. Three views of the type.
2. Calicular surface, natural size.
2a. Outer surface, natural size.
2b. Costae of outer surface, X4.

Plate 108.

Figs. 1, 1a, 1b. Orbicella gabi, new species. Three views of the holotype, Philadelphia Academy of Natural Sciences.
1. Cross section of corallites, natural size.
1a. Cross section of a corallite, X2.
1b. Endotheca and exotheca, X4.
2, 3, 4. Agaricopsis anguillensis, new species. A view, natural size, of each of three cotypes, University of Upsala.

Plate 109.

Figs. 1, 1a. Agaricopsis dominicensis, new species. Two views of the type.
1. Calicular surface, X2.
1a. Lower surface, X2.
2, 2a, 3. Leptoria spenceri, new species.
2. 2a. Two views of the upper surface of the holotype; figure 2a, X2.
3. Upper surface, natural size, a worn paratype.

Plate 110.

Pavona panamensis, new species.

Figs. 1, 1a, 1b. Three views of a cotype in which the septa strongly alternate in prominence around the calices, but the septo-costae in places are sub-equal.
1. Calicular surface, natural size.
1a. Calices, X4.
1b. Calices, X4.
Figs. 2, 2a. Two views of a cotytype in which the septa are subequal in prominence around the calices.

2. General view of the corallum, natural size. 430
2a. Calices and septo-costae, X4. 430

3, 3a. Two views of a specimen intermediate in its septal and septo-costal characters between the preceding specimens.

3. View, natural size. 431
3a. Calices and septo-costae, X4. 431

**Plate 111.**

_Pironastraea anguillensis,_ new species.

Figs. 1, 1a, 1b. Three views of the holotype.

1. Part of upper surface, natural size. 433
1a. Part of lower surface, natural size. 433
1b. Valleys and collines, X5. 433

**Plate 112.**

_Figs. 1, 1a. Pironastraea anguillensis,_ new species. Two views of paratype.

1. Part of upper surface, natural size. 433
1a. Valleys and collines, X5. 433

2, 2a. _Pironastraea antiguensis,_ new species. Two views of the holotype, from Antigua.

2. Upper surface, natural size. 434
2a. Part of upper surface, X5. 434

**Plate 113.**

_Pironastraea antiguensis,_ new species.

Figs. 1, 1a. Two views of a specimen from near Guantanamo, Cuba.

1. Part of upper surface, natural size. 434
1a. Part of upper surface, X5. 434

**Plate 114.**

_Figs. 1. Siderastrea radians_ (Pallas). Calices, X6, of a specimen from off Coconut Point, Andros Island, Bahamas. 439

2, 3. _Siderastrea siderea_ (Ellis and Solander).

2. Calices, X6, of a specimen from Guanica Centrale, Porto Rico. 444
3. Calices, X6, of another specimen, the usual form of the species, also from Guanica Centrale, Porto Rico. 444

4, 4a. _Siderastrea siderea var. dominicensis,_ new variety. Two views of the type.

4. Corallum, natural size. 447
4a. Calices, X6. 447

**Plate 115.**

_Figs. 1, 1a. Siderastrea pourtalesi,_ new species. Two views of the type.

1. Corallum, natural size. 440
1a. Calices, X6. 440

2, 2a, 2b. _Siderastrea stellata_ Verrill. Three views of the same specimen.

2. Corallum, one-half natural size. 440
2a. Part of surface above the lower edge, X2. 440
2b. Summit calices, X6. 440
**Plate 116.**

*Siderastrea silecensis*, new species.

Figs. 1, 1a. Two views of the type.
1. Corallum, one-half natural size.......................... 447
   1a. Calices, × 6 ........................................ 447
2. Photograph of thin section of corallites of specimen from the same locality as the type, × 6.......................... 447
3. Calices, × 6, of a specimen supposed to come from the “silex” bed at Tampa, Florida........................................ 448

**Plate 117.**

Figs. 1, 1a, 1b. *Siderastrea silecensis*, new species. Three views of a specimen from Coronet Phosphate Mine, Florida.
1. Weathered cross section of corallites, × 6............. 449
1a. Longitudinal section of a corallite, × 6.............. 449
1b. Thin section of corallites, × 6........................ 449
2. *Siderastrea hillsboronensis*, new species. Weathered cross section of corallites of holotype, × 6..................... 442
3. *Siderastrea conferta* (Duncan). Calices, × 6, of a specimen from station 6893, the middle or the upper horizon at Crocus Bay, Anguilla... 453

**Plate 118.**

*Siderastrea silecensis*, new species. Two views, each × 6, of the calices of a specimen from near Bainbridge, Georgia........ 449
2, 2a, 2b, 3. *Siderastrea pliocenica*, new species.
2, 2a, 2b. Three views of the type. 2, corallum, natural size; 2a, calices, × 4; 2b, calices, × 6............................. 441
3. Worn calices of another specimen, × 6................. 441

**Plate 119.**

*Siderastrea dalla*, new species.
1, 1a. Two views of the type.
1. Corallum, natural size.................................. 450
   1a. A group of calices, × 4............................ 450
2. Calices of another specimen, × 6...................... 450

**Plate 120.**

*Siderastrea conferta* (Duncan).
Fig. 1. Cross section, × 3, of corallites of Duncan’s type, Geological Society of London.......................... 451
2, 2a. Two views of a specimen from the Pepino formation, 4 miles west of Lares, Porto Rico.
2. Corallum, natural size.................................. 452
   2a. Calices, × 6........................................ 452
3, 4. Specimens from Anguilla.
3. Calices, × 6............................................ 453
4. Calices of another specimen, × 6...................... 453

**Plate 121.**

*Siderastrea conferta* (Duncan).
Figs. 1, 1a. Two views of a specimen from the Culebra formation, Canal Zone.
1. Upper surface, natural size.......................... 453
   1a. Calices, × 6........................................ 453
2, 2a. Two views of a specimen from Anguilla.
2. Upper surface, natural size.......................... 453
   2a. Calices, × 6........................................ 453
Plate 122.

Siderastrea siderea (Ellis Solander).

Fig. 1. Calices, × 6, of a specimen from Tortugas, Florida, water 8 to 9 fathoms deep.............................................................. 444
2, 2a, 2b. Three views of a specimen, apparently referable to this species from zone H, Rio Gurabo, Santo Domingo.

2. Corallum, natural size .................................................. 445
2a. Calices, × 6 ............................................................. 445
3, 3a. Two views of a specimen from the Bowden marl, Jamaica.

3. Corallum, natural size .................................................. 444
3a. Calices, × 6 ............................................................. 444

Plate 123.

Cyathomorpha rochettina (Michelin) Reis.

Six views of the same specimen, from Crosara, Italy.

Fig. 1. Side view, natural size .............................................. 456
1a. Calicular view, natural size ........................................... 456
1b. Basal view, natural size ............................................... 456
1c. Coarse costae, × 2 ..................................................... 456
1d. Costae at calicular edge, × 4. Shows perforations near the calicular margin.......................................................... 456
1e. Calice, × 4. Shows some synapticulae and that the higher cycles of septa are perforate.................................................. 456

Plate 124.

Cyathomorpha hilli, new species.

Two views of the type.

Fig. 1. Upper surface, natural size ....................................... 457
1a. Lower surface, natural size ............................................ 457

Plate 125.

Cyathomorpha hilli, new species.

Figs. 1, 1a, 1b, 1c, 1d. Five views of a paratype.

1. Upper surface, natural size ............................................ 457
1a. Side view, natural size ............................................... 457
1b. Costae, × 2 .................................................................. 457
1c. Calice, × 2 .................................................................. 457
1d. Another calice, × 2 ...................................................... 457
2, 2a. Two views of a second paratype

2. Side view, natural size ................................................... 457
2a. Upper surface, natural size .............................................. 457

Plate 126.

Cyathomorpha browni, new species.

Three views of the type.

Fig. 1. Upper surface, natural size ....................................... 458
1a. Lower surface, natural size ............................................ 458
1b. Calices and costae, × 2 .................................................. 458
Cyathomorpha anguillensis, new species. All figures natural size.

Plate 127.

Fig. 1. Upper surface of type................................................................. 461
2. Upper surface of a paratype with corallites somewhat smaller than those of the type................................................................. 461
3. A specimen with very prominent corallites........................................... 461
4, 5. Specimens with small corallites. The specimen represented by figure 4 suggests intergradation with Cyathomorpha roxboroughi, new species................................................................. 461
(All of these specimens are in the collection of the University of Upsala, Sweden.)

Plate 128.

Figs. 1, 1a, 1b. Cyathomorpha belli, new species. Three views of the type.
1. Upper surface, natural size................................................................. 459
1a. Costae, X 4................................................................. 459
1b. Calice, X 4................................................................. 459
2, 2a, 2b. Cyathomorpha splendens, new species. Three views of the type.
2. Upper surface, natural size................................................................. 460
2a. Lower surface, natural size................................................................. 460
2b. Costae, X 2................................................................. 460

Plate 129.

Figs. 1, 1a, 1b. Cyathomorpha roxboroughi, new species. Three views of the type.
1. Corallum, side view, natural size................................................................. 461
1a, 1b. Groups of calices, each X 2................................................................. 461
2. Cyathomorpha antiquensis (Duncan) Vaughan. Part of the upper surface of a specimen, natural size. Two other views of this specimen on plate 130, figures 1a, 1b................................................................. 465

Plate 130.

Cyathomorpha antiquensis (Duncan) Vaughan.

Figs. 1, 1a. Two views of the same specimen. Upper surface illustrated by plate 129, figure 2.
1. View of outer surface of corallum to show synapticulae between the costal ends of the septa, X 4................................................................. 464
1a. View of wall as seen looking across a corallite, one side of which is broken away, to show synapticulae between the peripheral ends of the septa, X 4................................................................. 464
2, 2a. Two views of Duncan's type of Astraea antiquensis, Geological Society of London.
2. Upper surface, natural size................................................................. 464
2a. Calices, X 2................................................................. 464
3. View, natural size, of a specimen with large, distant, subcircular calices................................................................. 465

Plate 131.

Cyathomorpha antiquensis (Duncan) Vaughan.

Figs. 1, 1a, 1b. Three views of the same specimen.
1. Upper surface, natural size. Calices more crowded than on plate 130, figure 3................................................................. 465
1a. Costae of outer surface, X 2................................................................. 465
1b. A calice, X 4, to show the prominent pali................................................................. 465

37149—19—Bull. 103—22
Figs. 2. A specimen, natural size, with both crowded and rather remote calices, on the same corallum.

3. A specimen, natural size, most of the calices crowded, intercorallite areas very narrow, except at lower left-hand corner, where there is a distant, circular calice.

4. Duncan type of *Astropecten antiguensis*, natural size, Geological Society of London. Compare with figure 2 of this plate.

**Plate 132.**

Figs. 1, 2, 2a, 2b. *Cyathomorpha antiguensis* (Duncan) Vaughan, from Porto Rico.

1. Calices, natural size
2. 2a, 2b. Three views of the same specimen. 2, corallum, natural size
2a, 2b, calices, × 4

3, 3a. *Cyathomorpha tenuis* (Duncan) Vaughan. Two views of a specimen from Porto Rico.

3. Corallum, natural size
3a. Calices, × 4

**Plate 133.**

Fig. 1. Duncan’s type of *Astropecten affinis*, natural size, Geological Society of London. Probably a synonym of *Cyathomorpha antiguensis* (Duncan).

2. Calices, × 2, of a specimen, with crowded calices, from Porto Rico...

3, 3a, 3b. Three views of a specimen from Willoughby Bay, Antigua.

3. Upper surface of corallum, natural size
3a. Part of upper surface, × 4, to show synapticulae between the costae
3b. Costae with intervening synapticulae on lower surface, × 4

**Plate 134.**

*Diploastrea heliopora* (Lamarck) Matthai.

Four views of the same specimen.

Fig. 1. Upper surface, natural size

1a. Costae and intervening synapticulae of lower surface, × 4
1b. Calices, × 4, to show synapticulae between the distal ends of the septa
1c. Longitudinal section of a corallite, × 4, to show septal perforations, synapticulae, and dissepiments

**Plate 135.**

*Diploastrea crassolamellata* (Duncan) Vaughan.

Fig. 1. Cross-section of the corallites of a typical specimen, natural size. Most of the septal lamellae appear dark in the figure.

2. Cross section of the corallites of a specimen representing Duncan’s variety *nobilis*.

3. A young, simple corallite, side view, natural size.

4, 4a. Two views of the same specimen.

4. Side view, natural size
4a. Calicular view, natural size

5, 5a, 5b. Three views of the same specimen.

5. Calicular view, natural size
5a. Side view, natural size
5b. A calice, × 2
### Plate 136.

*Diploastrea crassolamellata* (Duncan) Vaughan.

Three views of the same specimen.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Side view of corallum, natural size</td>
<td>475</td>
</tr>
<tr>
<td>1a.</td>
<td>Costae of side, × 2</td>
<td>475</td>
</tr>
<tr>
<td>1b.</td>
<td>Calices, natural size</td>
<td>475</td>
</tr>
</tbody>
</table>

### Plate 137.

*Diploastrea crassolamellata* (Duncan) Vaughan.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Specimen with excavated calices, natural size</td>
<td>475</td>
</tr>
<tr>
<td>2.</td>
<td>Specimen with protuberant divergent corallites, natural size</td>
<td>475</td>
</tr>
<tr>
<td>3.</td>
<td>Specimen with low corallites, × 2. Note the reticulate intercorallite area</td>
<td>475</td>
</tr>
<tr>
<td>4, 4a.</td>
<td>Calices of the same specimen, × 2.</td>
<td>475</td>
</tr>
<tr>
<td>4.</td>
<td>With some intercorallite reticulation</td>
<td>475</td>
</tr>
<tr>
<td>4a.</td>
<td>Mostly without any intercorallite reticulation</td>
<td>475</td>
</tr>
<tr>
<td>5.</td>
<td>Calices, natural size, of a specimen from the base of the Chattahoochee formation near Bainbridge, Georgia. All other specimens illustrated on this plate are from Antigua.</td>
<td>475</td>
</tr>
</tbody>
</table>

### Plate 138.

Figs. 1, 2, 2a. *Diploastrea crassolamellata* var. *magnifica* (Duncan) Vaughan.

1. Corallites, natural size, of a specimen from Antigua | 477  |
2. Corallites, natural size; 2a, a smaller area, × 2, of a specimen from the base of the Chattahoochee formation near Bainbridge, Georgia | 477  |
3, 3a. *Diploastrea crassolamellata* var. *nugenti* (Duncan) Vaughan. Two views of the same specimen.

3. Corallum, natural size | 478  |
3a. Calices, × 2 | 478  |

### Plate 139.

Figs. 1, 1a, 1b, 2, 2a. *Balanophyllia pittieri*, new species.

1. Corallum, natural size; 1a, costae, × 4; 1b, calice, × 3, of the holotype | 479  |
2. Corallum, natural size; 2a, calice, × 3, of a paratype | 479  |

Enlarged calices of paratype on plate 140, figure 1.

3. Corallum, one-half natural size | 484  |
3a. Part of cross section of lower end, × 3 | 484  |

### Plate 140.

Fig. 1. *Astreopora antiquensis*, new species. Calices of paratype. × 6. For other views see plate 139, figures 3, 3a | 484  |

2, 2a. *Astreopora portoricensis*, new species. Two views of the type.

2. Corallum, natural size | 485  |
2a. Calices, × 6 | 485  |
3, 4, 4a. *Astreopora goethalsi*, new species.

3. Corallum of a cotype, one-half natural size | 483  |
4. Corallum, one-half natural size; 4a, calices, × 6, of the second cotype | 483  |
BULLETIN 103, UNITED STATES NATIONAL MUSEUM.

Plate 141.

Figs. 1, 1a, 1b, 2. Acropora panamensis, new species.
1, 1a, 1b. Three views of the type. 1, branch, natural size; 1a, part of branch, X 3; 1b, calice, X 8................................................. 480
2. View of a paratype, natural size............................................. 480
3, 3a, 4, 4a. Acropora saludensis, new species.
3. Branch, cotype, natural size; 3a, part of the same branch, X 3..... 481
4. Branch, cotype, natural size; 4a, part of the same branch, X 3..... 481

Plate 142.

Figs. 1, 1a. Goniopora hilli, new species. Two views of the type.
1. Surface of corallum, natural size............................................. 489
1a. Calices, X 6................................................................. 489
2, 2a, 2b. Goniopora panamensis, new species. Three views of the type.
2. One surface, natural size..................................................... 489
2a. The other surface, natural size............................................. 489
2b. A part of the surface represented by figure 2a, X 3.................. 489
3, 3a. Goniopora imperatoris, new species. Two views of the type.
3. Corallum, natural size....................................................... 493
3a. Calices, X 6................................................................. 493

Plate 143.

Figs. 1, 1a. Goniopora decaturensis, new species. Two views of the type.
1. Upper surface, natural size................................................... 490
1a. Calices, X 3................................................................. 490
2, 2a. Goniopora decaturensis var. silecensis, new variety. Two views of the type.
2. Corallum, natural size....................................................... 491
2a. Calices, X 3................................................................. 491
3, 3a. Goniopora decaturensis var. bainbridgensis, new variety. Two views of the type.
3. Corallum, natural size....................................................... 491
3a. Calices, X 3................................................................. 491

Plate 144.

Goniopora jacobiana, new species.

Fig. 1, 1a. Two views of type.
1. Corallum, one-half natural size............................................. 492
1a. Calices, X 6. The thick, white radii represent interseptal filling; the septa have been dissolved and are represented by the black spaces 492
2, 2a, 3, 3a. Four views of two fragments of the same specimen from White Springs, Florida.
2. Upper surface, natural size; 2a, calices, X 6, of the same fragment.. 493
3. Upper surface, natural size; 3a, calices, X 4, of the same fragment.. 493

Plate 145.

Goniopora clevei, new species.

Fig. 1. Paratype, natural size, University of Upsala............................................. 496
2, 2a. Two views the type, also University of Upsala.
2. Branch, natural size....................................................... 496
2a. Calices, X 5................................................................. 496
3. Paratype, natural size. An elongate branch, tip rounded.................. 497
4. Paratype, natural size. A thicker branch; tips of branchlets obtusely rounded....................................................... 497
Figs. 5, 5a. Two views of a specimen somewhat flattened by pressure. Page.
5. Natural size. ................................................. 497
5a. Calices, × 6. .............................................. 497
(Originals of figures 1-5a from Anguilla.)
6. 6a. Two views of a specimen somewhat flattened by pressure, from Empire, Canal Zone.
6. Natural size. ................................................. 497
6a. Calices, × 6. .............................................. 497

Plate 146.

Figs. 1, 2, 3. Goniopora canalis, new species.
1. Cotype, corallum, natural size. ......................... 494
2. Second cotype, corallum, natural size. ............... 494
3. Third cotype, calices, × 6. ............................... 494
4, 5. Goniopora portoricensis, new species.
4. Type, corallum, natural size. ......................... 495
5. Calices, × 6, of a paratype. .............................. 495
6, 6a, 6b, 7, 8, 9. Goniopora cascaden sis, new species.
6. Type, natural size; 6a and 6b, calices, × 6. ........ 497
7. Paratype, natural size. .................................... 497
8. Paratype, natural size. .................................... 497
9. Calices of a third paratype, × 6. ....................... 497

Plate 147.

Figs. 1, 1a. Porites baracodensis, new species. Two views of the type.
1. Branch, natural size. ...................................... 499
1a. Part of branch, × 5. ..................................... 499
2, 2a, 3, 4. Porites baracodensis var. matazasensis, new variety.
2. Type, corallum, natural size; 2a, the same, × 5. .... 500
3. Paratype, × 5. ............................................... 500
4. Paratype, × 5, shows intergradation with the typical form of the species ........................................ 500

Plate 148.
Porites panamensis, new species.
Fig. 1. Paratype corallum, natural size. .................... 504
2. Calices, × 8, of a paratype. ............................... 504
3, 3a. Two views of the type.
3. Corallum, natural size. .................................... 503
3a. Calices, × 8. ............................................... 503

Plate 149.

Figs. 1, 1a, 1b. Porites anguillensis, new species. Three views of the type.
1. Upper surface, natural size. ............................. 504
1a. Lower surface, natural size. ............................ 504
1b. Calices, × 5. ............................................... 504
2, 2a. Porites douvillei, new species. Two views of a cotype.
2. Branch, natural size. ...................................... 501
2a. Calices, × 8. ............................................... 501
3, 3a. Actinacis alabamensis (Vaughan). Two views of a small specimen from Flint River, near Bainbridge, Georgia.
3. Corallum, natural size. .................................... 486
3a. Calices, × 5. ............................................... 486
### Plate 150

**Figs. 1, 1a, 2, 3, 4. Porites toulai, new species.**

1. **1a.** Type, natural size; **1a.** calices, $\times$ 8, of the type ............... 501
2. Paratype, natural size .................................................. 501
3. Second paratype, natural size ........................................... 501
4. Calices of a third paratype, $\times$ 8 ...................................... 501
5. **Porites anguillensis,** new species. Specimen from Empire, Canal Zone, natural size .................. 505

### Plate 151

**Figs. 1, 1a. Porites douvillei,** new species. Two views of a cotype.

1. Corallum, natural size .................................................. 501
1a. Calices, $\times$ 8 .......................................................... 501
2, 2a, 3, 3a, 4. **Porites (Synaraca) howei,** new species. Views of the three cotypes.
2. Branch, natural size; 2a, part of the same branch, $\times$ 3 ............... 505
3, 3a. Two views, natural size, of the same branch .......................... 505
4. Calices, $\times$ 8, of a third branch ...................................... 505

### Plate 152

**Porites (Synaraca) macdonaldi,** new species.

**Fig. 1.** A cotype, natural size ............................................. 506
2. A second cotype, natural size .......................................... 506
3, 3a. Two views of a third cotype.
3. Natural size ................................................................. 506
3a. Part of surface, $\times$ 3 ............................................... 506
4. A fourth cotype, natural size .......................................... 506
5, 5a. Two views of a specimen referred to this species.
5. Corallum, natural size .................................................. 507
5a. A calice, $\times$ 8 .......................................................... 507
A. The General Plain.

B. Daguilla, a Monadnock of Hard Rock.

C. Lower Part of Course of Santa Fe River.

Views of Isle of Pines, Cuba.

For explanation of plate see page 508.
Model of Gulf of Mexico and Caribbean Sea.

For explanation of plate see page 568.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 508.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 508.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 509.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 509.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 509.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 539.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 510.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 513.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 610.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 510.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 512.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 611.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 511.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 511.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

FOR EXPLANATION OF PLATE SEE PAGE 511.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 512.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 512.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 512.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 12.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 512.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 512.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 513.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 513.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

FOR EXPLANATION OF PLATE SEE PAGE 513.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 513.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 514.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 514.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

FOR EXPLANATION OF PLATE SEE PAGE 514.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 514.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 514.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 515.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

FOR EXPLANATION OF PLATE SEE PAGE 515.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

FOR EXPLANATION OF PLATE SEE PAGE 515.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 515.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

FOR EXPLANATION OF PLATE SEE PAGE 515.
Fossil Corals from Central America and West Indies.

For explanation of plate see pages 515 and 516.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 516.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

FOR EXPLANATION OF PLATE SEE PAGE 816.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 516.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 518.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 616.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 517.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 517.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 517.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 517.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 517.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 518.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 518.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 518.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 518.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 518.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 519.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 519.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 519.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 519.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

FOR EXPLANATION OF PLATE SEE PAGES 519 AND 520.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 520.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 520.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 523.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 520.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 521.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 521.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 521.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 521.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 521.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

FOR EXPLANATION OF PLATE SEE PAGE 522.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 622
Fossil Corals from Central America and West Indies.

For explanation of plate see page 522.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 522.
Fossil Corals from Central America and West Indies.

For explanation of plate see pages 522 and 523.
Fossil Corals from Central America and West Indies

For explanation of plate see page 523.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 523.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 523.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 623.
FOSSIL CORALS FROM CENTRAL AMERICA AND WEST INDIES.

For explanation of plate see page 524.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 521.
Fossil Corals from Central America and West Indies.

For explanation of plate see page 524.
# INDEX.

[The names treated as valid are printed in roman type, while the synonyms are in italics.]

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agaricia dominicensis</td>
<td>217, 232, 428, 429, 430, 515</td>
</tr>
<tr>
<td>Agaricia fragilis var.</td>
<td>427</td>
</tr>
<tr>
<td>Agaricia nolilis</td>
<td>429, 430</td>
</tr>
<tr>
<td>Agaricia purpurea</td>
<td>427</td>
</tr>
<tr>
<td>Agaricia sommieri</td>
<td>429, 433</td>
</tr>
<tr>
<td>Agaricia undata</td>
<td>214</td>
</tr>
<tr>
<td>Agariciidae</td>
<td>423</td>
</tr>
<tr>
<td>Agaricites, Acanthareia</td>
<td>214, 232, 428</td>
</tr>
<tr>
<td>Madrepora</td>
<td>427</td>
</tr>
<tr>
<td>vari. crassa, Acanthareia</td>
<td>225, 232, 427</td>
</tr>
<tr>
<td>vari. gibbosa, Acanthareia</td>
<td>427</td>
</tr>
<tr>
<td>vari. purpurea, Acanthareia</td>
<td>232</td>
</tr>
<tr>
<td>vari. pusilla, Acanthareia</td>
<td>225, 232, 427, 428</td>
</tr>
<tr>
<td>agassiri, Marenzana</td>
<td>419</td>
</tr>
<tr>
<td>Agathiphylia</td>
<td>435, 455, 469</td>
</tr>
<tr>
<td>conglobata, Acanthareia</td>
<td>455</td>
</tr>
<tr>
<td>depressa, Acanthareia</td>
<td>455</td>
</tr>
<tr>
<td>explanata, Acanthareia</td>
<td>455</td>
</tr>
<tr>
<td>agglutinans, Textularia</td>
<td>294</td>
</tr>
<tr>
<td>alabamenis, Oculina</td>
<td>352</td>
</tr>
<tr>
<td>alabamensis, Actinica</td>
<td>294</td>
</tr>
<tr>
<td>Tuxulina ?</td>
<td>486</td>
</tr>
<tr>
<td>alecitornis, Millepora</td>
<td>225, 236, 507</td>
</tr>
<tr>
<td>Aldrichia</td>
<td>195</td>
</tr>
<tr>
<td>aldrichi, Archophelia</td>
<td>199</td>
</tr>
<tr>
<td>Oculina</td>
<td>333</td>
</tr>
<tr>
<td>Aldrichiella elegans</td>
<td>193</td>
</tr>
<tr>
<td>altissima, Heliastrea</td>
<td>375, 379, 389</td>
</tr>
<tr>
<td>Orbicella</td>
<td>230, 362, 363</td>
</tr>
<tr>
<td>Alveopora</td>
<td>201, 202, 203, 206, 211, 395</td>
</tr>
<tr>
<td>dacalae, Acanthareia</td>
<td>491</td>
</tr>
<tr>
<td>vari. regularis</td>
<td>201, 491</td>
</tr>
<tr>
<td>fenestrate, Acanthareia</td>
<td>214</td>
</tr>
<tr>
<td>microscopica</td>
<td>492</td>
</tr>
<tr>
<td>regularis</td>
<td>491</td>
</tr>
<tr>
<td>alveolaris, Antiguastrea</td>
<td>230, 409, 410</td>
</tr>
<tr>
<td>Astra</td>
<td>492, 409, 410</td>
</tr>
<tr>
<td>Phyllum</td>
<td>409</td>
</tr>
<tr>
<td>alveolus, Placzythari</td>
<td>212</td>
</tr>
<tr>
<td>americana, Antaralga (Phylluma)</td>
<td>225</td>
</tr>
<tr>
<td>Orthophragmina</td>
<td>195</td>
</tr>
<tr>
<td>Phylluma</td>
<td>409</td>
</tr>
<tr>
<td>Amphistegina</td>
<td>294</td>
</tr>
<tr>
<td>lessonii</td>
<td>294</td>
</tr>
<tr>
<td>ananas, Astra</td>
<td>436</td>
</tr>
<tr>
<td>anguillensis, Acanthareia</td>
<td>210, 232, 428, 429, 430, 515</td>
</tr>
<tr>
<td>Cyathomorpha</td>
<td>210, 234, 460, 461, 519</td>
</tr>
<tr>
<td>Pihonastreae</td>
<td>204, 210, 232, 428, 433, 434, 516</td>
</tr>
<tr>
<td>Fornites</td>
<td>209, 210, 236, 504, 505, 523, 254</td>
</tr>
</tbody>
</table>

I
INDEX.

angulata, Antilloseris.......................194
Seriota pora..........................191
antillarum, Astrea...............214
(Orbicella)........................364
Heliostraca..........................364, 365
Orbicella............................214, 215, 223,
228, 235, 237, 239, 239, 239, 239, 239, 239,
365, 366, 368, 369, 371, 372, 373, 374,
375, 376, 380, 386, 389, 400, 429, 430
var. stellulata, Orbicella........365
Madrepora............................364
Madrepora...........................362
annularis, Cyathophyllia.............202
anomala, Asterosmilia..............213, 354
Antillospora..........................333
Antipathes distortum.............425
 Anthozaa..................315
Antiguaestrea......................202, 203, 212, 236, 401, 402, 410
alveolaris...........................230, 499, 410
cellulosa............................199, 200,
201, 204, 206, 207, 209, 230, 395, 402,
404, 406, 408, 409, 410, 415, 419, 468,
513, 514
var. curvata.........................200,
209, 404, 408, 513
siliceous............................205,
206, 230, 408, 514
elegans...............................230, 409, 514
cellulosa var. siliceous...........200
Astrea antiguenis....................363, 639, 415, 463, 466, 467, 519
Astrea parietalis....................201, 205, 206, 213, 248, 483, 521
Astraea...............................520
Cyathomorpha.......................200,
201, 204, 234, 415, 463, 466, 469, 519, 520
Goniastrea (?),.................415
 Heliostraca........................200, 463
Madrepora............................209, 207, 230, 417, 421, 514
Pterodactyla.........................200, 204, 432, 434, 516
antillarum, Astrea.................379, 381, 388, 393
Heliostraca..........................200, 379
Orbicella............................200, 203, 362, 363, 379, 333
Siderastrea crenulata var.......214, 436, 446
Antillastrea.........................336
epongiformis......................213, 337, 359
Antilia...............200, 203, 206, 210, 211, 213, 219, 222, 223, 224
bilocata.........................214, 215, 217, 224, 337, 357
(?) clevel.........................194
(?) compressa......................194
dental...............................214
dulcis.........................214, 215, 217, 236
fonsdactyla......................214
pondrosa...........................214
walli...............................212
Antilloseris angulata..............194
cantabrigiensis...................194
cyclolites..........................194
eooceania...........................194
grandis.............................194
jamaicensis......................194
major..............................191
aperta, Heliostraca..............386
Orbicella.........................230, 362, 363, 380, 512
Aphlophilla?.......................202
appendiculatum, Fiteatum........194
arabica, Acropora phanorinis forma..192
arbuscula, Carpoxyphila...........362
Cladocora..........................225, 228, 302
Archeohippia.......................332, 333
aldrichii.........................199
burnsi..............................195
harrisi.............................199
limonensis.......................222, 223, 238, 332, 353, 510
mississippiensis.................199
neglecta.........................199
vickbursgensis...................195
arcuatua, Paracyathus.............354
arcolata, Madrepora..............419
Municea............................194, 215, 225, 230, 418, 419
argus, Astrea.....................284
Explanaria..........................284
Orbicella...........................283
arnoldi, Poecilopora...........208, 228, 345, 344, 509
aspera, Euqilimia..................361
asperus, Madreps..................345
Astreopora antiguenis.............281
Astersmilia.........................219, 335, 355
abnormalis......................213, 215, 217, 354
anomala...........................213, 335
cornuta............................213, 354
exarata.........................200, 207, 213, 215, 218, 514
exarata............................213
hilli..................212, 213, 238, 355, 350, 301, 510
pourtsales......................194, 335
profunda.........................212
prolifera..........................334
Astreopsis antiguenis.............208,
234, 363, 390, 463, 466, 470, 519, 520
antillarum......................379, 381, 388, 393
astroidea.........................439
barbadensis.....................364, 374, 375
brevis.........................389, 391
cellulosa.........................365, 401, 402
var. cureata......................408
costata.............................387
crasolamellata...........362, 469, 470, 472
var. magnifica...................472, 474, 476
magnifica.........................472
minor..............................472,
474, 477, 478
nobilis.........................472, 474
nugenti.........................472
wugentii.........................474, 477
pychella..........................472, 474
cylindrica.........................380, 385
endothecata....................380, 384, 388
exsulripa........................362
megapora.........................362
(Orbicella) annularis............364
exelsa.............................395
hyades..............................438
stellulata.........................372
pariana.............................386
radula.............................393, 395, 399
var. intermedia..................393
sidera.............................444
tenus..............................363, 407, 408, 467
tricophyta.........................443
veticulosa.........................388
astraeoides, Porteic..........363
<table>
<thead>
<tr>
<th>Page</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>Aztelia mirabilis</td>
</tr>
<tr>
<td>217, 218, 236, 363, 386, 512</td>
<td>Orbicella... 205, 230, 362, 363, 386, 512</td>
</tr>
<tr>
<td>479</td>
<td>Balanophyllia calycinus</td>
</tr>
<tr>
<td>479</td>
<td>Balanophyllia caulifera</td>
</tr>
<tr>
<td>199</td>
<td>Balanophyllia var. multigranosa</td>
</tr>
<tr>
<td>195</td>
<td>Baracaelia elongata</td>
</tr>
<tr>
<td>195</td>
<td>Baracaelia irrorata</td>
</tr>
<tr>
<td>221, 234, 393, 361, 479, 521</td>
<td>Baracaelia pittieri... 221, 234, 393, 361, 479, 521</td>
</tr>
<tr>
<td>479</td>
<td>Barbedens, Astartea... 479, 374, 375</td>
</tr>
<tr>
<td>205, 214, 217, 244, 460, 519</td>
<td>Barysmilia barrettii, Placeoyathus... 205, 214, 217, 244, 460, 519</td>
</tr>
<tr>
<td>362, 361</td>
<td>Biculina... 362, 361</td>
</tr>
<tr>
<td>343</td>
<td>Brachyphyllia... 343, 456, 499</td>
</tr>
<tr>
<td>470</td>
<td>Brachyphyllia depressa</td>
</tr>
<tr>
<td>469</td>
<td>Brachyphyllia dormitifer</td>
</tr>
<tr>
<td>469</td>
<td>Brachyphyllia eckeli</td>
</tr>
<tr>
<td>469</td>
<td>Brachyphyllia glomerata</td>
</tr>
<tr>
<td>469</td>
<td>Brachyphyllia irregularis</td>
</tr>
<tr>
<td>389, 390, 391, 392, 513</td>
<td>Brazilian, Orbicella... 389, 390, 391, 392, 513</td>
</tr>
<tr>
<td>424</td>
<td>Bryozopyra... 424, 456, 499</td>
</tr>
<tr>
<td>424</td>
<td>browni, Cyathomorpha... 424, 456, 499, 513</td>
</tr>
<tr>
<td>191</td>
<td>bulbosa, Pocillopora... 191, 456, 499</td>
</tr>
<tr>
<td>195</td>
<td>burns, Archophylla... 195, 456, 499</td>
</tr>
<tr>
<td>430</td>
<td>Cactus Madrepora... 430, 456, 499</td>
</tr>
<tr>
<td>105</td>
<td>Calculetia Plocophylla... 105, 456, 499</td>
</tr>
<tr>
<td>423, 434</td>
<td>Canalis, Goniastrea... 423, 434, 456, 499</td>
</tr>
<tr>
<td>208</td>
<td>Orbicella... 208, 456, 499, 513</td>
</tr>
<tr>
<td>208</td>
<td>Stylophora... 208, 341, 513</td>
</tr>
<tr>
<td>204</td>
<td>canariaensis, Pocillopora... 204, 341, 513</td>
</tr>
<tr>
<td>194</td>
<td>Cantabrigiensis, Antilloglossis... 194, 341, 513</td>
</tr>
<tr>
<td>194</td>
<td>Dendracea... 194, 341, 513</td>
</tr>
<tr>
<td>388, 390</td>
<td>Carinaceae, Euphyllopoda... 388, 390, 341, 513</td>
</tr>
<tr>
<td>388, 390</td>
<td>Carinaceae, Antillina... 388, 400, 341, 513</td>
</tr>
<tr>
<td>223</td>
<td>Canarium... 223, 341, 513</td>
</tr>
<tr>
<td>302</td>
<td>Caryophyllia arbuscula... 302, 341, 513</td>
</tr>
<tr>
<td>361</td>
<td>Caryophyllia e calla... 361, 341, 513</td>
</tr>
<tr>
<td>195</td>
<td>Cerebria... 195, 341, 513</td>
</tr>
<tr>
<td>208</td>
<td>Cassidens, Goniastera... 208, 341, 513</td>
</tr>
</tbody>
</table>
INDEX.

Page.
cataudensis, Trochosera ..... 194, 426
caulifera, Balanophyllia ..... 199
var. multigranosus, Balanophyllia ..... 199
cavernosa, Heliostraca ..... 384
Madrepora ..... 214, 215, 218, 230, 235, 362,
363, 373, 383, 386, 392, 393, 463, 511
var. compacta, Orbicella ..... 384
var. cylindrica, Orbicella ..... 217, 223,
230, 357, 362, 363, 377, 385, 386, 512
var. endotheca, Orbicella ..... 223
230, 362, 363, 384, 394, 512
var. hirta, Orbicella ..... 383
var. siliceana, Orbicella ..... 390
var. taphos, Orbicella ..... 390
Cellulosa, Antignaestra ..... 199, 200,
204-207, 210, 230, 365, 402, 404, 405,
409, 412, 415, 419, 465, 513, 514
Astraea ..... 363, 401, 402
Heliostraea ..... 200, 402
Orbicella ..... 405, 407
var. curvata, Antignaestra ..... 200,
230, 404, 408, 513
Astraea ..... 408
var. siliceana, Antignaestra ..... 200,
205, 206, 230, 408, 514
Ceratocyathus prolifer ..... 354
Ceratocorythus duodecim-costatus ..... 213
cerebraliformis, Diploria ..... 420
cerebrum, Madrepora ..... 420
Macandaa ..... 420
Cerithium vauhanii ..... 387
cervicornis, Ceramopora ..... 422
Aeropora ..... 482
Madrepora ..... 479, 482
maricata forma ..... 482
Cespitosa, Cargophyllia ..... 361
Cirrophyllia ..... 194
cicel ..... 194
compresa ..... 194
Stylophora ..... 194, 333
circularis, Triloculina. ..... 294
Cladocora ..... 210, 216
arbuscula ..... 225, 228, 362
johnsoni ..... 225
recrassens ..... 200
charki, Siderastrea ..... 436
clavaria, Portites ..... 498
Portites porties forma ..... 498
Clavulina angularis ..... 294
clavus, Pavona ..... 435
clevei, Antilla (?) ..... 194
Cirrophyllia ..... 194
Goniopora ..... 201,
209, 210, 235, 236, 406, 407, 522
Palacocorythus ..... 194
Turbinoseris ..... 194
celona, Madrepora ..... 419
Maenanda ..... 222, 225, 232, 417, 419, 420
Platgyra ..... 419
Cocosensis, Montipora ..... 192
Coeleobis denselephantis ..... 200
labyrinthiformis ..... 200
Cecosmilia ..... 202
ferruosa ..... 423
gyraea ..... 423
temaramellii ..... 423
columnaris, Leptoria conferticosta var. ..... 194
Siderastrea ..... 435
Solenastrea ..... 195
Solenstraea laurbanksi var. ..... 223
Columnastrea euryl ..... 194
Comoseris ..... 202, 432
compacet, Orbicella ..... 511
Orbicella cavernosa var. ..... 384
compressa, Antilla (?) ..... 194
conferta, Astraea ..... 334
Inostraea ..... 200, 151
Orbicella ..... 333
Siderostrea ..... 200, 201, 207, 208, 210, 211,
213, 214, 436-438, 447, 449-451, 453, 517
Stylophora ..... 195, 334
conferticosta, Diploria ..... 194
Leptoria ..... 194
var. columnaris, Leptoria ..... 191
confusa, Inostraea ..... 440
Siderastrea ..... 232, 436, 437, 440
conglobata, Agathiphylla ..... 455
Cyathomorpha ..... 454
conradi, Astrangia ..... 220
contorta, Stylophora ..... 194, 333
corbulica, Thysanus ..... 214, 215, 423, 424
corurata, Astartomilka ..... 213, 354
Cyrtomus, Aeropora ..... 192
costata, Astraea ..... 387
Cyphastrea ..... 214, 364, 365, 374
Heliostraea ..... 200, 387
Orbicella ..... 200, 204, 208,
210, 211, 230, 362, 363, 387, 389-394, 409, 512
costatus, Plococorythus ..... 213, 215, 217
Placocorythus ..... 212
crasa, Agaricia ..... 427
agarites var. ..... 225, 223, 427
Herpetolitha ..... 192
Septastrea ..... 220, 222
crassosepta, Dithocemia merriami var. ..... 223
crassolamellata, Astarta ..... 362, 499, 470, 472
Diploastrea ..... 201,
201-207, 234, 499, 474, 478, 520, 521
Heliostraea ..... 201, 470
Orbicella ..... 470
var. magnetica, Astarta ..... 472
var. magnifica, Astrea ..... 472
Astarta ..... 474, 476
Diploastraea ..... 201,
203, 244, 476, 521
var. minor, Astarta ..... 472,
474, 477, 478
var. nobilis, Astarta ..... 472, 474
var. nugentii, Astarta ..... 472, 474, 477
Diploastraea ..... 201,
234, 477, 478, 521
var. pulchella, Astarta ..... 472, 474
crassomama, Pocillopora ..... 213,
215, 217, 337, 342, 343, 339, 377, 385
INDEX.

Page.  
crenulata var. antillarum, Siderastrea 214, 436  
crispa, Oulastrea 44  
cristata, Madrepora 430  
Pavona 4  
cuneiforme, var. wailesi, Flabellum 195  
curvata, Antiquastrea cellulae var. 200, 230, 494, 498, 513  
Astraea cellulae var. 408  
Astraea cellulae 408  
cyathiformis, Heliscastra 186  
Multicolonnastra 194  
Cyathomorpha 202, 230, 212, 363, 381, 454, 455, 460, 461, 469  
anguillenisi 204, 219, 234, 460, 461, 463, 519  
antiquenesis 200, 294, 207, 334, 415, 463, 465, 469, 498, 519, 520  
belli 200, 234, 459, 469, 519  
browni 200, 234, 458, 459, 518  
conglobata 454  
hillii 200, 204, 457, 458, 459, 518  
rochetiana 234, 454, 456, 458, 459, 461, 518  
roxboroughi 210, 234, 461, 463, 469, 519  
splendens 200, 324, 450, 469, 519  
tennis 204, 234, 421, 466, 467, 468, 520  
Cyathophyllia annulata 202  
Cyathoides 202  
cylindrica, Astraea 390, 385  
Hilastrea 214, 385  
Orbicella cavernosa var. 217, 223, 230, 337, 339, 362, 385, 386, 312  
Orbicella cavernosa var. 237  
Cyphastrea costata 214, 384, 355, 374  
Cyphastrea bournoni 401  
hyades 401  
microphthalmia 191, 374  
oblita 373, 374, 398, 400  
savinji 439  
d'achardii, Astrocoenia 193, 194, 288, 346, 347, 350, 509  
Daedalata, Atepora 491  
var. regularis, Atepora 201, 491  
dalli, Caryophyllia 195  
Siderastrea, 222, 223, 232, 485, 437, 450, 451, 517  
damicornis, Pocillopora 191  
dana, Pavona 192  
debris, Stephanocoenia 337, 339  
decactis, Madracis 217, 337, 339, 377, 385  
decaulensis, Astracoenia 200  
204, 205, 288, 346, 347, 509  
Goniopora var. 204-206, 234, 490, 491, 522  
var. bainbridgei, Goniopora 491, 522  
var. siliennis, Goniopora 491, 522  
Dendracris 202  
cantabrigenis 194  
dendroides, Stephanocoenia 214  
Dendrophyllia 199, 201  
diaphana 192  
willileyi 192  
desmaphthala, Coccidia 200  
dens-elephantis, Maeandrea 192  
dentata, A. Illia 214  
Syzygophyllia 214  
215, 217, 224, 397, 399, 385, 425  
depressa, Agathiphylla 214  
Brachiphylla 455  
diaphana, Dendrophyllia 192  
Dichocoenia 202, 222, 223, 360  
merriani 223  
var. crassisepta 223  
porca 360  
stokesi 223, 229, 360  
tuberosa 213, 215, 217, 221, 225, 360, 509  
dichotoma, Millopora 192  
difusa, Oculina 225, 228, 552  
Dimorphastrea 202  
Diplastrea 212, 363, 434, 454, 463, 469  
crassolamelata 201, 204-207, 234, 469, 474, 518, 520, 521  
var. magnifica 201, 203, 204, 476, 521  
var. nugenii 201, 234, 477, 487, 521  
heliopora 234, 469, 520  
Diploria 418, 423  
ceebroformis 420  
conferticosta 194  
temera 423  
Diptotheacastra monitor 200  
discoides, Pironastrea 432  
Discorbis virideboon 294  
divites, Plesiatrea 214, 398, 401  
Stylopora 196, 333  
disticaria, Antaphyllum 425  
divariata, Porites 222, 500  
donimeieris, Azarinia 217, 232, 426-430, 513  
Siderastrea sidera var. 232, 438, 447, 516  
dormitleri, Brachyphylla 455, 469  
douvillei, Portites 209, 236, 501, 523, 524  
dubia, Antillia 214, 215, 217, 236  
dubia, Flabellum 214  
duerdeni, Astrocoenia 194, 348  
Stylococcus 194, 345  
dumbel, Maeandra 206, 230, 418, 514  
doudecin-costatus, Ceratotrochus 213  
Echinolamps semiorbis 210  
Echinopora 371  
franksi 365, 369, 371, 510  
lamellosa 191  
cecloi, Brachyphylla 469  
vicaris, Aldrichella 195  
Antiquastrea, 230, 409, 514  
Fusus 402, 409  
Pocillopora 191  
Stephanocoenia 195  
Styliaria 410  
Thysanus 212  
elliptica, Leptaxis 203  
ellefii, Scolactea 388, 400  
elongata, Balanophyllia 199  
emacriata, Astro 351  
Endophasys 211, 395  
melliri 196  
var. triangulare 195  
minutum 196  
shaleri 196
INDEX.

endothyecata, Astracca ........................................ 380,384,388
Heliastrea .................................................. 214,384
Orbicella .................................................. 362
cavernosa var. ........................................... 223,
230,385,388,389,351
Oceanica, Antilloseris .................................. 191
Eosphila? .................................................. 202
erosa, Porites ............................................. 503
Eunadrepora ............................................... 480
Euphyllia .................................................. 200,202,203
Euphylliidae .............................................. 479
Eusmilia .................................................. 361
carrieri ................................................... 223
fastigiata .................................................. 223,225,225,361
knori ....................................................... 361
Eusmiliidae ............................................... 354
exarata, Asteroasphila .................................. 209,207,213,215,218,334
exaratum, Flabellum .................................. 213
celisa, Astarea Orbicella ................................ 385
Oarbicella ............................................... 395-397
excentricus, Thyssanus ................................ 212,219,232,377,423,424
exica, Hydnophora ...................................... 191
expansa, Astangia ...................................... 215
Explanaria granulosa .................................. 364
aspa ....................................................... 374
gallacea .................................................. 439
radiata ................................................... 334
explanata, Azathiphylia .................................. 435
exsulcata, Astra ........................................ 4-6
Heliastrea ............................................... 4-6
eyeri Columnastrea ...................................... 194
eyouxi Focolipora ....................................... 191
fairbanksi, Solenastrea ................................ 223
Stephanocenia .......................................... 190
var. columnaris, Solenastrea ......................... 223
var. minor, Solenastrea ................................ 223
var. normalis, Solenastrea ............................ 223
fastigiata, Eusmilia .................................... 223,225,225,361
Madrepora ............................................... 364
fasecolata, Astra ........................................ 364
Madrepora ............................................... 364,372
Favia ..................................................... 194,412,436
fragum ..................................................... 225,293,293,412
leptophylla ................................................ 414
macdonaldia ............................................. 206,207,239,414,414,414
speciosa .................................................. 191
stelligera ................................................. 191
Favidae .................................................. 412
Favites .................................................. 212,222,414,415
abrida ..................................................... 191
melicerum ................................................ 191
mexicana ................................................. 206,230,414,415,415
polygonalis ............................................. 200,205,239,415
vaughani .................................................. 220
Favoidea jungkhoi ....................................... 201
lavosa, Leucopocyemia ................................ 203
fenestrata, Alcorpora .................................. 214
flagranca, Macandrina ................................ 214
Flagellum ............................................... 213
appendiculatum ......................................... 194
cuneiforme var. wallisi ................................ 190
dubium .................................................... 214
exaratum .................................................. 213
magnetostatum .......................................... 199
rhomboideum ............................................ 199
fertuosa, Colopophylla .................................. 423

fintensis, Orthophragmmina .......................... 196,197
floridana, Orthophragmmina ......................... 195
Phyllangia .............................................. 222
foliosa, Montipora ...................................... 192
forbesi, Septastrea ...................................... 411
formosa, Stephanocenia ................................ 358
fragilis, Leptosperis .................................... 431
var. Agarica ............................................. 427
fragum, Porites ......................................... 225,229,223,412
Madrepora ............................................... 360
frankai, Echinopora ..................................... 365,369,371,510
Funga fungites ........................................... 192
scutaria ................................................... 192
fungites, Funga .......................................... 192
furcula, Porites ......................................... 222,225,236,499,500
Porites porites forma .................................. 499
gabbi, Orbicella .......................................... 230,383,385,394,515
Galaxea .................................................. 211,395
Astrea .................................................... 439
(Siderastrea) ............................................ 439
Explanaria ............................................... 439
Madrepora ............................................... 439
Siderastrea .............................................. 439,440
Sideratrea ............................................... 440
Siderina .................................................. 430
Gatumensis, Oculina .................................... 190
georgeana, Orthophragmmina ....................... 196
Phyllangia ............................................... 222
Girardia .................................................. 212
Glyptastrea ................................................ 411
goethalsi, Astreopora .................................. 209,234,483,521
Stylophora ............................................... 208,228,338,393,508
goodie, Plesiastrea ...................................... 357,359
Gomertangia .............................................. 202
Goniastrea ............................................... 202,416
(?) antiguenis ............................................ 415
canalis ..................................................... 208,234,416,512
reussi ..................................................... 200
varialbils ................................................. 194,416
Goniopora ............................................... 191,194,201-203,206,207,210-212,219,
222-224,226,335,488,490-495,496,498
canalis ..................................................... 209,210,234,497,523
cascadensis .............................................. 201,208,210,236,497,523
clevei ...................................................... 201,209,210,236,496,497,522
decalurensis .............................................. 204-206,234,490,491,412
var. bainbridgei 491,522
var. silicicola .......................................... 491,522
Hillii ...................................................... 209,234,488,489,522
Imperatoris .............................................. 209,210,234,497,522
jacobia .................................................... 210,234,377,495,522
pandunculata .......................................... 498,522
portoricensis ............................................. 201,204,234,497,522
regularis ................................................... 201,234,491,492
var. microscopica ..................................... 201,234,492
? tenus ................................................... 201
gracilis, Leptoria ........................................ 421
grandiflora, Porostrae ................................ 436
granulis, Antilloseris ................................. 194
Siderastrea ............................................... 214,436,441
Teleophtyla ............................................... 214
Thysanus ................................................. 214,215,217,377
granulata, Stylophora .................................. 195,212,
217,218,228,334,337,349,314,345,344,387,501
INDEX.

Page.

granulosa, Reussastraea .................................. 430  
gregori, Syzygoophyllia .................................. 212, 214, 215, 217, 377, 387, 423  
Grumia ....................................................... 202  
guanatanamenis, Astrocoena .......................... 200, 204, 207, 288, 317, 399  
gyroa, Colpophyllia ...................................... 422  
Madrepora ................................................. 421, 422  
Manicina ..................................................... 225, 226, 252, 422, 423  
haimiana, Psammocora ................................ 192  
Halosiers ..................................................... 200, 212  
harrisii, Archelobia ..................................... 199  
Astrangia ..................................................... 135  
Oculina ....................................................... 332  
haueri, Actinica .......................................... 488  
hayesi, Syzygoophyllia ................................. 193, 232, 242, 423, 515  
Thysanus ..................................................... 218, 232, 424, 509

Heliostraes ................................................ 464  
  abida ....................................................... 374  
  acropora .................................................. 384, 385  
  alitissima ................................................ 373, 379, 380  
  annularis ................................................ 361, 385  
  antiguensis .............................................. 200, 463  
  aquillarium ............................................. 200, 379  
  apetos ..................................................... 218, 388  
  barbadensis ............................................. 201, 355  
  brevis ..................................................... 214, 391  
  caverrosa ................................................ 334  
  celluboa .................................................. 209, 402  
  costata .................................................... 209, 387  
  crassouanellata ....................................... 201, 470  
  cyathiformis ............................................ 486  
  cylindrica ................................................ 214, 385  
  cudotheca ................................................ 214, 381  
  escuola .................................................... 483  
  insignis .................................................... 200, 392  
  irradians .................................................. 394, 395  
  Jungrhuhni .............................................. 364, 365, 374  
  radia ....................................................... 250  
  rotuboa .................................................... 214, 374  
  stellulata ................................................. 373, 510  
  tenuis ...................................................... 206, 467

heliostraes, Astrea ........................................ 469  
  Diploastraea ............................................. 344, 499, 520  
henekei, Paracyathus .................................... 213, 214  
Herpetolitha crassa ..................................... 192  
Heterastraea .............................................. 402  
Heterostraes ............................................. 402  
  michelottina ............................................ 402  
  stenulumellosa ......................................... 402  
Heterostegmoises ....................................... 210  
hexagonalis, Siderastrea ............................. 496  
hilli, Asterosmisia ............................. 212, 213, 258, 354, 355, 360, 361, 510  
  Cytanomorpha ......................................... 200, 234, 457, 459, 518  
  Goniopora ............................................... 200, 231, 488, 489, 522  
  Trochozoria ............................................. 194, 195  
  hillboreonensis, Siderastrea ....................... 211  
  219, 232, 437, 442, 445, 517
hirata, Orbicella cavernosa var. ................... 383  
hispidula, Orbicella ................................... 365, 366, 369, 510  
Holangia ..................................................... 202  
howei, Porites (Sinaracea) ......................... 209, 236, 505, 524
hyades, A[stra] Orbicella ............................ 395  
Cyphastrea .................................................. 401  
  Orbicella ................................................ 396, 397  
Solenastrea ............................................... 211, 219, 222, 233, 239, 395, 396

Hydraphora ................................................ 202  
  exesa ..................................................... 191  
  microconos .............................................. 191

Hydrocoralliniae ........................................ 507

Hydrozoa .................................................. 506

immsers, Lepitastrea ................................... 191

imperators, Goniopora ............................... 200, 210, 234, 483, 495, 522  
  Orbicella .............................................. 208, 219, 230, 362, 363, 375, 399, 511  
  Stylophora .............................................. 208, 219, 226, 344-339, 338, 558

incrustans, Astrocoena .............................. 193, 194, 288, 347

Stephanoscoena ...................................... 191, 347

informis, Montipora ................................... 192

insignis, Herlastraec ................................ 200, 392  
  Orbicella .............................................. 200, 207, 230, 362-364, 392-394, 513  
  Physosiers .............................................. 194

Trocromilia ................................................ 194

intermedia, Brysmina .................................. 213

Diploia ....................................................... 423

Orbicella ................................................... 423

Trocromilia ................................................ 200

irregularis, Brachyphyllia .................................. 460

irrorata, Balanophyllia .................................. 495

lestraes .................................................... 436

confusa ...................................................... 440

elepata ...................................................... 409

tenustrustia ............................................... 452

turbinita ................................................... 130

turbinita ................................................... 402, 403, 406, 514

elepata ...................................................... 402

lepora muricata ........................................... 482

forma poutnata ............................................ 483

Jacksonesis  P'tycoenca ................................ 195

1acobiana, Goniopora ................................. 219, 234, 378, 493, 522

Jamaicaensis, Antillosiers .......................... 194

johnsoni, Chedocora .................................... 222

jungbuhn, Facoides ....................................... 201

knorri, Eusmilia ......................................... 361

labato-rutundata, Stylocoena .......................... 200

labyrinhica, Madrepora .................................. 420

labyrinhiformis, Coloria ................................ 420

Madrepora ................................................... 417, 420

hacandra .................................................. 222, 223, 233, 235, 259, 419, 420, 423

lungrhini, Heliastraec .................................. 364, 365, 374

Lamelastraesmyth ........................................ 200

lamellosa, Echinopora .................................. 191

lavarca, I'anoorubilia .................................. 294

lato-spinosus, Trocyathus ................................ 213

leonisens, Mesocony ..................................... 220

Parahippus .................................................. 220

Lepidocyclina ............................................ 197, 203, 210, 211, 260, 387

favosa ....................................................... 203

gigas ......................................................... 203

undosa ....................................................... 203

undulata .................................................... 203
**INDEX.**

<table>
<thead>
<tr>
<th>Madrepora, farcicola</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>fregum</td>
<td>364, 372</td>
</tr>
<tr>
<td>galaxea</td>
<td>412</td>
</tr>
<tr>
<td>gyrosa</td>
<td>412, 422</td>
</tr>
<tr>
<td>intersepta</td>
<td>356, 357</td>
</tr>
<tr>
<td>labyrinthica</td>
<td>420</td>
</tr>
<tr>
<td>labyrinthiformis</td>
<td>417, 420</td>
</tr>
<tr>
<td>limbus</td>
<td>376</td>
</tr>
<tr>
<td>mucicola</td>
<td>451, 492</td>
</tr>
<tr>
<td>mucicola forma cerceicornis</td>
<td>482</td>
</tr>
<tr>
<td>mucicola forma palmata</td>
<td>453</td>
</tr>
<tr>
<td>palmata</td>
<td>353, 483</td>
</tr>
<tr>
<td>phrygia</td>
<td>421</td>
</tr>
<tr>
<td>pistillata</td>
<td>333</td>
</tr>
<tr>
<td>porites</td>
<td>498</td>
</tr>
<tr>
<td>radians</td>
<td>433, 439</td>
</tr>
<tr>
<td>radiata, Orbicella</td>
<td>382, 383</td>
</tr>
<tr>
<td>snydera</td>
<td>443</td>
</tr>
<tr>
<td>stellulata</td>
<td>373</td>
</tr>
<tr>
<td>undata</td>
<td>426</td>
</tr>
<tr>
<td>Madreporaria Fungida</td>
<td>425</td>
</tr>
<tr>
<td>Imperforata</td>
<td>333</td>
</tr>
<tr>
<td>Perforata</td>
<td>479</td>
</tr>
<tr>
<td>Macandria</td>
<td>194, 210, 211, 417, 418, 420</td>
</tr>
<tr>
<td>apis</td>
<td>419</td>
</tr>
<tr>
<td>antiquennis</td>
<td>200, 207, 230, 417, 421, 424</td>
</tr>
<tr>
<td>arcorea</td>
<td>214, 215, 225, 230, 419</td>
</tr>
<tr>
<td>bowersi</td>
<td>223, 419</td>
</tr>
<tr>
<td>cerebrum</td>
<td>420</td>
</tr>
<tr>
<td>cliiosa</td>
<td>222, 225, 232, 417, 419, 420</td>
</tr>
<tr>
<td>dens-elephantis</td>
<td>200</td>
</tr>
<tr>
<td>dumblei</td>
<td>206, 230, 418, 419, 423</td>
</tr>
<tr>
<td>labyrinthiformis</td>
<td>225</td>
</tr>
<tr>
<td>plicenica</td>
<td>222</td>
</tr>
<tr>
<td>portoricensis</td>
<td>204, 230, 418, 415</td>
</tr>
<tr>
<td>stricosa</td>
<td>214, 420</td>
</tr>
<tr>
<td>viridis</td>
<td>420</td>
</tr>
<tr>
<td>Macandria</td>
<td>200, 421</td>
</tr>
<tr>
<td>fibryum</td>
<td>214</td>
</tr>
<tr>
<td>maeandrites</td>
<td>222</td>
</tr>
<tr>
<td>sinussistema</td>
<td>214</td>
</tr>
<tr>
<td>strigosa</td>
<td>420</td>
</tr>
<tr>
<td>maeandrites, Meandrina</td>
<td>222, 255</td>
</tr>
<tr>
<td>magnifica, Astraera crassolamellata var.</td>
<td>472, 474</td>
</tr>
<tr>
<td>magnifica Astraera crassolamellata var.</td>
<td>472</td>
</tr>
<tr>
<td>crassolamellata var.</td>
<td>476</td>
</tr>
<tr>
<td>Diplastrea crassolamellata var.</td>
<td>291, 293, 295, 296, 420</td>
</tr>
<tr>
<td>magnocostatum, Flabellum</td>
<td>199</td>
</tr>
<tr>
<td>major, Antilloseris</td>
<td>194</td>
</tr>
<tr>
<td>maldiveensis, Pavona</td>
<td>192, 195</td>
</tr>
<tr>
<td>Siderastraea</td>
<td>435</td>
</tr>
<tr>
<td>Manicina</td>
<td>421, 422</td>
</tr>
<tr>
<td>arcoletas</td>
<td>194, 214, 418, 419</td>
</tr>
<tr>
<td>gyrosa</td>
<td>223, 282, 253, 265, 422, 425</td>
</tr>
<tr>
<td>intermedia</td>
<td>423</td>
</tr>
<tr>
<td>willoughbiensis</td>
<td>200, 232, 422, 423, 414, 418</td>
</tr>
<tr>
<td>mariannensis, Orthophragmina</td>
<td>196, 197</td>
</tr>
<tr>
<td>var. papililata, Orthophragmina</td>
<td>196</td>
</tr>
<tr>
<td>martiniana, Actinacis</td>
<td>486, 488</td>
</tr>
<tr>
<td>marylandica, Astrae</td>
<td>411</td>
</tr>
<tr>
<td>Septastrae</td>
<td>211, 220, 226, 411, 412</td>
</tr>
<tr>
<td>matanasensis, Porites baracenosensis var.</td>
<td>218, 236, 500, 523</td>
</tr>
<tr>
<td>Index Term</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>Millepora</td>
<td>210, 214, 432</td>
</tr>
<tr>
<td>Millepora regularis var.</td>
<td>210, 214, 432</td>
</tr>
<tr>
<td>Millepora,</td>
<td>192, 507</td>
</tr>
<tr>
<td>Millepora alcicornis</td>
<td>225, 236, 507</td>
</tr>
<tr>
<td>Millepora dichotoma</td>
<td>192</td>
</tr>
<tr>
<td>Millepora muricata</td>
<td>479, 481</td>
</tr>
<tr>
<td>Millepora phytophylla</td>
<td>192</td>
</tr>
<tr>
<td>Millepora millecomae</td>
<td>507</td>
</tr>
<tr>
<td>Millepora, minor</td>
<td>479, 481</td>
</tr>
<tr>
<td>Millepora Siderastrea var.</td>
<td>479, 481</td>
</tr>
<tr>
<td>Millepora Siderastrea mendenhalli var.</td>
<td>223, 436</td>
</tr>
<tr>
<td>Millepora Solenastrea var.</td>
<td>223, 436</td>
</tr>
<tr>
<td>Millepora Stylophora</td>
<td>213, 235, 399</td>
</tr>
<tr>
<td>Millepora Stylophora affinis var.</td>
<td>334</td>
</tr>
<tr>
<td>Millepora minutea, Stylophora</td>
<td>334</td>
</tr>
<tr>
<td>Millepora minutissima, Stylophora</td>
<td>205, 206, 334</td>
</tr>
<tr>
<td>Millepora minutum, Endopachys</td>
<td>196</td>
</tr>
<tr>
<td>Millepora mirabilis, Athelia</td>
<td>345</td>
</tr>
<tr>
<td>Millepora Madracis</td>
<td>213, 223, 229, 345, 591</td>
</tr>
<tr>
<td>Millepora Stylophora</td>
<td>384, 345</td>
</tr>
<tr>
<td>Millepora mississippiensis, Archohelia</td>
<td>199</td>
</tr>
<tr>
<td>Millepora Oculina</td>
<td>332, 359</td>
</tr>
<tr>
<td>Millepora Oculina alabamensis</td>
<td>353</td>
</tr>
<tr>
<td>Millepora Oculina adriatica</td>
<td>353</td>
</tr>
<tr>
<td>Millepora Oculina diffusa</td>
<td>225, 226, 352</td>
</tr>
<tr>
<td>Millepora Oculina gatunensis</td>
<td>190</td>
</tr>
<tr>
<td>Millepora Oculina harrisii</td>
<td>352</td>
</tr>
<tr>
<td>Millepora Oculina mississippiensis</td>
<td>352</td>
</tr>
<tr>
<td>Millepora Oculina singleri</td>
<td>352</td>
</tr>
<tr>
<td>Millepora Oculina ?smithi</td>
<td>353</td>
</tr>
<tr>
<td>Millepora Oculina varicosa</td>
<td>225, 226, 352</td>
</tr>
<tr>
<td>Millepora ricksburgensis</td>
<td>352</td>
</tr>
<tr>
<td>Millepora Orbicella</td>
<td>191, 202, 203, 392, 378, 384, 385, 401, 407, 456, 464, 467, 468, 469</td>
</tr>
<tr>
<td>Millepora acropora</td>
<td>365, 372, 375, 380</td>
</tr>
<tr>
<td>Millepora aitissima</td>
<td>230, 362, 363, 379</td>
</tr>
<tr>
<td>Millepora antillarum</td>
<td>200, 230, 362, 363, 378, 378, 393</td>
</tr>
<tr>
<td>Millepora Astraea</td>
<td>354</td>
</tr>
<tr>
<td>Millepora Astraea var. stellulata</td>
<td>365</td>
</tr>
<tr>
<td>Millepora aperta</td>
<td>220, 362, 383, 386, 512</td>
</tr>
<tr>
<td>Millepora argus</td>
<td>383</td>
</tr>
<tr>
<td>Millepora bainbridgensis</td>
<td>205, 217, 230, 392, 377, 385, 512</td>
</tr>
<tr>
<td>Millepora brasileiana</td>
<td>383</td>
</tr>
<tr>
<td>Millepora brevis</td>
<td>214, 215, 230, 362, 364, 391, 392, 513</td>
</tr>
<tr>
<td>Millepora canalis</td>
<td>208, 210, 230, 236, 364, 389, 390, 394, 512, 513</td>
</tr>
</tbody>
</table>
| Millepora var. compacta | 384, 385
INDEX.

Page.

var. endotheccata 223, 230, 392, 393, 394, 499, 512
var. hirta 383
var. siliceensis 390
var. tampensis 390
cellulosa 403, 407
compacta 511
conferta 383
costata 200, 204, 208, 210, 211, 362, 363, 387, 389, 390, 391, 392, 393, 394, 395, 396, 397, 460, 512
crassolamella 470
excelsa, A (straca) 395
excepsa 395, 396, 397
gabli 230, 362, 363, 394, 515
hispidula 365, 368, 369, 510
hyades 396, 397
hyades, A (straca) 395
imperatoris 208, 210, 230, 362, 363, 390, 391, 499, 512
insignis 200, 207, 230, 362, 363
intermedia 200, 208, 210, 230, 362, 363, 390, 391, 394, 512
irradians 230, 391, 394, 395, 512
limbata 214, 215, 217, 219, 228, 237, 339, 392, 393, 394, 395, 397, 499, 512
radiata 383
Madrepora radiata 382, 383
stellulata 373
stellulata, Astraea 372
tampaensis 200, 208, 210, 230, 362, 364, 390, 391, 394, 395, 512
tampaensis var. siliceensis 200, 208, 210, 230, 362, 364, 390, 391, 394, 395, 512
tenuis 407, 408, 467, 468
theresiana 190
versipora 190
Orbicellidae 362, 433, 435
Orbiculina aduncu 294
ornata, Astroecinia 200, 246, 348, 319, 350
Astroecinia 531
Portics 530
Orosiris 432, 433
plana 433
Orthanax pugnax 206, 210, 214
Orthophragmina 196, 197, 200, 204, 205, 210, 232, 432-434, 516
americanma 196
flintensis 196, 197
floridana 196
gorgiana 196
mariannensis 196, 197
var. papillata 196
vaughani 196
Oulastrea 454, 456
crispata 454
Oulastreidae 453
Oxydactythus 220
Pachyseris 432, 433
palifera, Aeropora 192
palmata, Aeropora 225
Astrhelia 220
Isopora muricato forma 453
Madrepora 353, 512
muricato forma 453
panamensis, Aeropora 201, 209, 234, 450, 452
Goniopora 209, 210, 234, 458, 512
Pavona 208, 232, 430, 515
Portites 209, 236, 503, 523
Stylangia 208, 230, 390, 410, 511
Styloplora 208, 228, 335, 508
panicca, Astrporea 194, 486
papillata, mariannensis Orthophragmina var. 196
Paracyathus arcuatus 354
henekeni 218, 244
vaughani 220
Parahippus leonensis 220
Parasmilia 202, 203
huvoriana 195
Parastrea 436
grandiflora 436
Parastrea 436
parkina, Astraea 438
Siderastrea 232, 430, 438
Pavona 200, 217, 222, 359, 430, 435
ehavus 435
cristata 430
danil 192
maledivensis 196, 435
panamensis 200, 292, 430, 515
variana 192
Pavonia stelctera 444
Pefect 206
suwanensis 206
sayanus 220
pendunculata, Goniopora 483
Peneroplis pertusus 294
Pentalophora 345
pertusus, Peneroplis 294
pharensis, Aeropora 192
forma arboidea, Aeropora 192
pharetra, Turbinolla 195
phrygia, Leptoria 191, 421
Madrepora 421
Meandrina 421
Phyllangia 459
alevauris 459
americanma 225
Astraea 222
floridana 195
Phyllocoenia 362, 395
irradians 394, 395
limbata 214, 215, 217, 219, 228, 237, 393, 394, 395, 397, 398, 460
var. tegula 365
var. tegula 365
sculpta 214
var. tegula 369, 375, 377, 511
Phyllosmilia 202
Physoseis insignis 194
Pronastra 432, 433
anguillensis 204, 210, 232, 432, 434, 516
antiquensis 200, 204, 432, 434, 516
discoides 452
INDEX.

Stylophora mirabilis ........................................ 334, 345
panamensis ........................................ 208, 223, 353, 508
peperosa ........................................ 200, 226, 229, 354, 342
porcellaneous ........................................ 221, 228, 309, 509
rutilella ........................................ 213, 215, 334
tuberosa ........................................ 350, 334
subcurvata Trochosphera ..................................... 191
subras polls, Septastrea ..................................... 411
swanensis, Peckton ......................................... 206
Syracusea ........................................ 505
Syr. (Syracusea) howei, Porites ................................ 209, 210, 236, 506, 524
maconaldi, Porites ........................................ 210, 236, 506, 524
Syzogophyllia ........................................ 211, 213, 219, 222, 223, 244, 425
drevis ........................................ 424
dentata ........................................ 214, 215, 224, 337, 339, 377, 385, 425
gregorii 212, 214, 215, 217, 377, 385, 425
hayesi ........................................ 193, 223, 424, 425, 415
tampaensis, Orbicella ....................................... 210, 220, 293, 305, 307, 309
Oribicella caversa ........................................ 350
Solenastrea ........................................ 211, 230, 362, 390, 391, 513
S. tara metelli, Cylophyllia ................................ 423
tegula, Phyllocoenia limbata var ................................ 365
sculpta var ........................................ 375, 377
sculpta var ........................................ 399, 511
Teleophyllia ........................................ 423
grandis ........................................ 214
nakeda ........................................ 214
cenila mellea, Heterastrea ................................... 402
tenuis, Astraea ........................................ 363, 407, 498, 467
Cyathomorpha ........................................ 204, 214, 421, 498-499, 520
Geniopora ........................................ 201
Helicostrea ........................................ 200, 467
Oribicella ........................................ 407, 467, 468
Pocillopora ........................................ 390, 342, 343
Stephanocoenia ........................................ 201
tenuivistaria, Isastrea ..................................... 452
Textularia agutiillans ...................................... 294
Thamnasteria? ........................................ 202
theresiana, Orbicella ...................................... 190
Thysanus ........................................ 212, 215, 219, 222, 223, 244, 423
coricula ........................................ 214, 215, 432, 424
elegans ........................................ 212
excentricus ........................................ 212, 219, 322, 377, 433, 424
grandis ........................................ 214, 215, 217, 377
hayesi ........................................ 214, 232, 234, 509
avicula ........................................ 214, 215
oulai, Porites ........................................ 208, 236, 501, 502, 524
triangulare, Endopachys maculur var ........................................ 106
triophylla, Astraea ........................................ 443
Triculina circularis ...................................... 204
lincanea ........................................ 294
Trochochetaes abnormatris ................................ 213, 354
tacro-spinosus ........................................ 213
Humulitifomis ........................................ 195
var. montgomeriensis .................................. 195
profundus ........................................ 354
Trochoheris ........................................ 202, 212, 425, 426
catalupenis ........................................ 194, 428
mezneri ........................................ 204, 207, 283, 426, 517

Stephanocoenia ........................................ 202, 203
Stephanomillia ........................................ 203
Steriphontochius pulcher .................................... 190
stokesi, Dihocoenia ....................................... 223, 229, 300
strafo punctata, Polyestomella ................................ 294
strigosa, Macandra ........................................ 214, 222, 232, 233, 255, 256, 420
Maecandra ........................................ 420
Stylangia ........................................ 410
elegans ........................................ 410
panamensis ........................................ 208, 230, 309, 401, 511
Stylina ........................................ 202, 376
limbata ........................................ 375
Stylocoenia ........................................ 202, 210, 212, 351
ducedeni ........................................ 194, 345
labato rotundata ........................................ 200
pumpellyi ........................................ 200, 205, 228, 351
Stylophoridze ........................................ 333
Stylophora ........................................ 202, 203
206, 210, 211, 213, 215, 221, 219, 222, 223, 224, 333, 339, 349, 359, 377, 385
affinis ........................................ 213, 214, 217, 219, 223, 334, 339, 349, 357, 377, 385
var. minor ........................................ 334
carnis ........................................ 208, 228, 341, 300
compressa ........................................ 194, 333
conferta ........................................ 195, 334
contorta ........................................ 194, 333
distans ........................................ 195, 333
goethalsi ........................................ 208, 228, 338, 339, 500
granulata 219, 212, 217, 218, 239, 331, 337, 341, 343, 344, 347, 377, 387, 501
imperatoris ........................................ 208, 210, 223, 334, 335, 336, 338, 339
maconaldi ........................................ 208, 228, 339, 340, 508
mina ........................................ 334
minutissima ........................................ 203, 206, 334
minor ........................................ 213, 315, 339
<table>
<thead>
<tr>
<th>Index Item</th>
<th>Page(s)</th>
<th>Index Item</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trochosmilia</td>
<td>202</td>
<td>varians, Pavona</td>
<td>192</td>
</tr>
<tr>
<td>hilii</td>
<td>194, 195</td>
<td>varicosa, Oculina</td>
<td>225, 228, 262</td>
</tr>
<tr>
<td>insignis</td>
<td>194</td>
<td>vaughani, Cerithium</td>
<td>287</td>
</tr>
<tr>
<td>subhenera</td>
<td>194</td>
<td>Pavites</td>
<td>220</td>
</tr>
<tr>
<td>Truncatulina</td>
<td>294</td>
<td>Orthophragmina</td>
<td>196</td>
</tr>
<tr>
<td>tuberosa, Dichelocenia</td>
<td>213, 215, 217, 221, 228, 359, 509</td>
<td>Paracyathus</td>
<td>220</td>
</tr>
<tr>
<td>Stylophora</td>
<td>193, 334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbinaria (?) alabamensis</td>
<td>426</td>
<td>versipora, Orbicella</td>
<td>191</td>
</tr>
<tr>
<td>turbinata, Isastraea</td>
<td>100</td>
<td>verrucosa, Pocillopora</td>
<td>191</td>
</tr>
<tr>
<td>Isastraea</td>
<td>402, 403, 406, 514</td>
<td>verrilli, Porites</td>
<td>503</td>
</tr>
<tr>
<td>Turbinolina insignifera</td>
<td>199</td>
<td>verheili, Solenastraca</td>
<td>214</td>
</tr>
<tr>
<td>pharetra</td>
<td>195</td>
<td>vieksburgensis, Archohella</td>
<td>199</td>
</tr>
<tr>
<td>Turbinolaris clypevi</td>
<td>194</td>
<td>Oculina</td>
<td>352</td>
</tr>
<tr>
<td>turonensis, Solenastraca</td>
<td>201</td>
<td>viHardeboana, Discorbis</td>
<td>284</td>
</tr>
<tr>
<td>Turritella</td>
<td>411</td>
<td>viridis, Macandra</td>
<td>420</td>
</tr>
<tr>
<td>Ulophyllia macrogyra</td>
<td>194</td>
<td>Platygyra</td>
<td>420</td>
</tr>
<tr>
<td>undata, Agaricia</td>
<td>214</td>
<td>waitesi, Platellum cuneiforme var</td>
<td>165</td>
</tr>
<tr>
<td>Madrepora</td>
<td>426</td>
<td>walli, Antillia</td>
<td>212</td>
</tr>
<tr>
<td>undosa, Lepidocyclina</td>
<td>203</td>
<td>Antillia</td>
<td>224</td>
</tr>
<tr>
<td>undulata, Lepidocyclina</td>
<td>203</td>
<td>wilcoxi, Porites</td>
<td>211</td>
</tr>
<tr>
<td>variabilis, Acropora</td>
<td>192</td>
<td>willeyi, Dendrophyllia</td>
<td>192</td>
</tr>
<tr>
<td>Goniastrea</td>
<td>194, 416</td>
<td>willoughbiensis, Manicina</td>
<td>200, 232, 422, 425, 514, 515</td>
</tr>
<tr>
<td>Placoeyathus</td>
<td>213-215, 217, 359, 361, 429</td>
<td>woodjonesi, Pocillopora</td>
<td>191</td>
</tr>
</tbody>
</table>
THE SEDIMENTARY FORMATIONS OF THE PANAMA CANAL ZONE, WITH SPECIAL REFERENCE TO THE STRATIGRAPHIC RELATIONS OF THE FOSSILIFEROUS BEDS.

By Donald Francis MacDonald,  
Formerly Geologist of the Canal Commission.

INTRODUCTION.

The following summary statement regarding the stratigraphic geology of the Canal Zone is intended to make clear the stratigraphic relations of the deposits from which the fossils described in the accompanying memoirs were obtained. The descriptions of the successive formations are taken from my paper entitled "Some engineering problems of the Panama Canal in their relation to geology and topography,"1 except that Dr. T. W. Vaughan has changed the age classification of the formations as published in the bulletin cited by referring the Bohio conglomerate to the Oligocene and by placing the Gatun and Panama formations in the Miocene. The small scale map (pl. 153), scale about 5 miles to 1 inch, is a republication of the map contained in the same paper, of which it is plate 4. It should be noted here that the Culebra formation outcrops at locality station 6024, below the Emperador limestone, on Rio Agua Salud; locality station 6025, Bohio Ridge; locality station 6026, about 2 miles southwest of Monte Lirio; and locality station 6027, in the old site of Bohio before the relocation of the Panama Railroad. The position of each of these stations is shown on plate 154. The electrotypes for figures 26 and 27 were loaned by the United States Bureau of Mines.

The detailed descriptions of the local stations, which follow the accounts of the geologic formations, except that of Bald Hill, near Miraflores Locks, were made more or less jointly by Doctor Vaughan and myself. The study of these exposures by both of us supplies to Doctor Vaughan the basis for the accurate placing of the fossils obtained in their stratigraphic relations. He prepared the key map of localities here reproduced as plate 154.

The localities for the fossils are indicated as the station numbers in the United States National Museum record book for Cenozoic invertebrate fossils. In order to obviate confusion, as the Canal Commission also had station numbers, the United States National Museum numbers are printed in heavy-faced types in the descriptions of the exposures, while the Canal Commission numbers are printed in italics.

SEDIMENTARY FORMATIONS.

Eocene (?).

BAS OBIOSO FORMATION.

The Bas Obispo formation is the oldest Isthmian formation, so far as is known, and although referred doubtfully to the Eocene it may be of pre-Tertiary age. It was formed of rock fragments and ash blown from old volcanic vents. The débris settled over the surrounding region and was subsequently cemented into fairly hard rock by the slow-acting processes of rock cementation. Locally it shows some rough bedding and some rounded water-worn fragments. In composition it belongs to the andesitic tuff group of rocks, although locally it might be classed as andesitic breccia. It outcrops extensively at Bas Obispo and near old Panama, and small outcrops rise above the alluvium near Miraflores and Diablo Ridge.

LAS CASCADAS AGGLOMERATE.

The Las Cascadas agglomerate also had its origin in fragmental rock material blown from volcanic vents and later washed down into different beds and masses. It rests unconformably on the Bas Obispo formation, is much less consolidated and cemented than the latter, and is of much more recent origin. It is a greenish to gray, basic agglomerate, which contains large and small subangular fragments in a fine-grained groundmass of volcanic clay and tuff. The whole is arranged in massive to roughly bedded deposits, often unconformable with each other. Interbedded with these deposits are andesitic flow-breccias, some fine-grained grayish and some coarse-grained dark andesitic flows, and a few easily crumbled lava-mud flows which show columnar jointing where exposed in the canal. The whole is cut by large and small basalt dikes. The formation outcrops extensively along the canal between Empire and Las Cascadas.

OLIGOCENE.

BOHIO CONGLOMERATE.

The Bohio conglomerate consists of beds containing water-worn cobblestones and pebbles. These beds are separated from each other by layers of sandstone and clay rock. The lower part of the formation contains more cobbles and pebbles than the upper part and seems
to be largely a product of running water. It is generally fairly well bedded, though locally massive, and contains hard boulders, up to a few feet in diameter, of andesitic, dioritic, and other igneous rocks.

The upper part of this formation is of the same general composition as the lower part, but contains some beds of dark-gray clay marl which contain fossil Foraminifera. The cobbles, boulders, and gravel are from cherts, andesites, and diorites, and were derived from the older intrusive masses of igneous rock now found at intervals along the central part of the Isthmus.

The formation must be at least 1,000 feet thick, and it outcrops extensively in the vicinity of Bohio and near Caimito Junction. Though not outcropping in the Gaillard Cut, it was encountered in many of the cuts near Bohio on the new line of the Panama Railroad.

**Culebra Formation.**

The Culebra formation contains an upper and a lower member.

The lower member consists of dark, well-laminated beds of soft shales, marls, and carbonaceous clays, with some pebbly, sandy, and tufaceous layers. There are a few thin beds of lignitic shale, but the whole upper part of the formation contains considerable organic matter. It outcrops in Gaillard Cut near Culebra and near Pedro Miguel.

The upper member consists of calcareous beds and lenses ranging in character from sandy limestone to calcareous sandstone, 3 to 10 feet thick, separated by partings of dark carbonaceous clays and fine-bedded tuffs.

Locally this formation gives off a little natural gas and in some small areas it shows slightly bituminous shales.

**Cucuracha Formation.**

The Cucuracha formation is here described in considerable detail, because in it not only the Cucuracha slide but also the big Culebra slides developed. It is so named because of being the site of the Cucuracha slide and because it is typically exposed near Cucuracha village.

The formation consists of a dark green, massive and locally bedded, slightly indurated, volcanic clay rock of andesitic composition. It is a land-deposited formation, overlying the marine Culebra formation, from which it is separated by 10 to 20 feet of slightly indurated gravel. It is the upper part of what Hill and Howe called the Culebra formation.

---


SUCCESSION OF BED ROCKS.

Pleistocene.

8. Panama, formation. (c) Light colored tuff beds, argillite, etc.

9. Gatun formation. (c) Clay beds. (b) Fine sandstone. (a) Argillite.

10. Toro limestone. (c) Shell marl and limestone.

(c. River alluvium. b. Muds and silts. a. Gravel.

Miocene.

7. Calmito formation. (c) Sandstone. (b) Limy conglomerate. (a) Sandstone.

6. Emperor limestone. (c) Marine limestone, many corals.

5. Cucuracha formation. (c) Land formed clay rocks, lava flow, etc.


3. Bobio conglomerate. (c) Coarse and fine conglomerate and sandstone beds.

2. Las Cascadas. (c) Volcanic débris, mud-lava, some flows and dikes of agglomerate. (d) Andesite.

1. Bas Obispo formation. (c) Volcanic breccia.

SUCCESSION OF IGNEOUS ROCKS.


5. Meta-breccia.

(c. Mostly).

4. Rhyolite.

3. Andesite.

2. Diorite.

1. Grandiorite.

Fig. 26.—Rock succession in the Canal Zone. (From U. S. Bureau of Mines Bull. 84.)
Locally it contains red beds and lenses, but these are of the same general character as the green clay rock in which they are interbedded, except that they contain slightly more iron and alumina and a little less silica. In certain beds there is a network of small irregular joints, contiguous to which the greenish clay rock has turned red; such a change seems to be due to the oxidation of the greenish ferrous iron to the red ferric condition by surface waters. In some of these red beds, however, there has been some local concentration of iron and alumina products.

In addition to the red beds there are a few local beds and lenses of gravel and of sandy, dark-gray, tufaceous material. This gravel, like the gravel at the base of the formation, is fairly fine, loosely cemented, and consists of the rounded fragments of indurated shales, cherts, and concretions from the lower part of this formation and from some of the older rocks.

There are also four distinct beds of lignitic shale, 1 to 5 feet thick. They are the fossilized remains of former swamps.

The formation is cut by some large and some small basaltic dikes, but these have caused scarcely any metamorphism. Faulting has considerably broken the beds and, owing to their soft and brittle character, relatively small faults, where the movement seems to have been less than 75 feet, have resulted in shear zones up to several feet wide. These rocks weather readily, and are covered by 10 to 25 feet of red soil. They are easily eroded, so that the outcrops of this formation have mostly been worn into flats or valleys.

Extending for more than a mile over what must have been an old land surface, and now forming an interbedded unit of this formation, is a light to dark grayish, or, on fresh fracture, greenish, lava-breccia flow of andesitic composition. Hand specimens of it show a few little shiny faces of feldspar crystals up to 2 mm. in length, set in a groundmass that resembles indurated clay. The brecciated fragments are small, somewhat altered, and seem to have been picked up from the formation over which the flow moved. Under the microscope the rock is seen to consist of euhedral phenocrysts of andesine ranging in size up to 1 by 2 mm. and some crystals of potash feldspar set in a cloudy claylike groundmass, dark scaly areas resulting from the decomposition of some mineral, considerable chlorite, some calcite, and a little secondary quartz. The outlines of the brecciated fragments were recognized, but their original composition was obscured by alteration. This altered andesite flow is somewhat jointed and weak, so that it adds but little strength to the slopes and is practically no protection against slides.

The prevailing grayish-green color of the formation is due to the fairly high percentage of very finely divided chloritic material that it contains. These greasy mineral particles are a marked source of
weakness and mobility and are one of the factors that have caused maximum sliding in this formation. In contrast with the clays of the Culebra formation, these rocks are massive, largely of terrestrial origin, contain little organic matter outside of the few lignitic shale beds mentioned, have a greenish color from a high chlorite content, and are much more given to sliding than the other rocks.

**EMPERADOR LIMESTONE.**

The Emperador is a light-colored, fairly pure limestone. It lies unconformably on several of the older beds. Its outcrops are comparatively small and weather locally into a pitted and platy condition. Near Las Cascadas a section cut by the canal shows the limestone, about 25 feet thick, overlying the upper part of the Culebra formation. It outcrops northwest of Empire, south of Las Cascadas, on the new line of the Panama Railroad near San Pablo, near Frijoles, in the swamp southeast of Diablo Ridge, and extensively near Alhajuela.

**CAIMITO FORMATION.**

The Caimito formation, which overlies the Emperador limestone, consists of three members, as follows: (a) A basal light-gray, soft, argillaceous, or clay-like, sandstone, which grades upward into a yellowish argillite, sandstone that is bluish gray on fresh fracture; (b) a peculiarly calcareous conglomerate with some fragments of much decayed basic rock, which locally give a bright-green stain to small patches of the formation; (c) a light-colored to yellowish argillaceous sandstone fairly well bedded. The upper argillitic sandstone is the rock that outcrops in the Chagres River at Barbacoas, near San Pablo. Beds a, b, and c may be seen in the section at Bald Hill, north of Mirafloros. Bed b outcrops extensively at San Pablo and near the site of the proposed wireless telegraph station opposite San Pablo. The formation does not outcrop at all in Gaillard Cut.

**Miocene.**

**GATUN FORMATION.**

The Gatun formation consists of three members, as follows: (a) About 500 feet of marls and argillites, or clay rocks, and some beds of soft sandstone and conglomerate; this member is bluish gray but locally contains many brown specks, indicating fragments of organic material; it is rich in the fossil shells of ancient marine life; (b) mostly fine, soft sandstone, about 100 feet thick, containing a few fossils; (c) light to creamy gray indurated clay beds.

The formation is extensive and constitutes the foundation on which the Gatun Locks are built. Fortunately, its fineness of grain renders it relatively impervious to ground water. The upper part
of the formation weathers into red clay, and it covers the solid rock to a depth of 10 to 25 feet, except where it is cut through by streams.

PANAMA FORMATION.

The Panama formation is a light-colored well-bedded tuff somewhat acid in composition. Locally it contains some argillaceous beds. It outcrops extensively from Miraflores to Panama and in a few other places. The formation is at least 400 feet thick and overlies the Caimito formation. It seems to be relatively porous, fairly well bedded, somewhat jointed, and of a crumbly or friable nature.

PLIOCENE.

TORO LIMESTONE.

The Toro\(^1\) limestone is sandy and fragmental, and locally is a coquina or shell marl. Its type locality is at Toro Point, but similar appearing limestone fringes the Caribbean coast, except where large valleys have caused it to be eroded or covered with alluvium. In places it forms low bluffs or headlands, especially at Toro Point, west of the Gatun Dam, and at the mouth of Chagres River. It is the rock from which Fort San Lorenzo was built. Rock from this formation was used as a hearting for the Toro Point Breakwater.

CHAGRES SANDSTONE.\(^2\)

The name Chagres sandstone is proposed for a massive, coarse-grained, rather soft sandstone, that locally shows stratification and considerable cross-bedding. Some of the beds contain a few poorly preserved bivalves and dark to brownish fragments of organic matter are not uncommon. This appears to be a land or beach deposit, and is probably as much as a thousand feet or even more thick. It is tilted oceanward at angles ranging from 5 to 20 degrees and lies on top of the Toro limestone on which it may or may not be conformable. It forms the hills overlooking the coast between Toro Point and the mouth of Chagres River.

PLEISTOCENE.

The Pleistocene formations consist of (a) swamp deposits, black soil, and silt, filling old channels to depths of 325 feet below the present sea level; (b) river gravels up to 10 feet above the present normal river levels; (c) old sea beaches 6 to 10 feet above the present beach level; and (d) bars, beaches, and the present river alluvium.

DESCRIPTION OF LOCAL SECTIONS ACROSS THE ISTHMUS OF PANAMA.

The black-faced numbers in the following descriptions are the station numbers in the United States National Museum register of Cenozoic invertebrate collections.

\(^1\) Called Caribbean limestone by the author in reports of Isthmian Canal Commission for 1912 and 1913. See p. 63 and p. 570 of report for 1913.

\(^2\) The name and description of this formation were added to the proof of this article.
for localities at which fossils were collected. The numbers in italics are for the Canal Commission stations.

**Section in canal cut 600 feet south of Miraflores Locks.**

Pleistocene:  

3. River alluvium with gravel and pebbles, loosely cemented conglomerate at base, almost horizontally bedded, is unconformable on (2), and has an exposed thickness of...  

20 feet thick.

Unconformity.

Oligocene (Culebra formation):  

6009–2. Dark, soft, fairly well-laminated clay rock which seems to be unconformable on (1), shows a few lines of small limy concretions, buff-colored after weathering, parallel to the bedding. This is a foraminiferal clay and is the upper part of the lower beds of the Culebra formation. Dip 12° southward. Thickness exposed here...  

45 feet.

Unconformity.

Eocene (?) (Las Cascadas agglomerate (?)):  

1. Mottled, light-greenish, fine-grained agglomerate to coarse tuff. The grains, one-eighth to 1 inch in diameter, are soft irregular particles of basic mud rock or much altered andesitic tuff. Finely divided chlorite seems to give greenish color. The spaces between the grains are filled with white limy cementing material, thus giving the rock a whitish and light-green mottled appearance, though the prevailing color is light green to grayish-green. Rock very similar in appearance to this is exposed in the upper part of the Contractors Hill mass, and was noted in the bottom of the Gaillard Cut near Paraíso, and near station 1909 where a small cave in the rock was found. As this lithologically resembles the Las Cascadas agglomerate and is distinctly different from the typical Culebra formation, it is considered as representing the upper part of the Las Cascadas agglomerate. Thickness exposed...  

15 feet.

**Section at Canal Commission station 2089 south of Miraflores Locks.**

Pleistocene:  

3. Silt and alluvium faulted down opposite (1), exposed about...  

30+ feet thick.

Miocene (Panama formation):  

2. Light to buff-colored tuff beds showing some cross-bedding and some iron staining along the cracks, unconformable on (1), exposed about...  

15+ feet.

Eocene (?) (Las Cascadas agglomerate):  

1. Massive basic agglomerate, much altered, mostly greenish with some lighter-colored patches, giving a mottled color effect; cut by basaltic dikes; contains a few little cracks, some of which are filled with iron-stained cherty material. Exposed about...  

30+ feet.

There is at this place a fault which trends S. 15° E. and hades 80° W. It is impossible to estimate the amount of the throw, because it is not known how much may have been eroded from the upthrow side since faulting. In a few places along
Eocene—Continued.
the fault line springs bubble up, the waters from which were saline and astringent and gave off much carbon dioxide. This locality is now covered by the water in the canal.

Section, north end of Miraflores Locks.

Oligocene (Culebra formation):
At the north end of Miraflores Locks and from there to Pedro Miguel Locks, beds belonging in the lower part of the Culebra formation outcropped in the canal cut. They consist of dark, well laminated, and very soft carbonaceous clay rocks, and locally contain lenses of granular tufaceous material and a few beds that carry some pebbles. Some lines of small concretions parallel to the bedding were noted. Foraminifera common. In general, the beds have a dip of a few degrees toward the south, although one southward dip of 25 degrees was noted.

Section, Pedro Miguel Locks to Paraíso Bridge.

Oligocene (Culebra formation (lower part)):

6010. Material the same as in the preceding exposure. Ostrea, Pecten, and many Foraminifera, including Lepidocyclina panamensis?, were collected.

Section at Bald Hill near Miraflores Locks.

Total thickness of exposure about 325 feet; dip of beds 15° NW.

Oligocene:
Caimito formation—Feet thick.

5. Limy, fine-grained sandstone, which weathers slightly buff-colored. A few fragments of fossils noted; outcrop indistinct. Estimated

60+

4. Dull yellowish, buff after weathering, rather soft and somewhat massively bedded, fine-grained sandstone. Estimated

80+

3. Limy agglomerate beds, light colored to brown, with a few greenish stains, similar to the blue and green stained beds that outcrop near San Pablo. Middle member of the Caimito formation. Estimated

65+

2. Light yellow to buff after weathering, fine-grained sandstone, fairly thick-bedded, but weathers rather platy or somewhat spherical. Lower part of the sandstone seems to be rather limy and weathers easily. Lower member of the Caimito formation. Estimated

80+

(There is some evidence of an unconformity between (2) and (1), but the contact is not clear enough to be sure of this.)

Emperador limestone—

6256-1. White to creamy gray, rather pure limestone; weathered surface much pitted; contains many fossil corals. Typical Emperador limestone. Estimated

40+
Oligocene:

**Cucuracha formation**

11. Material the same as No. 9. Exposed ............... 50+  
10. Bed of fairly fine gravel, loosely cemented with calcareous material. Estimated ......................... 15  
9. Light green, fine-grained, soft and friable argillaceous rock. Lower part of the Cucuracha formation. Estimated ........................................ 50

**Culebra formation**

8. Beds of partly consolidated gravel, with some dark-gray, granular, tufaceous material; light-colored, limy cement. Marks a small unconformity between the upper part of the Culebra formation and the overlying Cucuracha formation. Estimated ......................... 30

**6011–7.** Limy bed similar to No. 5; contains *Heterosteginaoides panamensis* ......................... 5

6. Material similar to No. 4. Estimated .................. 50

5. Fairly hard, somewhat coarse-grained, light-colored, sandy limestone grading into limy sandstone ...... 5

4. Dark-gray, thin-bedded, friable tufaceous beds with partings of soft dark carbonaceous shales. Part of upper part of the Culebra and practically same as (2). Estimated ........................................ 50

3. Two beds of gravel loosely cemented by light-colored limy cement. A 3-foot bed of dark, friable, carbonaceous shale separates the two gravel beds. Gravel contains a number of oysters and some other fossils. Appears to be a local unconformity here. Estimated thickness of gravel beds, including the shale bed ................................................. 30

2. Thin-bedded, granular, and somewhat friable, dark-gray, tufaceous sandstone beds, separated by soft, dark-brown, carbonaceous shale layers; a few pebbles present. Part of the upper part of the Culebra formation. Dip about 35° northward. Estimated. 100

**Age?**

1. Laccolithic mass of basalt which has tilted the beds into which it was intruded and slightly metamorphosed them for a foot or more distant from the contact. A dike 1 to 3 feet wide seems to connect with main mass.

Section on west side of Gaillard Cut from Canal Commission stations 1775 to 1756.

Section shows three small faults, also contact between Cucuracha formation on top and Culebra formation beneath it. Thickness of entire section 400+ feet.

**Oligocene:**

**Cucuracha formation**

2. Fine-grained, light-green, fairly massive volcanic clay rock. Feet thick.

   *f.* Same as (d) .............................................. 100

   *e.* Andesite-breccia flow. About .......................... 20

   *d.* Light-green, fairly massive, volcanic clay rock ........ 3 to 3

   *c.* Small lens of limy sandstone. Maximum thickness about .................................................. 1
Oligocene—Continued.

6012e-b. Dark-brown, carbonaceous shale with little lenses of lignite. Thickness irregular but maximum about .......................................................... 4
   a. Lower part of formation, contains some sandy and pebbly layers .......................................................... 17+

Culebra formation—

1. Dark friable carbonaceous shales and dark-gray granular tufaceous beds. A few thin lenses and beds that contain much gravel. Fossiliferous. Upper part of Culebra formation. Total thickness about .............. 130
   k. Loosely cemented gravel that seems to mark an unconformity between the Cucuracha formation on top and the Culebra formation below it. Some limy sandstone lenses at base of gravel .................. 10-25
      (Normal faults with a downthrow of 10 to 40 feet on the north side.)

6012d-j. Few lenses of limy sandstone at base of gravel; Lepidocyclina panamensis ? .............................................. 3
6013-i. Friable shale and clay .............................................. 35
6012e-h. Lens of sandy limestone .............................................. 5
      (Made special studies of and collections from the uppermost of these limestones and the shales between them. Found Amphistegina and Lepidocyclina, many oysters, and some Turritella.)
   g. Friable shale and clay .............................................. 16
   f. Limy sandstone .................................................. 8
   e. Friable shale and clay .............................................. 10
   d. Bed of light-colored, limy sandstone, similar to (b) ........ 5
   c. Bed of friable shale and clay .............................................. 18
   b. Lower bed of limy sandstone and sandy limestone.
      Light colored and fairly hard and well cemented.
      Fossiliferous .................................................. 8
   a. Lower layer of friable shale and clay .............................................. 15

Section on west side of canal from Canal Commission station 1720, near Empire, to 1740, near Culebra.

(Total thickness of section, about 530 feet.)

8. Hard and finely cemented mass of dark andesitic tuff and breccia. Locally contains basalt fragments up to several inches in diameter, cemented into a mass. Rough bedding, with dip at a considerable angle, but formation generally massive.
      (Fault contact between (7) and (8) shows sheared zone several inches wide. Downthrow apparently on south side.)
7. Light gray, buff after weathering, andesite breccia, a flow.
6. Light-colored, fairly fine-grained, limy tuff, somewhat clayey; distinctly bedded .............................................. 20

Oligocene (Culebra formation):

5. h. Soil and, locally, old waste dump material. About ........ 15
   g. Bed of very loosely cemented gravel, somewhat weathered because of proximity to surface. About ........ 20

1 About this horizon but on east side of cut.
Oligocene—Continued.

f. About same as (d) ........................................... 40

e. About same as (e) ........................................... 10

d. Dark, well laminated and very friable shale .................. 35

c. Light-gray, limy sandstone and sandy limestone beds. Relatively hard and coarse grained. This limestone varies in thickness from 2 to 12 feet, which would seem to indicate a small unconformity along its top. Locally it contains some thin partings of carbonaceous shales .................................................. 2 to 12

b. Lens of gravel up to 2 feet thick. Partly consolidated with limy cementing material. Oysters plentiful in this gravel.

a. Dark, well laminated and very friable shale .................. 30

4. Dark, well laminated and very friable shaly and tufaceous beds. Some of the layers less than an inch thick. Partings show fossil plants and much organic matter. Some of the layers weather brownish from organic matter. Between the more organic and clay-like layers are thin beds of dark-gray, granular to ash-like tufaceous material. Fossiliferous. Exposed ............................... 150

(Fault with a downdrop of more than 125 feet on the south side. Considerable shearing and disturbing of the beds for several feet on each side of the contact.)

6012b–3. Light gray, limy gravel and some tufaceous material, not well bedded and only partly consolidated with limy cementing material. Fossils, particularly oyster shells, are plentiful. This bed seems to mark a local overlap or small unconformity .......................... 40

2. Dark-gray, bedded limy tuffs and partly consolidated shales. Differs from (5) in having more granular tufaceous material and less of the fine friable shale material. Is very limy, contains some gravel, and oyster shells are common .................. 30

6012a–1. Dark, well laminated, soft, very friable, carbonaceous shales and dark-gray, granular, loosely cemented tuff beds. Typical lower Culebra beds. Fossil plants; marine fossils include Lepidocyclina panamensis ?, Cyclochita, Conus, Pleurotoma (3 species), Arca, Pecten, Callianassa, etc .......................... 150

Section on west side of Gaillard Cut near Las Cascadas, Canal Commission stations 1617 to 1597.

20. Yellowish to cream colored clays ................................ 15

Oligocene:

Emperador limestone—

6019g–19. Light gray to yellowish gray, somewhat sandy limestone. Massive, but some bedding in upper part. Very fossiliferous: Pecten, Amusium, Stylophora, Clypeaster lanceolatus, Echinolampas semiorbis, Lepidocyclina, etc .......................... 35
Oligocene—Continued.

Oulebra formation—

16. c. Light colored, sandy limestone. Thickness 1.5 ... 30

6019f—b. Dark, very friable shales and tufts. Fossils abundant, \textit{Lepidocyclina chaperi}. Thickness 3 ... 6

a. Light colored sandy limestone to limy sandstone. Thickness 1.5 ... 30

15. Dark, friable shale, clay and tufaceous material with some thin layers of limy sandstone in the upper part ... 10

6019e-14. Thin-bedded, light-gray to cream-colored limy sandstone with some partings of light-colored clay, \textit{Orbitolites}, etc. ... 8

13. Fine-grained, very friable, dark-gray, tufaceous material, well stratified ... 3

6019d-12. c. Grayish-green, limy, tufaceous sandstones ... 3

b. Dark, carbonaceous clays and tuffs ... 1

6019c— a. Grayish, well-stratified, and very friable tufaceous sandstone ... 3

(Total thickness, 7 feet.)

6019b-11. Dark, well stratified, and very friable tufaceous material; some fossils. \textit{Turritella}, \textit{Arca}, \textit{Cardium}, etc., \textit{Orbitolites} ... 4

6019a-10. Grayish, rather nodular, impure limestone, contains some green particles; \textit{Lepidocyclina caneliei} was collected in this bed ... 9

9. Lignitic shale bed maximum ... 3

8. Dark-gray carbonaceous clays, friable shales and tufts, some lines of limy nodules parallel to the bedding. Some of these concretions are as much as 6 inches thick and a foot long, their longer axes parallel to the bedding. One or two regular lines of these nodules near base ... 30

7. Very friable lignitic shale bed maximum ... 3

6. Dark-gray carbonaceous clays, friable shales and tufts. Lenses of limy nodules parallel to bedding, same as (8) ... 33

6020c c. Just below the second line of nodules in these (6) beds fossils were found as follows: \textit{Arca}, \textit{Ostrea}, \textit{Pecten}, \textit{Spondylus}, etc. Among the fossil corals are \textit{Orbicella}, \textit{Siderastrea}, and \textit{Goniopora}; one \textit{Siderastrea} head measured 20 inches high by 24 inches in horizontal diameter.

6020b b. A few feet below (c) found numerous cerithiids, \textit{Nassa}, and \textit{Corbulina}.

6020a a. In the lower layers of this member of the section (No. 6) were found some poorly preserved mollusks, such as \textit{Arca}, \textit{Cardium}, \textit{Tellina}, \textit{Venus}, and fragments of crab claws in calcareous nodules.
Oligocene—Continued.

5. Friable, lignitic shale bed........................................ 2

4. Light-gray, limy-looking clay bed with some limy nodules and some lenses of soft nodular clayey limestone........................................ 6

3. Friable, lignitic shale bed........................................ 2

2. Light-gray to greenish fine-grained clay and fine agglomerate. Fairly massive........................................ 7

Unconformity.

Eocene?

Las Cascadas agglomerate:

1. Dark-gray volcanic agglomerate........................................ 50

Total thickness........................................ 275

Section in cuttings of Panama Railroad near Caimito Junction.

Oligocene:

Emperador limestone—

6021 and 6673-4. Light-gray to cream-colored, sandy limestone, _Lepidocyclus vaughani_ abundant, also anullipore (_Lithothamnium isthmi_) and numerous fragments of echinoid tests, including a _Clupeaster (?)._ Strike N. 30° E., dip 20° N. 60° W. About... 70

Unconformity.

Bolio conglomerate—

3. Fine argillaceous conglomerate; small pebble beds with sandy matrix, separated by clayey and sandy layers........................................ 20

2. Conglomerate, with gravel, cobbles, and small boulders; matrix clayey and sandy; fairly well bedded. Cobble and boulders are mostly hornblende andesite and diorite........................................ 20

Unconformity.

Eocene (?) (Las Cascadas agglomerate):

1. Dark, massive, hard, and fairly well cemented andesitic agglomerate. Contains subangular fragments of andesite and basalt from a foot or more to less than an inch in diameter. Matrix fine dark andesite tuff.

United States National Museum locality record station 6022 is on limestone about the same as (4), described above, a mile farther north.

Railroad cut near stream about midway between Río Frijol and Río Frijolito.

Oligocene (Culebra formation):

2. Surficial, residual red clay........................................ 15

6023. 1. Dark, very basic, friable, tufaceous material; _Lepidocyclus canellici_ very abundant........................................ About... 25
Oligocene:

Emperador limestone—

6024b-5. Rio Agua Salud: Argillaceous, cream-colored limestone; fossil corals in base (Stylophora, Acropora, etc.), also Pecten, echinoids, etc. The limestone is bedded and has clay partings. Dip about 10° W. 10 feet thick.

Culebra formation—

6024a-4. Rio Agua Salud: Argillaceous, cream-colored limestone; fossil corals in base (Stylophora, Acropora, etc.), also Pecten, echinoids, etc. The limestone is bedded and has clay partings. Dip about 10° W. 10 feet thick.

Bòhio conglomerate?—

3. Small pebble conglomerate, fairly well bedded. a. Fairly well-bedded conglomerate, with pebbles, cobbles, and boulders well rounded and in considerable variety but largely of hornblende-andesite and diorite facies. Largest boulders 2 feet in diameter. Matrix consists of sand, clay, etc. Dip 35° S. 300 feet thick.

2. Dark, basic, orbitoidal, tufaceous material; bedding not distinct. Probably a part of Bohio conglomerate. 20 feet thick.

b. Gray, thick-bedded, coarse-grained, somewhat basic, sandy, foraminiferal material. Dip 35° S. W. Roughly estimated at. 400 feet thick.

a. Grayish, massive, argillaceous to sandy material; bedding not distinct. Probably part of Bohio conglomerate. 30 feet thick.

Unconformity.

Eocene? (Las Cascadas agglomerate (?)):

1. Dark, fairly well cemented andesitic agglomerate; shows some rough bedding, contains subangular fragments of basalt and andesite from less than an inch to more than 2 feet in diameter. Matrix dark, fine-grained, andesitic tuff. Exposure behind New Frijoles railway station. Strike seems to be about N. 60° E., dip 30° W. Exposed. 70 feet thick.

Section Showing Chief Railway Cuttings and Outcrops Along the Panama Railroad Between Bohio and Monte Lirio.

 Miocene (Gatun formation (?)):

4. Monte Lirio: Fairly hard, sandy, drab-colored clay stone. Massively bedded and dipping about 7° northward; the clay weathers slightly buff-colored and contains white powdery particles like some of the clayey sandstone beds of the Gatun formation. No fossils found. Exposed. 50 feet thick.

Oligocene:

Culebra formation (upper part)—

6025-3. b. Bohio switch: Light-colored, fairly coarse-grained, soft, somewhat limy sandstone with Nummulites panamensis, Lepidocyclina chap-
Oligocene—Continued.

Culebra formation—Continued.

...eri, some echinoid fragments, also Conus, Natica, Turritella, Pecten, Amusium, Lucina, etc. This is probably the equivalent of the upper limy beds of the Culebra formation. Exposed ....................... 25

6026a. Two miles south of Monte Lirio: Somewhat coarse-grained sandstone which contains a few pebbles; massive, and weathers into large spherical masses; fossiliferous, Stylophora and other corals, Lithothamnium vaughani, Lepidocyclina canellei, Nummulites panamensis?, Conus, Pecten, Ostrea, etc. This is probably the equivalent of the upper limy beds of the Culebra formation. Exposed 25

Bohio conglomerate—

2. e-f. Rather massive, soft, buff-weathing sandstone. No fossils noted. Slight dip southward. Exposed ....................... 20

Unconformity.

2. a-d. Railroad cuts which show exposures of conglomerate and sandy beds, dip about 7° northward. Unconformity.

Eocene? (Las Cascadas agglomerate):

1. Dark, basic, andesitic agglomerate and breccia, showing some local overlaps; roughly bedded; dips 10° northward. (Fault zone here several feet wide trends N. 30° W. and dips 83° southward. Downthrow side on the south. Much sheared lignitic shale has been dragged into the fault zone. Some silicified wood found in the shale.)

Exposure a quarter of a mile northwest of old Bohio railroad station.

Oligocene (Culebra formation):

6027. Orbitoidal marl is exposed in the flat, the bottom of the canal, at the base of a hill that has been cut away. This is Hill’s locality for “Orbitoides forbesii,” which is Lepidocyclina canellei.

Exposure opposite old Bohio railroad station, north side of the railroad track.

Oligocene (Bohio conglomerate (?)):

A cliff about 75 feet high composed of dark-colored agglomerate of pyroclastic origin. This agglomerate is overlain at the second telegraph pole north of the 15th milepost from Colon by a small pebble conglomerate in a matrix of coarse, gritty sand.

Section at Peña Blanca, about 1 mile below Bohio, on the west side of Chagres River.

Oligocene (Bohio conglomerate)):

The entire hill is composed of dark-colored conglomerate of hornblende andesite porphyry pebbles, cobbles, and boulders embedded in coarse sand. No exposure of the orbitoidal marl was observed. Dip toward the northeast, 50 feet thick.
Section at Vamos à Vamos, 2½ miles below Bohio, west side of Chagres River.

Hill to the south across small ravine.

Miocene (Gatun formation):

2. Yellowish sandstone and small pebble conglomerate........... 60 feet thick.
1. Dark bluish, fine-grained, argillaceous sandstone...............

At and near landing, north side of the small ravine.

6028b-2. Yellowish sandstone, some fossils............................. 75 feet thick.
6028c-1. Dark-blue, argillaceous, fossiliferous sandstone, estimated.................. 20 feet thick.

Fossils: *Cylichna, Turritella, Cardium*, etc. The exposure is rapidly becoming concealed by vegetation. Fossils were firmly embedded in the matrix and not easily removed.

Section on Panama Railroad from Monte Lirio to outcrop of Gatun formation on south side of Big Swamp.

5. Hill of basalt; quarried for facing material for Gatun dam.

Miocene (Gatun formation):

6030-4. Bluish-gray, argillaceous beds which weather reddish; locally contain pebbles, fragments of organic matter, and many fossils. *Pecten, Clementia, Encope megatrama, Callianassa vaughani.* (This bed is exposed on the north side of the swamp, about 1½ miles north of Monte Lirio.) Dip about 10° northward......................... 100 feet thick.
3. Fairly hard, sandy, drab-colored claystone; massively bedded and dips about 7° northward............. 50 feet thick.

Oligocene (Bohio conglomerate):

2. Conglomerate, somewhat weathered and not extremely coarse; overlies sandstone, bedding not very clear.

Local unconformity.

1. Fairly coarse sandstone with a southward dip of about 20°.

Section showing Gatun formation, one-quarter to one-half mile from Camp Cotton, toward Monte Lirio, at big curve on railroad.

Miocene (Gatun formation):

7. Reddish soil .......................................................... 10 feet thick.
6029c-6. Bluish, fossiliferous argillite; contains some sandy beds and some lenses of buff-weathering, consolidated, impure fuller's earth.................. 30 feet thick.
5. Bluish argillite, which weathers buff........................... 9 feet thick.
4. Buff-weathering, consolidated, fuller's earth beds; not very pure.......................... 9 feet thick.
6029d-3. Bluish argillite................................................... 10 feet thick.
2. Buff-weathering, consolidated fuller's earth beds; not very pure.......................... 12 feet thick.
6029e-1. Bluish, fossiliferous argillite; some sandy and pebbly beds. *Encope platyta, Callianassa vaughani,* exposed......................................................... 20 feet thick.

Dip of all above beds about 7° northward. *Amphi-stegina lessonii* occurs in beds 6029c, b, and e.
Large railway cutting a quarter of a mile from Camp Cotton, toward Monte Lirio.

Miocene (Gatun formation):

2. Dark-colored clay with white particles embedded in it...
1. Dark-colored marl, fossils as at the two previous localities.
Dip about 6° N. 60° W.

In the next two exposures going toward Camp Cotton.

2. Clay with white particles embedded in it.......... 40 to 50
1. Dark-colored marl, fossiliferous................... 60

The lower beds exposed in the cutting one-half mile north of Camp Cotton are not exposed in the last-mentioned cutting.

Section in cut one-half mile west of Camp Cotton toward Gatun.

Miocene (Gatun formation):

3. Marl, dark, blackish-gray when unweathered, brownish when weathered................................. 15
2. Clay parting ............................................. 2 or 3
1. Blackish-gray marl containing a conglomerate bed...... 35

This bed may be divided into three parts:

c. Sandy marl.................................................. 603
b. Conglomerate bed .................................... 2 feet.
6032 a. Sandy marl with some pebbles.................... 3 "

The lower bed of No. 1 (station 6032) contains fossils characteristic of the lower part of the Gatun formation.

Generalized section of the bluffs exposed along the Panama Railroad, relocated line, about 3,500 feet south of Gatun railroad station.

Miocene (Gatun formation):

4. Fine-grained, buff clays (fuller's earth) with magnesium-looking spots.............................. 25
6033d-3. Fine-grained, soft, yellow sandstones......... 70
2. Buff, fine-grained, rather hard clay.................. 25
1. 6033c. c. Dark-colored, marly, fossiliferous clay... 15-20
6033b -b. Yellowish clay................................... 4
6033a) a. Layer of dark, fossiliferous clay, exposed. 28

Section from top of hill at west end of Gatun dam to bottom of the spillway.

Pliocene (Toro limestone):

6034-3. Top of hill, limestone. A rather soft coquina limestone composed of comminuted or broken tests of a number of kinds of organisms ......................... 70

Unconformity.

Miocene (Gatun formation):

2. Sandstone, surface oxidized brown........................ 120
1. Dark-colored marl........................................... 35

Section at west end of the spillway.

2. Yellowish or brownish, sandy clay; soil red......... 20
5659(1. Dark-colored Gatun marl, with Amusium, Clementia,
5900
eq etc....................................................... 16
Exposures in the vicinity of Mindi Hill.

Miocene (Gatun formation):

Gray-green, fine-grained, sandy shell marl is exposed from about 50 feet above sea level to 41 feet below; exposed thickness about 90 feet. The material occurs in beds 2 to 6 feet thick and is similar to that at the spillway. A number of fossils were collected from the exposures near the bottom of the canal 6035. ..............................................

Near the railroad is an extensive Pleistocene shell bed from 6 to about 10 feet above sea level. Along the canal the Gatun formation is overlain by lignitic or peaty swamp deposits with occasional oysters.

Monkey Hill, Mount Hope station.

Miocene (Gatun formation):

6036. About one-sixth of a mile south of the station on the west side of the railroad is an exposure of dark-colored, fine-grained, sandy clay marl. ................. 20

North of Mount Hope Station, along the east side of the railroad on the north side of the cemetery, is the following exposure:

Miocene (Gatun formation):

2. Clay, light-gray, stiff, slightly sandy, with white particles of softer material, like the clay that overlies the marl near Camp Cotton on the relocated Panama Railroad.

1. Dark-colored, fine, sandy, clay marl, the same as that exposed at the locality immediately preceding.

Pleistocene reef-flat corals and other fossils occur 4 or 5 feet above sea level in a swamp north and east of Mount Hope and very near to the Colon road, 5850, 6038.

Section of bluff at end of Toro Point.

Pliocene (Toro limestone):

Bedded coquina containing great numbers of barnacle plates, comminuted shells, and a large Scala (Epitonium toroense Dall), forms a bluff 45 to 50 feet high. It is dark to light-gray in color, cross-bedded, and contains some lenses of coarse, basic beach sand. The beds dip about 5° northward. At the base of the bluff there is a fringe of coral-reef rock which has been slightly elevated. This material has been built around large masses of the Toro Point rock that have fallen from the bluff, so that they are now inclosed in a matrix of coral-reef rock which has been elevated perhaps 6 to 10 feet above the level at which it was originally formed. This marginal coral flat is from 200 feet to a quarter of a mile wide. Extensive flat swamps filled with mud and broken coral fragments fringe some of the higher land at Toro Point. These are up to half a mile or more wide and are about a foot, more or less, above high-tide level.

The coquina rock forming the bluff at Toro Point seems to be about the same as the coquina rock forming the top of the hill at the west end of Gatun Dam, except that the latter is light gray to creamy-white in color and is a purer limestone. This formation clearly overlies the Gatun formation and is
Pliocene—Continued.

continuous westward into Costa Rica, except near the mouths of large river valleys where it has been removed or covered with alluvium. This coquina formation is clearly older than the marine Pleistocene (5850), occupying a level slightly above that of the sea, in the vicinity of Mindi, Mount Hope, and around the margins of Limon Bay. From the general stratigraphic relations of this rock I am inclined to consider it not younger than Pliocene.

Section one-third of a mile south of the southern end of Toro Point Breakwater, in quarry.

6037. Gray coquina rock mixed with local layers and lenses of sand......................... 35 to 40 feet thick. Barnacle plates, echinoid spines, fragments of oyster shells, and a large Scala (*Epitonium toroense* Dall) are abundant. Specimens of the last named form were the only perfect fossils found.
GENERALIZED GEOLOGIC MAP OF THE CANAL ZONE

TERTIARY

Swamps and coral flats

Toro limestone

Panama tuffs

Gatun formation

Culaito sandstone, tuffs, etc.

Emperor limestone

Culebra and Chiriqui shales, tuffs, and clays rocks

Robla conglomerate and sandstone

Basalt and andesite

Rhyolite

Igneous complex—granodiorite, metabasalt, basaltic agglomerate, basaltic breccia, old tuffs (includes small areas of many of the other formations)
MAP LOCATION OF PENAMARCA ROCK

From map
MAP OF THE PANAMA CANAL
SHOWING LOCATION OF STATIONS AT WHICH FOSSILS WERE COLLECTED
From map issued by the Isthmian Canal Commission
June 30, 1908
THE BIOLOGIC CHARACTER AND GEOLOGIC CORRELATION OF THE SEDIMENTARY FORMATIONS OF PANAMA IN THEIR RELATION TO THE GEOLOGIC HISTORY OF CENTRAL AMERICA AND THE WEST INDIES.


INTRODUCTION.

The following paper presents: (1) biologic summaries for each of the formations for which paleontologic data are available, with brief discussions of the geologic age; (2) geologic correlation of the formations and the distribution of their age-equivalents in Central America, the West Indies, and the southeastern United States; (3) an outline of the paleogeography of middle America. A tabular statement of the age relations of the formations is given by Doctor MacDonald in the preceding paper of this volume, page 528.

The biologic summaries are based on the paleontologic memoirs in this volume, by Messrs. Howe, Berry, Cushman, Jackson, Canu and Bassler, and Pilsbry, Miss Rathbun, and myself. Dr. C. W. Cooke has furnished me notes on a few of the fossil Mollusca, and I have incorporated in my lists the molluscan species recorded by Messrs. A. P. Brown and H. A. Pilsbry. I deeply regret that not even a preliminary list of the mollusks that Doctor MacDonald and I collected is available. Although I believe such a list would not modify the opinions here expressed, it is needed as a supplement to the other biologic records, particularly in order to supply a basis for the correlation of deposits in which mollusks are the only abundant organisms. I trust this serious omission may be remedied before a great while.

Needless to say all of the paleontologists who have studied the fossils submitted to them have cooperated in trying to solve the problems of local and regional geologic correlation, and I wish to record my grateful appreciation of their efforts. I wish also to thank my friend, Dr. T. W. Stanton, of the United States Geological Survey, for much advice and kindly criticism.

BIOLOGIC CHARACTER OF THE SEDIMENTARY FORMATIONS IN PANAMA.

Eocene.

The only geologic formation of Eocene age definitely recognized in Panama is exposed near Tonosi, Los Santos Province. At station
No. 6586c, near the mouth of Tonosi River, Doctor MacDonald collected a species of *Venericardia*, on which Dr. C. W. Cooke makes the following note: "A species of *Venericardia* from this locality is scarcely distinguishable from a specimen labeled *Venericardia planicosta* var. *horni* from Caliborne, Alabama, but it does not closely resemble specimens that I have seen from the Eocene of California, Washington, and Oregon." According to Doctor MacDonald's description of the section, this species of *Venericardia* occurs 690 feet below the bed in which *Lepidocyclina panamensis* Cushman and *L. duplicata* Cushman were collected. I believe that the latter bed is the correlative of the lower part of the Culebra formation, as will later be shown. Just below the Oligocene limestone in which occur the two species of Foraminifera mentioned are 650 feet of grayish, well-bedded, rather fine-grained sandstone; this is underlain by dark-gray, argillaceous, fossiliferous sandstone and shale, the latter underlain by dark-gray, argillaceous sandstone, in which the specimens of *Venericardia* were collected.

Doctor MacDonald collected the plant *Diospyros macdonaldi* Berry at station 6586b, in grayish, argillaceous sandstone with some darker shale beds, which immediately underlies the material in which the species of *Venericardia* occurs.

Dr. R. T. Jackson identifies as *Schizaster armiger* W. B. Clark, an echinoid collected by Mr. R. T. Hill at Bonilla, Costa Rica. The type of this species was obtained in a deposit of Jackson Eocene age at Cocoa post office, Choctaw County, Alabama. It should be noted that Mr. Hill says: "They [the rocks exposed] at Bonilla Cliff [Costa Rica] are upper Oligocene, like the Monkey Hill beds." The determination of the Eocene age of this exposure is not positive.

On page 197 of this volume, in my paper on the fossil corals, I gave reasons for referring the typical part of the Brito formation of Nicaragua, that part exposed near Brito, to the upper Eocene, and correlated that part of the formation with the St. Bartholomew limestone of the Island of St. Bartholomew and the Jacksonian upper Eocene of the southeastern United States. The data and opinions referred to need not be repeated. The presence in northern Colombia of limestone containing small stellate *Orthophragmina*, indicating a probable upper Eocene, was also noted on page 197.

No fossil organisms were found in the Las Cascadas agglomerate or the Bas Obispo formation. As they both underlie the Bohio conglomerate, which is of Oligocene, probably lower Oligocene age, they are almost certainly of pre-Oligocene age. Although at present information is not available for precisely determining their age, it appears highly probable that they belong to the Eocene. However,

---

Upper Cretaceous is not improbable as the age of the Bas Obispo formation.

Oligocene.

Bohio Conglomerate.

This is the oldest formation in which fossil organisms were found within the Canal Zone. The fossil plant, *Taenioxylon multiradiatum* Felix, collected in a railroad cut on Bohio Ridge, is said by Doctor MacDonald to come from the Bohio conglomerate. Should the specimens really come from the Bohio conglomerate, it is probable that that formation is of Oligocene age. *Taenioxylon multiradiatum*, according to Professor Berry, is also found in the Culebra and Cucuracha formations, both of which are of Oligocene age, should the Aquitanian be considered uppermost Oligocene instead of basal Miocene.

Limestone on Haut Chagres.

H. Douvillé has published the following interesting note: "Un autre échantillon du Haut Chagres est représentées par un calcaire plus compacte prenant bien le poli; il renforce également de petites Nummulites et de grandes Lépidocyclines voisines de L. chaperi, mais en outre, de petites Orbitoides qui sont des Orthophragmina étoilées (Asterodiscus). C'est la même association que celle que nous avons signalée à la base du stampien [=Lattorfian], dans l'île de la Trinité... Nous avons ainsi dans le Haut Chagres un niveau stampien inférieur." ¹

This corresponds to a horizon within the Vicksburg group. It is probable that the rocks underlying part of the area around Alahajuela mapped by Doctor MacDonald as Emperador limestone are really of this age.

Limestone at David.

A similar foraminiferal fauna occurs in the river bed, just above the ice plant in David, station 6512; at station 6526, which, according to Doctor MacDonald’s section, is on the bed immediately next below the one exposed at station 6512; and at station 6523, 2 miles north of David. The following are the species reported by Doctor Cushman:

<table>
<thead>
<tr>
<th>Larger Foraminifera From David.</th>
<th>Station 6512</th>
<th>Station 6526</th>
<th>Station 6523</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Nummulites davidensis</em> Cushman</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td><em>Lepidocyclina macdonaldi</em> Cushman</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td><em>Lepidocyclina duplicata</em> Cushman</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td><em>Lepidocyclina panamensis</em> Cushman</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td><em>Orthophragmina minima</em> Cushman * (Asterodiscus) sp.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taenioxylon multiradiatum Felix was obtained at station 6523. The limestone exposed at these three stations, which are all near one another, clearly belongs to one formation, and it seems to me to be of lower Oligocene (Lattorolian) age. However, Doctor Cushman because of the presence of Orthophragmina minima inclines to the opinion that it is of upper Eocene age.

Lepidocyclina duplicata was collected in association with L. panamensis at station 6586e, near Tonosi, in a bed I am considering of middle Oligocene (Rupelian) age (see p. 555).

Culebra Formation.

The principal localities at which collections were made from the Culebra formation were along the Canal from Miraflores locks to Las Cascadas. The local sections are described in Doctor MacDonald's article, pages 533 to 541 of this volume, and the position of each is indicated on plate 154. The United States National Museum station record numbers are 6009 to 6020e, as given at the column heads in the following table. Stations Nos. 6024a, 6025, 6026, are on the Panama Railroad, relocated line, and are platted on the map (pl. 154). Station No. 6837, on shales in the lower part of the Culebra formation, one-quarter of a mile south of Empire bridge, is not platted on the map.

The names of the specifically determined Mollusca from station No. 6019a–d, bed not identified, are taken from Brown and Pilsbry. The specimens were obtained 65 and 85 feet below the "Pecten bed," which is the basal bed of the Emperador limestone. There are five of these species, only one of which, Turritella altiliva Conrad, has been also reported from the Gatun formation. The generic names of the other Mollusca are mostly taken from my field notes. Doctor MacDonald and I obtained in the Culebra formation within Gaillard Cut, stations 6019a–f and 6020a–c, specimens representing about 70 genera of mollusks, but the species have not been identified.

Orthaulax pugnax (Heilprin), collected by Doctor MacDonald at station 5901, 2 miles south of Monte Lirio, formerly known as Mitchellville, was identified by Dr. C. W. Cooke. This is the same locality as station No. 6026, on the Panama Railroad, relocated line. Lithothamnium vaughani, Nummulites panamensis?, Lepidocyclina canellei, and three species of corals were also collected at this locality.

# Fossils from the Culebra Formation

<table>
<thead>
<tr>
<th>Names</th>
<th>6009</th>
<th>6010</th>
<th>6011</th>
<th>6012a</th>
<th>6012b</th>
<th>6012c-d</th>
<th>6019a</th>
<th>6019b</th>
<th>6019c</th>
<th>6019d</th>
<th>6019e-f</th>
<th>6020a</th>
<th>6020b-c</th>
<th>6024a</th>
<th>6025</th>
<th>6026</th>
<th>6027</th>
<th>6537</th>
<th>6539</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PLANTAE.</strong></td>
<td></td>
</tr>
<tr>
<td>Lithothamnium vaughnii M. A. Howe.</td>
<td></td>
</tr>
<tr>
<td>Ficus culebensis Berry</td>
<td></td>
</tr>
<tr>
<td>Guatteria culebensis Berry</td>
<td></td>
</tr>
<tr>
<td>Myristocephylum panamense Berry</td>
<td></td>
</tr>
<tr>
<td>Ternixylon multiradiatum Felix</td>
<td></td>
</tr>
<tr>
<td>Inga oltoloca Berry</td>
<td></td>
</tr>
<tr>
<td>Cassia culebensis Berry</td>
<td></td>
</tr>
<tr>
<td>Banisteria praemunia Berry</td>
<td></td>
</tr>
<tr>
<td>Schmidelis bejuensis Berry</td>
<td></td>
</tr>
<tr>
<td>Mesophilophyllum culebensis Berry</td>
<td></td>
</tr>
<tr>
<td>Melastomites miconoides Berry</td>
<td></td>
</tr>
<tr>
<td><strong>FORAMINIFERA.</strong></td>
<td></td>
</tr>
<tr>
<td>Textularia laminata Cushman</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>angulatae d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>stipitata D'Orbigny</td>
<td></td>
</tr>
<tr>
<td>Gaudryina fistula Cushman</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>triangulata Cushman</td>
<td></td>
</tr>
<tr>
<td>Clavulina parietalis d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>communis d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>Lagena striata var. struamae Reuss</td>
<td></td>
</tr>
<tr>
<td>Nodosaria linearis Schwager</td>
<td></td>
</tr>
<tr>
<td>raphanistrum (Linnaeus)</td>
<td></td>
</tr>
<tr>
<td>Cristellaris rotulata (Lamarck)</td>
<td></td>
</tr>
<tr>
<td>prolubrana Cushman</td>
<td></td>
</tr>
<tr>
<td>vauphan Cushman</td>
<td></td>
</tr>
<tr>
<td>Siphogenerina raphanus var. transversa Cushman</td>
<td></td>
</tr>
<tr>
<td>Ulgerella praemunia d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>Globigerina bulloides d'Orbigny</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>inulae d'Orbigny</td>
<td></td>
</tr>
<tr>
<td>dubia Egger</td>
<td></td>
</tr>
</tbody>
</table>

*East wall, Gallard Cut, north of Canal Com. station 1760. Do.*

*Top of big slide Gallard Cut.*

*West wall of canal below Miraflores locks.*

*East wall, Gallard Cut, north of Canal Com. station 1760. Do.*
## FOSSILS FROM THE CULEBRA FORMATION—continued.

| Names                                      | 6009 | 6010 | 6011 | 6012a | 6012b | 6012c-d | 6013a | 6014b | 6015c | 6016d | 6017e-f | 6018a | 6019b | 6019c | 6019d | 6019e | 6020a | 6020b-c | 6021a | 6021b | 6022a | 6023a | 6025a | 6026a | 6027a | 6028a | 6029a | Remarks                                      |
|--------------------------------------------|------|------|------|-------|-------|---------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Truncatullina ungeriana (d'Orbigny)        | X    | X    | X    | X     | X     |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| wuelstersorfa (Schwager)                   |      |      |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| culebrensis Cushman                        |      |      |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| papillona Hantken                          |      |      |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| americana Cushman                          |      |      |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Polystomella striato-punctata (Fichtel and Moll) |   |      |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| eraticulata (Fichtel and Moll)             |      |      |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Nonionina panamensis Cushman               | X    | X    |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| anomalina Cushman                          |      |      |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Amphistegina lessoni d'Orbigny             | X    | X    |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Nummulites panamensis Cushman              |      |      |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Lepidozytina conellii Lemoine and Douvillé |      |      |      |       |       |         | X     |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| chaperi Lom. and Douv. panamensis Cushman  | X    | X    |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| panamensis Cushman                         | X    | X    |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Heterosteginales panamensis Cushman        |      |      |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Quinqueloculina seminulum (Linnaeus) var. | X    |      |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| cuibetana d'Orbigny                       |      |      |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Triloculina tricarinata d'Orbigny          |      |      |      |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Orbilocites americana Cushman              |      |      | X    |       |       |         |       |       |       |       |         |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

### MADREPORARIA.

- Stylophora imperatoris Vaughan

- gothalsi Vaughan

- Orbicella costata (Duncan)

- Sidereastra conferta (Duncan)

- Asteroidea antiquipes Vaughan

- Goniopora cascadesensis Vaughan

### MOLLUSCA.

(Collections not yet identified.)

- Cylidina sp.

- Conus sp.
<table>
<thead>
<tr>
<th>Species</th>
<th>Presence</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pliuraentoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nassus (Hima) scotti Brown and Pilsbry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthoceras pugnax (Heupel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bittium scotti Brown and Pilsbry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turritella attilisa Conrad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natica sp</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Arca dali Brown and Pilsbry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostrea sp</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pecten sp</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Anaxis sp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spondylus scotti Brown and Pilsbry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crenellum sp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucina sp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telina sp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerithia sp</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Corbula sp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Crustacea**

<table>
<thead>
<tr>
<th>Species</th>
<th>Presence</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axius reticulatus Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callianassus lacunosa Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>scotti Pilsbry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vaughani Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strigosa Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spinulosa Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quadra Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ovata Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>elongata Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aborrecta Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>crassimana Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>magna Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goniochele (?) armata Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calopella quadrispinosa Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callinctes sp</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Euryplectas sp</td>
<td>reticulatus Rathbone</td>
<td></td>
</tr>
<tr>
<td>Panopeus sp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatus sp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thanostephanes prima Rathbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brecklingia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musia obscura Rathbone</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Carphonella sp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*553*
The identification of deposits within the Canal Zone as belonging to the Culebra formation needs brief discussion. The type sections are in Gaillard Cut, particularly at station 6020a to 6019f (see p. 538 of Doctor MacDonald's paper), and beds Nos. 1–5, inclusive, of the section on the west side of the cut between Empire and Culebra. The collections from 6020c to 6019f are typical of the upper part of the formation; those from 6012a typify its lower part, while those from 6012c and 6012d represent its upper part (p. 536 of Doctor MacDonald's paper). He refers the beds that were exposed at stations 6009 and 6010 to the lower part of the Culebra, and those at stations 6011 to the upper part. In Gaillard Cut Lepidocyclina chaperi occurs at station 6019f, and L. canellei at station 6019a; in other words both of these species occur in the upper part of the Culebra formation, the latter below the former. Heterosteginoideas panamensis occurs at station 6011 in the upper part of the Culebra formation and apparently it was also obtained at stations 6015 and 6016 in the overlying Emperor limestone. As at station 6024a, on Rio Agua Salud, immediately beneath a coralliferous bed representing the Emperor limestone, Heterosteginoideas panamensis and Nummulites panamensis were collected, both the stratigraphic relations and the fossils support the reference of the lower bed to the upper part of the Culebra formation. At Bohio switch, station 6025, Lepidocyclina chaperi and Nummulites panamensis were found in association. This bed also may be referred to the upper part of the Culebra formation. At station 6026, about 2 miles south of Monte Lirio, Lepidocyclina canellei and a species of Nummulites, apparently N. panamensis, were found associated with fossil corals closely related to the fauna of the Emperor limestone on one hand, and to that of the Antigua formation of Antigua on the other; and Orthaulax pugnax was collected there. The correlation of this exposure with the Culebra formation, probably about its middle part, seems as certain as it is possible to be in such matters. The principal locality for Lepidocyclina canellei was near the old town of Bohio, station 6027, now under water. It was here that Hill obtained his specimens of "Orbitoides forbesi," which are L. canellei, and it is probable that the type of the species came from the same place. The deposit here so rich in this species of Foraminifera is referred to the Culebra formation, as are also the beds in which it was obtained at Bailamonas and south of the switch at Mamei.

DEPOSITS OF THE AGE OF THE CULEBRA FORMATION NEAR TONOSI.

The only organisms of those collected by Doctor MacDonald in this area that have been studied are the Foraminifera and the corals. The following is a table of the larger Foraminifera:
LARGER FORAMINIFERA FROM NEAR TONOSI.

<table>
<thead>
<tr>
<th>Name</th>
<th>Station 6586</th>
<th>Station 6587</th>
<th>Other stations</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Lepidocyclus panamensis</em> Cushman</td>
<td>X</td>
<td>X</td>
<td>60107, 6012a, 6012c, 6512, 5523.</td>
</tr>
<tr>
<td><em>dupilica</em> Cushman</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stations 6010, 6012a, and 6012c are along the Canal (see pl. 154), on the Culebra formation; station 6512 is the river bed in David and station 6523 is 2 miles north of David, on a limestone probably of lower Oligocene age. It therefore seems that *L. duplicata* is of both lower and middle Oligocene age, while *L. panamensis* occurs in lower, middle, and upper Oligocene deposits.

The following is a list of the corals collected by Doctor MacDonald near Tonosi:

<table>
<thead>
<tr>
<th>FOSSIL CORALS FROM STATION 6587, TONOSI.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td><em>Astrocentralia guantanamoensis</em> Vaughan</td>
</tr>
<tr>
<td><em>Forida macdonaldi</em> Vaughan</td>
</tr>
<tr>
<td><em>Mucrona antiquaensis</em> Vaughan</td>
</tr>
<tr>
<td><em>Trochonella mecenzeri</em> Vaughan</td>
</tr>
<tr>
<td><em>Diplodactra crassolamelata</em> (Duncan)</td>
</tr>
</tbody>
</table>

The species after which Cuba is given in the column for distribution were collected by Mr. O. E. Meinzer near Guantanamo. These corals, which clearly belong to the coral fauna found in the Antigua formation of Antigua, supply additional evidence for correlating the foraminiferal limestones exposed at stations 6586c and 6587 with the lower part of the Culebra formation. By referring to my account of the successive coral faunas of the West Indies and Central America, pages 193 to 226 of this volume, it will be seen that, although I refer the coral fauna of the upper part of the Culebra formation to the upper Oligocene (=Aquitanian of European terminology), I consider that fauna as intermediate between the fauna of the Emperador limestone and Anguilla formation and that of the Antigua formation, because it contains a number of species in common with the latter formation. The coral fauna represented at Tonosi is, in my opinion, of middle Oligocene age, and belongs stratigraphically just below that found in the upper part of the Culebra formation.

CUCURACHA FORMATION

The only fossils as yet identified from the Cucuracha formation are two species of plants, *Palmoxyylon palmaris* (Sprengel) Stenzel and *Taeioxyylon multiradiatum* Felix, from station No. 6845, which is on the green clays of Gaillard Cut, near the lava flow. The first of these species was obtained only in the Cucuracha formation; but the second occurs in the Bohio conglomerate and the Culebra formation.
The type locality of this formation is in Empire village, and stations 6015 and 6016 are on it. As the two localities are very near together, with little or no lithologic or faunal difference, the fossils from the two localities are listed as from one in the following table. The position of the locality is shown on the map (pl. 154). Station 6017 is on the highway between Empire and Las Cascadas, about one mile from Las Cascadas. Nos. 6021 and 6673 are for the same locality, which is just north of Caimito switch, Panama Railroad, relocated line; station No. 6024b is on the same railroad, at the lower end of the culvert over Rio Agua Salud. Station No. 6255 is on the wagon road about one-half mile south of Mirafl ores; and station No. 6256 is Bald Hill, 1½ miles south of Mirafl ores (see p. 534 for Doctor MacDonald’s description of the exposure).

The fossil plant, Tenuioxylon multiradiatum Felix, was obtained at station 6523, which is about 2 miles north of David, where Lepidocyclina macdonaldi Cushman and L. duplicata Cushman were also collected. It is my belief that this specimen did not come from the Emperador limestone; for it is my opinion that the horizon is stratigraphically below the Culebra formation.

The specific names of the Mollusca and that of the echinoid, Schizaster scherzeri Gabb, from station No. 6019g are taken from the paper by Brown and Pilsbry already cited. Dr. MacDonald and I obtained from the same bed species representing 32 genera of Mollusca, but they have not been identified.

Regarding the larger Foraminifera from stations 6015 and 6016, Dr. J. A. Cushman says: "The material from No. 6015 contains an orbitoid species, but the sections cut did not clearly reveal the internal structure. It has a papillate surface, and resembles Lepidocyclina macdonaldi and L. panamensis, but does not seem to be identical with either. Some of its characters, especially in its nearly diamond shaped chambers, it resembles L. vaughani, but the specimens of the latter are larger and they are not papillate. Although this appears to be a new species, I do not care to give a name to it without knowing its internal structure in greater detail, and suggest that it be listed as Lepidocyclina species.

"The material from No. 6016 apparently contains no orbitoids, but it contains Amphistegina, which superficially might be mistaken for an orbitoid."

Heterosteginoides sp., apparently H. panamensis, occurs at stations Nos. 6015 and 6016.

Lepidocyclina vaughani Cushman was obtained at two localities, stations Nos. 6021 and 6255.

The echinoid, *Clypeaster gatuni* Jackson, is worth a special note. The holotype is from the Gatun formation, station 5662, but two specimens were also collected at station 6237, in limestone referred by Doctor MacDonald to the Emperador limestone, in a swamp north of Ancon Hill and about 4 miles south of Diablo Ridge. This species extended from the Atlantic to the Pacific side of the Isthmus.

Doctor MacDonald and I obtained at station No. 6019 a two poor crushed specimens of a gastropod that belongs to the genus *Orthaulax*.

A few remarks should be made on the reference of the limestone exposed at station 6021 near the old Caimito switch, to Emperador limestone. Only two identifiable species, *Lithothammium isthmi* and *Lepidocyclina vaughani*, were obtained at this place, but both were found elsewhere in the Emperador limestone. *Lithothammium isthmi* was also collected on Rio Agua Salud, station 6024b, in association with a coral fauna very nearly the same as that at the type locality of the formation; and *Lepidocyclina vaughani* was obtained in the Emperador limestone near Miraflores.

FOSSILS FROM THE EMPERADOR LIMESTONE.

<table>
<thead>
<tr>
<th>6015</th>
<th>6016</th>
<th>6017</th>
<th>586569, 6019, 6671</th>
<th>6021, 6673</th>
<th>6024b</th>
<th>6255</th>
<th>6256</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLANTAE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Lithothammium isthmi</em> M.A. Howe</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORAMINIFERA.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Polystromella macella</em> (Fichtel and Moll)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Amphistegina lessoni</em> d’Orbigny</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Lepidocyclina</em> sp.</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Sp</em></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>vaughani Cushman</em></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Heterosteginoidea</em> sp., apparently <em>H. panamensis</em> Cushman</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Quinqueloculina undosa</em> Karrer</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MADREPORARIA.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Stylphora imperatoris</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>panamensis</em> Vaughan</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>goethalsi</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>mcdonaldi</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>canalis</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Pocillopora arnoldi</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Astrocoenia portoricensis</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Orbicula imperatoris</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>canalis</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Stylania panamensis</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Goniastrea canalis</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Patona panamensis</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Acropora panamensis</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>saludensis</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Astreopora goethalsi</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Goniopora lilli</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>panamensis</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>imperatoris</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>canalis</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>clevei</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Porites douvillei</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>touleti</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>panamensis</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>angustilensis</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Synarca</em> houei Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>mcdonaldi</em> Vaughan</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CAIMITO FORMATION.

No fossils were obtained in this formation at its type locality. Doctor MacDonald collected fossil plants at station No. 6840, about 7 miles northeast of Bejuca, near Chame, Panama, in a yellowish argillaceous sandstone that seems to overlap agglomerates and is believed to represent the Caimito formation. Professor Berry records the following species from this locality:

*Guatteria culebrensis* Berry, also Culebra and Gatun formations.

*Hiraea oligocaenica* Berry.

*Hieronymia lehmanni* Berry.

*Schmidelia bejucensis* Berry, also Culebra formation.

As two of the four species also occur in the Culebra formation, it appears that the deposit in which they were obtained is in age near the Culebra formation.

MIocene.

GATUN FORMATION.

The principal collections from the Gatun formation were made jointly by Doctor MacDonald and myself at stations Nos. 6029a–b, 6030, 6033b–c, 6035, and 6036, the position of each of which is platted on the map (pl. 154), and the sections are described in Doctor Mac-
Donald's article, pages 542–544 of this volume. Four species of plants were collected in the Gatun borrow pits. No. 6003 is for the same bed as 6033b. Station No. 5659 is near Gatun. The localities for three of the species of Crustacea are as follows:

*Gatunia proovita* Rathbun, Cat. No. 113706, U.S.N.M., near Gatun.

*Callianassa hilli* Rathbun, Cat. No. 135218, U.S.N.M., Gatun formation; nothing more definite.

*Mursilia ecristata* Rathbun, Cat. No. 135219, U.S.N.M. Gatun formation; nothing more definite.

**Fossils, except Mollusca, from the Gatun Formation.**

<table>
<thead>
<tr>
<th>Species</th>
<th>Gatun bor-row pits</th>
<th>6000, Gatun lochs.</th>
<th>6029a.</th>
<th>6029b.</th>
<th>6030</th>
<th>6033a.</th>
<th>6033b.</th>
<th>6035</th>
<th>6036</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Plantaee.</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quatertia culebsensis Berry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cypripedium gatunense Berry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rondelacia goldsmithi Berry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubiaceae izoroides Berry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Foraminifera.</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textularia subagglutinata Cushman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinnamensis Cushman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>catenata d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysalidina puichella Cushman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolithea punctata d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>annamensis (Costa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>robusta H. B. Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cypridina nodosaria d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virgulina squamosa d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nodosaria communis d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cristellaria rodulata (Lamarck)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>euglypta Cushman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>italica Defrance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uregeria canariensis d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pygmaea d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>extusistria Reuss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globopteris bulloides d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dubia Egger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soccotha H. B. Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>equilateralis H. B. Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inflata d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conglobata H. B. Brady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbunia unicolora d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonaria menardii d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oblonga (Williamson)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Concretia</em> Parker and Jones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysetoma striatopunctata (Fichtel and Moll)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>crieja</em> (Linaeus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonionia depressula (Walker and Jacobs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>scaphe</em> (Fichtel and Moll)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphistegina levesi d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siphonella reticulata (Cejzek)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinqueloculina seminulum (Linaeus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>panamensis</em> Cushman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigmoilina tenella Cejzek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>asperula (Karrer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triloculina bulbosa Cushman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>projecta</em> Cushman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioloculina bulloides d'Orbigny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Echinoidea.**

*Chyphastere gatunii* Jackson (Sta. 5062).

*Encope arietilis* Jackson (Sta. 5546).

*plagysta Jackson*.

*megatrema Jackson*.

*Schizaster panamensis* Jackson (Stas. 6008, 7294).

---

1 Also 6029c.
The collections, mostly Mollusca, considered in the first paper by these authors, "with the exception of a tooth of a shark and a few specimens of Olivia from Monkey Hill, all come from the excavations for the locks at Gatun. The Olivia taken at Monkey Hill is the same species found plentifully at the Gatun excavation. The specimens were collected from dumps and fills along the railway as well as from dumps in the vicinity of Gatun." In their second paper, collections from other localities near Gatun and from two horizons at Tower N, Las Cascadas, are included. The following list contains all the mollusca referred to the Gatun formation by Pilsbry and Brown. The names of those preceded by an asterisk were not in the collections submitted to those authors, and I have added the note "not at Gatun" after the names of those which were not collected at Gatun. The results of our field work and the subsequent paleontologic studies cause us to dissent from the stratigraphic interpretations of Messrs. Brown and Pilsbry, for they combine the Culebra formation, the Emperor limestone, and the Gatun formation into one formation. As the species described by Toula in his Eine jungteriäre Fauna von Gatun am Panama-Kanal are included in the papers by Brown and Pilsbry, more detailed reference to his article is not necessary here.

2 K. K. Geol. Reichsanstalt Jahrb., vol. 58, pp. 673-760, pls. 23-28, Vienna, 1909. Toula in a second paper, Die jungteriäre Fauna von Gatun am Panama-kanal, K. K. Geol. Reichsanstalt Jahrb., vol. 61, pp. 487-530, pls. 30, 31, Vienna, 1911, published a supplement to his first paper issued in 1910, and the species described as new in this are not included in the papers by Brown and Pilsbry. This one of Toula's papers escaped my attention until the present volume was in proof, and as it was then too late to consider the synonymy of the species described in it, remarks on it are confined to this note.
Anachis
*Strybina
Solenosteira
Nassa
*Glyptostyla panamensis
Fasciolaria
Olioa
Murex
Phos
Metula
Marginella
Drillia
gatunensis Toula.
*Pleurotomaria
ertrudis Toula.

Mitra longa Gabb.

daricnensis Brown and Pilsbry
sp. undet.

Marginella gatunensis Brown and Pilsbry.

leandcr Brown and Pilsbry.

conformis Sowerby.

Oliva reticulata gatunensis Toula.

Fasciolaria gorgasiana Brown and Pilsbry.

sp. undet.

Glyptostyla* panamensis Dall (not at Gatun).

Solenosteira dalli Brown and Pilsbry.

Phos gatunensis Toula.

subnemcostatus Brown and Pilsbry.

metuloides Dall.

Metula gabi Brown and Pilsbry.

Nassa (*Hiina) praesambigua Brown and Pilsbry (not at Gatun).

Anachis fugax Brown and Pilsbry.

*Strombina minor Dall.

lessepsiana Brown and Pilsbry.

Murex messorius Sowerby.

polynomaticus Brown and Pilsbry.

(Phyllonotus) gatunensis Brown and Pilsbry.

Typhis alatus Sowerby.

gabi Brown and Pilsbry.

Strombus gatunensis Toula.

(?) sp. undet.

Distorsio gatunensis Toula.

Malea camara Guppy.

Sconia laevigata (Sowerby).

Pyrula microenatica Brown and Pilsbry

(not at Gatun).

near papyratia Say.

Cypraca henekeni Sowerby var.

Rittium nugatorium Brown and Pilsbry.

scotti Brown and Pilsbry (not at Gatun).

Turbonilla hartschiana Brown and Pilsbry.

Turritella mimetes Brown and Pilsbry.

gatunensis Conrad.

altitira Conrad.

Petaloeheclus domingensis Sowerby.

Solaris granulatum gatunensis Toula.

Natia guppyana Toula.

bolus Brown and Pilsbry.

cancrena (Linnaeus).

canalicunalis Brown and Pilsbry.

(?) sp. undet.

Polinices subealumna (Sowerby).

*Lupia perovata Conrad (not at Gatun).

Sigaretus gatunensis Toula.

(Eunaticina) gabi Brown and

Pilsbry.

*Capulus (?) gatunensis Toula.

Crepidula plana Say.

Cheilia princeotonia Brown and Pilsbry.

Nucula (Acta) isthmica Brown and Pilsbry

Leda balboae Brown and Pilsbry.

Arca daricnensis Brown and Pilsbry.

dalli Brown and Pilsbry (not at Gatun).

Glycymeris carbasina Brown and Pilsbry.

canalis Brown and Pilsbry.

acuticostata Sowerby.

Pecten (Equispecten) effusus Brown and

Pilsbry.

gatunensis Toula.

(Plagioctenium) operculariformis

Toula.

*Pecten levicostatus Toula.

(Euola) reticrus Brown and

Pilsbry.

oxygonum canalis Brown and Pilsbry (not at Gatun).

oxygonum optimum Brown and

Pilsbry (occurrence at Gatun
doubtful).
Pecten (Cyclopecten) oligolepis Brown and Pilsbry.
*(Amusium) lyonii Gabb.
toulae Brown and Pilsbry.
sol Brown and Pilsbry (not at Gatun).
luna Brown and Pilsbry.
Spondylus scotti Brown and Pilsbry (not at Gatun).
Ostrea gatunensis Brown and Pilsbry.
Crassatellites reevei (Gabb) (occurrence at Gatun doubtful).
mediaamericanus Brown and Pilsbry (not at Gatun).
Cardium (Trachycardium) stiriatum Brown and Pilsbry.
*dominicanum Dell.
dominicense Gabb.
durum Brown and Pilsbry.
Cardium (Laevicardium) serratum Linnaeus.
*dalli Toula.
*(Fragum) gatunense Dell.
(? newberryanum Gabb.)
*Tellina dariena Gabb.
gatunensis Bagg.
rowlandi Toula.
*lepidota Dell.
aequiterminata Brown and Pilsbry.
(Eurytellina) victula Brown and Pilsbry (not at Gatun).
sp. undet.
sp. undet.
*Semene sayi Toula.
chiplolana Dall (not at Gatun).
Chione tegula Brown and Pilsbry.
sp. undet.
(Lirophora) ulocyna Dall.
ulocyna holocyna Brown and Pilsbry.
*mactropsis (Conrad).
Pitar centangulata Brown and Pilsbry.
cora Brown and Pilsbry.
*hilli Dall.
*circinata (Brown).
*Macrocallista maculata (Linnaeus) (?).
Dosinia delicatissima Brown and Pilsbry.
*Callocardia (Agriopoma) gatunensis Dell.
gatunensis multiflora Dell.
Petricola millestriata Brown and Pilsbry.
Clementia dariena (Conrad).
Cyclinella gatunensis Dell.
*Mactra dariensis Dall (not at Gatun).
Thracia (Cyathodonta) gatunensis Toula.
Corbula gatunensis Toula.
sphenia Dell.
sericia Dell.
*Cuneocorbula hexacyma Brown and Pilsbry.
*alabamiensis Lea.
*gregoroi Cossmann.
heterogenea Guppy (not at Gatun).
*viminea Guppy (not at Gatun).
Teredo dendrolestes Brown and Pilsbry.
*Solecurtis gatunensis Toula.
strigillatus (Linnaeus).

Sixteen species included in the foregoing list have not been found at Gatun, and the occurrence there of two other species is doubtful. The number of identified species of mollusca from the formation, including two doubtfully determined, is 125.

Subsequent to the publication of the papers by Brown and Pilsbry, Cossmann\(^1\) has described four additional species from Mindi out of material belonging to the Gatun formation. The species are as follows: *Euchilodon moierei* Cossmann; *Conus lavillei* Cossmann; *Uxia micocaenica* Cossmann; *Marginella mindiensis* Cossmann.

Pliocene.

TORO LIMESTONE.

At Toro Point, the type locality of this formation, station No. 6037, Doctor MacDonald and I collected the types of *Epitonium* (Sthe-

\(^1\) Cossmann, M., Étude comparative de fossiles mio-éocènes recueillis à la Martinique et à l’Isthme de Panama, Journ. Conchyl., vol. 61, pp. 1-64, pls. 1-5, 1913.
norytis) toroënsë Dall and of E. toroënsës var. insigne Dall.\(^1\) In addition to these identifiable Mollusca, dissociated barnacle plates and comminuted molluscan shell fragments are abundant. The probably equivalence of this deposit with the coquina rock, which contains many fragments of Pecten sp., on the top of the hill at the west end of Gatun dam, is discussed by Doctor MacDonald on page 544 of his article immediately preceding the present one.

**Pleistocene.**

Although horizons in the marine Pleistocene deposits of America have not yet been discriminated on the basis of their contained fossils, it is my opinion that such discriminations will be made. As a contribution toward the biologic characterization of a Pleistocene deposit, the following list of fossils from the deposit in the swamp north and east of Mount Hope, stations Nos. 5850 and 6038, has been prepared. Two papers on the fossil mollusca from this locality have been published. The first is by Dr. W. H. Dall, in his paper just referred to; the second is by Messrs. Brown and Pilsbury.\(^2\) The other lists are from the memoirs forming parts of this volume.

**Fossils from the Pleistocene of the Canal Zone.**

**Plantaë.**

*Archaeolithothamnium epiporum* M. A. Howe.

*Madreporaria.*

*Oculina diffusa* Lamarck.

*varicosa* Le Sueur.

*Eusmilia fastigiata* (Pallas).

*Astrengia* (Phyllangia) americana Milne Edwards and Haime.

*Cladocora arbuscula* Le Sueur.

*Solenastrea bournoni* Milne Edwards and Haime.

*Favia fragum* (Esper).

*Macandrea areolata* (Linnaeus).

*Manicina gyrosa* (Ellis and Solander).

*Agaricia agaricites* (Linnaeus).

*var. purpurea* Le Sueur.

*pusilla* Verrill.

*Siderastrea radians* (Pallas).

*sidera* (Ellis and Solander).

*Acropora muricata* (Linnaeus).

*Porites furcata* Lamarck.

*astreoides* Lamarck.

**Hydrozoa.**

*Millepora alcicornis* Linnaeus.

*Mollusca.*

*Tornatina canaliculata* (Say). R.\(^3\)

*Cylichnella bidentata* (Orbigny.)

*Atys sandersoni* Dall.

*Bullaria occidentalis* (A. Adams). C.

*Haminea canalis* Dall.

*Haminea antillarum* (Orbigny). R.

*Terebra spei* Brown and Pilsbry.

*Conus proteus* Hwass. R.

*Drillia leucoeyma* Dall.

*ostrearam* Stearns.

*harfordiana* (Reeve) var. colonenesis Brown and Pilsbry. R.

*Clathurella juventis* Stearns. R.

*Cythara balteata* (Reeve).

*biconica* (C. B. Adams). C.

*Marinula colonia* Dall. R.

*Olivella myrtenecon* Dall. C.

*Marginella cineta* Kiener C.

*pallida* (Linnaeus). R.

*minuta* Pfeiffer.

---

3. The abundance or rarity of the species is indicated by the letters R. (rare) and C. (common).
MOLLUSCA—continued.

Voluta alfaroi Dall. R.
Fasciolaria species. R. Specimen too young to determine.
Lutrurus cingulifera (Lamarck). R.
Phos intricatus Dall. R.
Engina turbinella (Kiener). R.
Nassa vibex Say.
Colubrella mercatoria (Linnaeus).
Anachis Engina Latirus Fasciolaria Phos Eulima Strombus Aasella Bittium Nassa Alabina Rissoina Columbella Littorina Slgirclus Alaba Cerithiopsis Cymatium Murex Trivia pediculus (Linnaeus). R.
Murex rufus Lamarck. R.
pomum Gmelin. R.
nodatus Reeve. C.
Urosalpinx species. R.
Eulina bifasciata (Orbigny). R.
Cymatium vesceum (Lamarck). R.
tuberosum (Lamarck). R.
Cerithiopsis species. R.
Bittium varium Pfeiffer. C.
Cerithium literatum (Born). R.
algicola C. B. Adams. C.
medium Dall. R.
variabile C. B. Adams.
Cerithidea variosa Sowerby. R.
Modulus modulus (Linnaeus). C.
catenulatus Philippi. R.
Littorina angulifera Lamarck. R.
Venericula nigricans Philippi (?). R.
Alabina cerithoides Dall.
Alaba tervicosa Adams. R.
Rissoina laevigata C. B. Adams var.
browniana Gmelin. R.
striatocostata Orbigny. R.
cancellata Philippi. R.
elegantissima Orbigny. R.
Crepidula convexa Say. C.
plana Say. C.
Calyptraea conoidea Orbigny. C.
Natica pusilla Say. R.
Sigaretus perspectivus Say. R.
Phasianella pulchella C. B. Adams. C.
Turbo crenulatus Gmelin. R.
Astralium brevispina (Lamarck). R.
tuberosum (Philippi) (?).
Tegula fasciata (Born).
Fissuridea alternata (Say).
Subemarginula emarginata (Blainville).
rollandii (Fischer).

MOLLUSCA—continued.

Acmaea punctata (Gmelin).
Neritina viridis Lamarck. C.
Tonicia schrammi Shuttsworth. R.
Dentalium callithrix Dall. C.
Cedulus vaughani Dall. C.
Leda vulgaris, new species. C.
acuta Conrad. R.
Yoldia perprotracta Dall. C.
Arca umbonata Lamarck. R.
imbricata Brugière. R.
antiquata Linnaeus. C.
deslayesi Hanley. C.
campechensis Dillwyn. R.
adamisi Smith. occidentalis Philippi. R.
reticulata Gmelin. R.
Scapharca pittieri Dall. C.
Byssarca fusca Brugière. C.
Melina ephippium (Linnaeus). C.
Ostrea virgincna Gmelin. C.
Pecten zirac (Linnaeus). C.
exasperatus Sowerby. C.
gibbus (Linnaeus).
gibbus dislocatus Say. R.
Mytilus exustus Lamarck. R.
Chama sp. R.
sp. C.
Crassinella guadalupensis (Orbigny). R.
Diplodonla medemeriana Brown and Pilsby. R.
Diplodonta soror C. B. Adams. C.
Codakia orbiculata (Montagu). R.
antilarum Reeve. C.
Lucina chrysostoma Philippi. C.
Phacoides linea (Conrad). R.
near crenulatus (conrad). R.
antilarum Reeve. R.
leucocyna Dall. R.
pacificus (Gmelin). C.
Phacoides species
Cuspiloria (Cardiomya) costellata Deshayes. R.
Cardium serratum Linnaeus. C.
medium Linnaeus. C.
muricatum Linnaeus. C.
Gafarrium (Gouldia) cerina (C. B. Adams). R.
Pitar subharrest Dall.
Chione cancellata (Linnaeus). C.
Tellina (Eurytellina) alternata Say. C.
(Cyclotellina) fausta Donovan.
(Angulus) versicolor ozzens.
promera Dall.
MOLLUSCA—continued.

Abra arcaulis (Say). R.

Corbula equivalentis Philippi. C.

swiftiana C. B. Adams C.

CRUSTACEA.

Macrobrachium ? species.

Nephrops contatus Rathbun.

species.

Arius ? species.

Hepatus chilensis Milne Edwards.

CRUSTACEA—continued.

Calappa flammaea Rathbun.

Leucositia juriceni (Saussure).

Leucothididae, genus and species indeterminable.

Arenacus species.

Panopeus antepurpureus Rathbun.

tridentatus Rathbun.

Uca macrodactylus (Milne Edwards and Lucas).

Parthenope pleistocenicus Rathbun.

CORRELATION OF THE SEDIMENTARY FORMATIONS OF PANAMA.

TERTIARY FORMATIONS OF THE SOUTHEASTERN UNITED STATES.

A Table of the Tertiary geologic formations of the southeastern United States and their correlatives within that area, revised to the present date—October 15, 1917— is presented facing page 569. In 1912 I published a summary of the stratigraphy of the Tertiary formations of the Gulf and south Atlantic Coastal Plain, incorporating all data available up to that time,¹ and gave in the accompanying bibliography references to the principal literature. Since the summary referred to was printed a number of papers containing additional information have been published, and I have had the benefit of consulting the manuscripts of reports, to be mentioned later, not yet available in print. References to the later published and a few unpublished papers are as follows:

Berry, E. W., The physical conditions and age indicated by the flora of the Alum Bluff formation, U. S. Geol. Survey Prof. Paper 68, pp. 41-59, pls. 7-10, 1916.

The physical conditions indicated by the flora of the Calvert formation, Idem, pp. 61-73, pls. 11, 12, 1916.


The Jackson formation and the Vicksburg group in Mississippi, Unpublished manuscript.

and Shearer, H. K., Deposits of Claiborne and Jackson age in Georgia, U. S. Geol. Survey Prof. Paper 120 (E), pp. 41-81, pl. 7, figs. 7-9, 1918.


¹ Vaughan, T. W., Earlier Tertiary (Eocene and Oligocene), Texas, Louisiana, and Arkansas, pp. 723-731; South Atlantic and eastern Gulf Coastal Plain and north end of Mississippi Embayment, pp. 731-748; Later Tertiary (Miocene and Pliocene), Texas, Louisiana, and Arkansas, pp. 804-806; South Atlantic and eastern Gulf Coastal Plain and north end of Mississippi Embayment, pp. 888-813: in Willis, Bailey: Index to the stratigraphy of North America, U. S. Geol. Survey Prof. Paper 71, 1912.


— Geology of the Coastal Plain of Texas between Brano and Nueces rivers, U. S. Geol. Survey Prof. Paper — (manuscript not published).


LOWE, E. N., Preliminary report on iron ores of Mississippi, Miss. Geol. Survey Bull. 10, pp. 70, 7 pls., 1913. See especially pp. 23-25.

— Mississippi, its geology, geography, soils, and mineral resources, Idem, Bull. 12, pp. 335, 28 pls., 1 geol. map, 1915.


In the bibliography, except the one by Professor Berry on the flora of the Calvert formation, I have purposely omitted references to papers on that part of the Coastal Plain north of the South Carolina-North Carolina boundary line. The contributions to the paleontology and stratigraphy of the Tertiary formations of the south Atlantic and Gulf Coastal Plain during the past five years have been considerable, as the list of papers shows, but much more work has been done. Prof. E. W. Berry has completed a monograph of the middle and upper Eocene floras of southeastern North America, now awaiting publication as a Professional Paper of the United States Geological Survey; Dr. Joseph A. Cushman has a monograph of the Pliocene and Miocene Foraminifera of the Coastal Plain in press as a bulletin of the United States Geological Survey; Messrs. F. Canu and R. S. Bassler have submitted the manuscript for a very large volume on
the Eocene and lower Oligocene Bryozoa of the Coastal Plain for publication by the United States National Museum; Miss Julia Gardner has completed the manuscript of a monograph on the Mollusca of the Chipola marl, Oak Grove sand, and Shoal River marl members of the Alum Bluff formation; and Dr. C. W. Cooke has completed the field work of a geologic reconnaissance of the Coastal Plain of South Carolina, on a scale of 1:500,000. The results of all this unpublished work have been available to me, and I have utilized them in preparing the correlation table.

The only specific correlations that it seems desirable to discuss in this connection are those of the upper Eocene of Texas. Dumble, in his papers already cited, represents upper Claibornian deposits as being absent in Texas, referring his Fayette and Yegua formations to the lower Claiborne, while the Frio is placed doubtfully in the same division of the Claiborne. The Fayette overlies the Yegua, which is the same as the formation to which I applied the name "Cocksfield Ferry beds" in 1895.1 In my papers cited below I made it perfectly clear that that formation overlies the lower Claiborne deposits, to which Harris later applied the name St. Maurice formation, and underlies the marine fossiliferous Jackson as exposed on Red River at Montgomery, Louisiana, and that it must include the deposits in Louisiana that are the stratigraphic equivalent of the upper Claiborne, subsequently designated Gosport sand, of Alabama. There was no escape from this correlation at the time I made it, and it has subsequently been repeatedly corroborated by others. Although the basal part of the Yegua is probably the equivalent of the upper part of the lower Claiborne Lisbon formation, the greater part of the Yegua is of upper Claiborne age, and it is the Texas correlative of the Gosport sand of Alabama. Berry's unpublished studies of the middle and upper Eocene floras of southeastern North America supply further corroboration of this correlation, and he authorizes me to say that some of the upper beds of the Yegua may be of lower Jackson age.

So long ago as 1902 Miss Maury published the following statement regarding the Fayette sandstone: 2

In 1895 Mr. William Kennedy 3 referred both the Fayette sandstone and the Frio clays to the lower Claiborne because of the presence of _Venericardia planicosta_ in the sandstones. Mr. Veatch, during the winter of 1902, has examined the sandstones and finds _Venericardia planicosta_ is limited to the basal layers of the formation. These he refers to the Jackson.

---

I have visited, in company with Mr. Alexander Deussen, the fossiliferous exposures near Wellborn, Texas. I collected fossils and have studied them. I concur with Mr. Veatch in his opinion that they are of Jackson age. Mr. Deussen has traced the formation westward; it is persistent and persistently overlies the Yegua formation at least for some miles beyond Nueces River. The Frio clay overlies the Fayette sandstone, and it contains Ostrea georgiana, a species that is abundant in the Jackson formation in Alabama and in the Barnwell formation, which is the correlative of the Jackson formation, in eastern Georgia. The Fayette sandstone and the Frio clay of Texas are the correlatives of the Jackson formation of Louisiana and Mississippi. The following table shows the stratigraphic equivalence:

Correlation of the middle and upper Eocene of Texas.

<table>
<thead>
<tr>
<th>Mississippi.</th>
<th>Louisiana.</th>
<th>Texas (east of Nueces River).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackson formation...</td>
<td>Jackson formation...</td>
<td>Frio clay.</td>
</tr>
<tr>
<td>Yegua formation...</td>
<td>Yegua formation...</td>
<td>Fayette sandstone.</td>
</tr>
<tr>
<td>Lisbon formation...</td>
<td>St. Maurice formation...</td>
<td>Yegua formation.</td>
</tr>
<tr>
<td>Talawhittka formation...</td>
<td></td>
<td>Cook Mountain formation.</td>
</tr>
</tbody>
</table>

Southward and westward of a line, the location of which is indicated on Deussen's map, there is a change in the strike of the formations. The line passes between Cotulla and Tilden and strikes from about N. 52° W. to S. 52° E.; northeast of it, the strike of the formations is S. 39° W., with a southeastward dip of 48 feet to 1 mile; southwest of it, the strike is N. 19° E., with a dip S. 19° E. of 36 feet to 1 mile. In 1912 Mr. G. C. Matson devoted some months to a field study of the area along Rio Grande seaward of the Eocene-Cretaceous contact, and I accompanied him during a wagon trip from Laredo to San Ysidro. As Mr. Matson has not been able to prepare a report for publication, it is fortunate that I made notes on the exposures we examined, and later the marine fossils collected were studied and identified by Dr. C. W. Cooke and myself. Throughout much of its course between Laredo and Roma, Rio Grande is a subsequent stream—that is, its course is along the strike of the formations—and for miles the road is on very nearly the same geologic formation. However, only a short distance eastward from the river higher geologic formations are encountered. The most important difference of the successive formations, as compared with those farther east, consists in the slight development of the lignitiferous Yegua formation, which, apparently, is represented by shoal-water marine sands. The correlative of the Fayette sandstone was not

Catahoula sandstone.

Vicksburg limestone.

Jackson formation.

Yegua formation.

St. Maurice formation.

Wilcox formation.

Midway formation.
definitely recognized, but Professor Berry has identified a Jacksonian flora, collected by Mr. Matson, "4½ miles north of Miraflores Ranch, 45 miles southeast of Laredo," and says in a letter: "I consider the Miraflores Ranch outcrops as Fayette sandstone and of lower Jackson age. I am sure that it is not upper Claiborne; in fact, I believe that a part of the Yegua in the Texas area is also lower Jackson in age."

The Frio clay is represented by clays that contain abundant specimens of *Ostrea georgiana*. The importance of these notes in this connection consists in showing that marine deposits of Jackson age extend to Rio Grande, but the strike veers southward in conformity with the trends of the shore of the Gulf of Mexico and of the mountains in eastern Mexico.

**Correlation of the Tertiary Formations of the Southeastern United States with European Subdivisions of the Tertiary.**

**Eocene.**

As the remarks to be made here are intended to be only a summary, no extensive account of literature will be given. However, it should be mentioned that Dr. W. H. Dall's correlation table, published nearly 20 years ago,¹ is valuable in that it gave a summary of opinion up to 1898 and served as a starting point for subsequent attempts of a similar kind. A comparison of the correlation table of the formations in the southeastern United States here presented with Doctor Dall's shows that during the past 20 years many modifications or changes in opinion have been rendered necessary because of the acquirement of new information.

The most recent discussion of the European equivalence of the lower Tertiary deposits of the Coastal Plain is that of Berry, who in his lower Eocene floras² presents the following table of the names applied to the European "stages":

```
<table>
<thead>
<tr>
<th>Lower Eocene</th>
<th>Marine facies=Coisian.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ypresian (Dumont, 1849)</td>
<td>Lagoon facies=Laonnian.</td>
</tr>
<tr>
<td>Sparnacian (Dolffus, 1880) = Upper Landenian (Mayer Eymar, 1857).</td>
<td></td>
</tr>
<tr>
<td>Thanetian (Renevier, 1873) = Heersian (Dumont, 1849), Lower Landenian (Mayer Eymar, 1857).</td>
<td></td>
</tr>
<tr>
<td>Basal Eocene</td>
<td>Montian (Dewalque, 1869)=Paleocene of Von Koenen and others.</td>
</tr>
</tbody>
</table>

(Not of Schimper, 1874.)
```

Berry says: "Together these stages correspond to the Eocommunulitic of Haug (1911), to the Suessonian of D'Orbigary, and to the Paleocene of Schimper (1874), but not to the Paleocene of Von Koenen, Dollo, and others, which is limited to the Montian stage."


<table>
<thead>
<tr>
<th>Age of deposits</th>
<th>North Carolina (south of Hatteras axis)</th>
<th>South Carolina (Santee drainage)</th>
<th>South Carolina and Georgia (Savannah drainage)</th>
<th>Georgia (Chattahoochee drainage)</th>
<th>Florida</th>
<th>Alabama</th>
<th>Mississippi</th>
<th>Louisiana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconformity</td>
<td>Eustis marl.</td>
<td></td>
<td>Mark's Head marl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miocene</td>
<td>Unconformity</td>
<td></td>
<td>Alum Bluff formation.</td>
<td>Unconformity</td>
<td>Shool River marl member.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oak Grove sand member.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chipola marl member.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle, Upper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vicksburg group.</td>
<td>Marianna limestone (western Florida)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td>Castle Hayno limestone, Trent marl.</td>
<td>Cooper marl.</td>
<td>Barnwell formation (with Twigg clay member).</td>
<td></td>
<td>Ocala limestone.</td>
<td>Ocala limestone.</td>
<td>Jackson formation</td>
<td>Jackson formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(with Yacoo clay member)</td>
<td>(with Yacoo clay member)</td>
</tr>
<tr>
<td></td>
<td>Congaree shales of Sloan.</td>
<td>(Probably overlapped.)</td>
<td></td>
<td></td>
<td></td>
<td>Tallahatta buthstone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Williamsburg formation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td>Black Mingo formation.</td>
<td>(Probably overlapped.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
With regard to the age of the Midway flora, he says: 1 "The European floras most similar to that of the Midway (?) are those, likewise poorly represented in marine deposits, of the Montian and Thanetian stages in the so-called Paris Basin in northern France, Belgium, and southeastern England."

He concludes his discussion of the correlation of the Wilcox floras with the following statement: 2 "In view of the foregoing discussion, I have no hesitation in making the most positive statement that the Wilcox flora is largely of Ypresian age. This is rendered conclusive by the exact agreement between the flora of the overlying Claiborne group and that of the Lutetian of Europe, as brought out in my unpublished studies of the Claiborne flora."

The foregoing paragraph contains Berry's opinion in 1916 as to the equivalence of the Claiborne group of the southern United States with the Lutetian of western Europe. This is an old correlation, for it is the same as that made by De Lapparent. 3 More recent studies, not yet published, have led Berry to correlate the Claiborne flora of the southeastern United States with the Auversian of Europe, and he grants me permission to present his conclusion in this connection.

As a part of my discussion of the coral faunas of the Jackson formation and its correlatives, page 198 of this volume, I have expressed my opinion that the Jacksonian of Mississippi and Alabama is the equivalent of the Bartonian-Ludian of western Europe, thereby concurring in a previously expressed opinion of Haug, which is essentially the same as that of De Lapparent. 4 In fact, this opinion seems generally accepted by all geologists who have studied the subject.

OLIGOCENE.

That the Vicksburgian Oligocene is the equivalent of the European Tongrian-Sannoisian-Lattorfian has long been recognized and needs only mention in this place.

As a part of the discussion of the coral faunas, pages 199-207 of this volume, I have correlated the basal part of the Chattahoochee formation with the Rupelian-Stampian of western Europe. This conclusion, which seems to me firmly established, is new for the marine Tertiary formations of continental North America.

That the Tampa formation of Florida is the equivalent of the European Aquitanian, which seems to include the Chattian, is generally acknowledged. This is the opinion of W. H. Dall and M. Cossmann,

---

1 U. S. Geol. Survey, Prof. Paper 91, p. 11.
2 Idem, p. 152.
3 De Lapparent, A., Traité de géologie, p. 1454, 1900.
4 Traité de géologie, ed. 4, p. 1473.
5 Maury, Carlotta J., A comparison of the Oligocene of western Europe and the southern United States, Bull. Amer. Paleontology, vol. 3, No. 15, pp. 313-404, pls. 20-29, 1902. Here it should be noted that Tongrian has been used in two senses, one as the equivalent of the lower (Lattorfian) and the other as the equivalent of the middle (Rupelian) Oligocene. Miss Maury used it in the former sense.
and apparently Mr. R. B. Newton agrees with them. The papers cited below contain the opinions referred to, and additional references to literature are given in the footnotes to Doctor Dall's paper. On page 211 of this volume, under my discussion of the successive American coral faunas of Tertiary age, the same opinion is expressed. Paleontologists are divided in opinion as to whether the Aquitanian should be referred to the Oligocene or to the Miocene.

From my experience with American faunas I incline to consider it as belonging to the older series. The Rupelian (basal Chattahoochee and Antiguan) fauna has much in common with the Sannoisian-Lattorfian (Vicksburgian) faunas, on the one hand, and with the Aquitanian (Tampa) fauna on the other. The failure to discover *Lepidocyclina* at Tampa seems to me of no great value as evidence, for, so far as I am aware, no careful search for Foraminifera has been made in the "silex" bed. Should the specimens not have been destroyed by changes in the sediments subsequent to deposition, it is my expectation that either *Lepidocyclina* or *Heterosteginoisides*, or both, will be found at Tampa, for in the Canal Zone both of those genera of Foraminifera are found in association with a fauna that I am correlating with the Tampa, and *Heterosteginoisides* occurs in Anguilla. Mr. Newton, in his note cited, states that "Nummulites died out at the end of Oligocene time, being replaced by Lepidocycline Foraminifera in the succeeding Aquitanian and later stages of the Miocene period." This is an unfortunate remark, for the type-species of *Lepidocyclina* is *L. mantelli* (Morton) from the Vicksburgian Oligocene of the Gulf States. It is now known that in Georgia the genus ranges stratigraphically as low in the Eocene as a middle Jacksonian horizon, overlapping the upward range of *Orthophragmina*, and it is probable that it ranges as low as the base of the Jackson formation in Mississippi and Louisiana. *Nummulites panamensis* in the Canal Zone occurs at a horizon very nearly the same as that of the "silex" bed at Tampa. There are important differences between the Tampa and the later fauna of the Chipola marl, which is considered by the students of Florida stratigraphy, except Doctor Dall, as the basal member of the Alum Bluff formation. However, it should be recognized that the presence of the Chipola marl considerably west of the type locality on Chipola River indicates a persistence that may warrant according it formational rank. I am definitely placing the Chipola marl and the higher members of the Alum Bluff formation in the Miocene.

2 Newton, R. B., Remarks on Dr. Dall’s paper, idem, p. 40.
3 Generic determinations by Dr. Joseph A. Cushman.
MIOCENE.

ALUM BLUFF FORMATION.

In the foregoing paragraph and on pages 219–220, as a part of the discussion of the fossil coral-faunas, I have referred the Chipola marl member of the Alum Bluff formation to the basal part of the Miocene—that is, I correlate it with the base of the Burdigalian of European nomenclature. Unfortunately, information on the basal contact of the Chipola is not adequate. According to the description by Matson and Clapp ¹ it conformably overlies the Chattahoochee formation. In 1900 I examined the exposure at the type locality, the McClelland farm on the west side of Chipola River, just south of Ten-mile Creek, Calhoun County, Florida, and corroborated the previous observations of Dall and Stanley-Brown that the marl immediately overlies limestone at the top of the Chattahoochee formation, but did not study the nature of the contact in sufficient detail. Although the evidence is not definite, it is probable that the contact is one of erosion unconformity.

As regards the Mollusca of the Chipola marl, Miss Julia Gardner, who has almost completed a monographic account of them, furnishes me the following statement: "The earlier investigation of the Chipola fauna indicated that 'about 50 per cent of the species in the Chipola beds are peculiar to them; of the others the larger proportion are common to the Tampa Orthaulax bed while in the subsequent Oak Grove sands about 24 per cent of the Chipola species survive.' ²

"Further investigations have, as is usually the case, materially increased the percentage of peculiar forms and materially diminished the percentage of species common to other horizons. The work upon the Chipola fauna is not yet complete but there is every reason to suppose that at least 75 per cent of the species are restricted to the single horizon. Twenty-three of the Tampa gastropods have been considered identical with those from the Chipola. In 18 out of the 23 the resemblances between the Tampa and Chipola forms are too slight to justify their inclusion under the same specific name. Two other species must be discarded for the present, because it has been impossible to find the Tampa individuals referred to them. Only 3 of the 23 remain; Strombus chipolanus is represented in the Tampa beds by material too imperfect to determine with complete assurance; Xenophora conchyliophora is a species which has persisted with no perceptible change of character from the Upper Cretaceous to the Recent; Tegula exoleta apparently initiated in the Tampa persisted throughout the Miocene. The relation between the

Tampa and Chipola pelecypods promises to be similar to that between the gastropods. No identical species of any significance has been found, and except a single conspicuous element the entire aspect of the fauna looks forward to the later Tertiary and Recent rather than backward. The presence of Orthaulax, that bizarre group so closely associated with the Oligocene of the southeast coast and the Antilles, is the one strong band between the Chipola and the later Oligocene faunas. This archaic type survived the break at the close of the Tampa and continued in considerable abundance throughout the Chipola, but no trace of it has been found in the later formations.

"The affinity between the Oak Grove and Chipola is much closer than the percentage of identical species indicates. Only about 15 per cent of the Chipola forms are common to the Oak Grove, although about 35 per cent of the Oak Grove forms are common to the Chipola. The Chipola fauna is remarkably varied and includes two decidedly distinct facies and a third more obscurely differentiated assemblage. The Oak Grove fauna, on the other hand, is much more uniform; it includes fewer species and has a much larger relative number of individuals. The facies of the Chipola fauna at the type exposure on Chipola River is much more closely allied to the Oak Grove than is the facies developed in the lower bed at Alum Bluff, which contains a rather prominent brackish water element. The third assemblage, a marine fauna known only from Boynton Landing on Choc-tawhatchee River, has a rather large number of peculiar species. Except Orthaulax, the prominent genera of the Chipola fauna on the Chipola River and those of the Oak Grove fauna are the same, and a goodly percentage, probably the majority, of the prolific species of the Oak Grove have closely related analogues in the Chipola fauna as represented on Chipola River. The change following the Chipola was apparently sufficient to exterminate the archaic types, together with a large number of the newer forms. The hardier types, however, survived and were apparently able to flourish with increased abundance in the less densely populated waters of the Oak Grove."

The Mollusca of this horizon are only remotely related to those of the Tampa formation, which is the stratigraphic equivalent of the upper part of the Chattahoochee formation, while they are closely related to those of the next higher zone, the Oak Grove sand. Because of the faunal kinship and the stratigraphic intergradation of the marl with the typical material of the Alum Bluff formation at Alum Bluff, it is classified with the Oak Grove sand as a member of the Alum Bluff formation.

Berry has described the small flora obtained in the Alum Bluff formation 1 in a paper by him already cited. The fossil plants at

---

Alum Bluff occur between 12 and 17 feet above the top of the Chipola marl. He says regarding this flora: "It is thus apparent that the Alum Bluff flora can be considered either Aquitanian or Burdigalian, with a slight preponderance of the evidence in favor of the Aquitanian, * * * If the Alum Bluff formation is of Aquitanian or Burdigalian age—and one or the other alternative seems certain—the more or less academic question is raised whether it shall be classed as Oligocene or Miocene."

The floral evidence at least does not contradict considering the Alum Bluff as Burdigalian.

The matrix of the Chipola marl is particularly suited for the preservation of Foraminifera, and they are very abundant; but there are no orbitoid Foraminifera, neither Lepidocyclina nor Heterosteginoides.

The Bryozoa of the Alum Bluff formation, according to Messrs. Canu and Bassler, are of distinctly Burdigalian affinities. The fauna is particularly characterized by the introduction of certain species that persist until the present time. Two of these species are Cupularia umbellata Defrance and C. canariensis Busk, both of which occur in the Chipola marl at its type locality, and both were collected by Doctor MacDonald on Banana River, Costa Rica, in deposits correlated with the Gatun formation, and both occur in the Bowden marl of Jamaica.

The evidence of the fossil corals and of the fossil vertebrates has been discussed on pages 219, 220 of this volume.

**MARKS HEAD MARL AND CALVERT FORMATION.**

The Marks Head marl at Porters Landing, Savannah River, Effingham County, Georgia, has been correlated by me with the Calvert formation of Maryland and Virginia.¹ The most recent discussion of the age equivalence of the Calvert with European horizons is that of Berry in a paper already mentioned.² He says, regarding the probable age of the formation: "Seven of the Calvert plants, or 26.9 per cent, are common to the Tortonian of Europe, and ten others, or 38 per cent, are represented in the Tortonian by very similar forms. In view of the fact that these floras spread into both regions from a common and equally accessible source, the evidence that the Calvert flora indicates a Tortonian age is as conclusive as intercontinental correlations ever can be."

According to this correlation of Berry, there is no Helvetian in the Atlantic and Gulf Coastal Plain of the United States.

² U. S. Geol. Survey Prof. Paper 98 (F), pp. 61-73, pls. 11, 12, 1916.
Miss Julia Gardner contributes the following statement on these formations: "Because of faunal similarity with the Calvert formation, both the Choptank and the St. Marys formations are also correlated with the Tortonian of Europe, though, of course, they represent horizons slightly higher than that of the Calvert. The Choptank fauna is little more than a sandy bottom facies of the Calvert and is the biologic expression of the physical conditions attending its close. About 60 per cent of the Choptank species are present in the underlying formation, while approximately 30 per cent persist into the overlying St. Marys.

"The St. Marys fauna, though similar to those of the lower formations of the Chesapeake group in the general make-up, is differentiated from them by an influx of new forms and by the absence of those species peculiar to the cooler waters of the Calvert and the sands of the Choptank. The more modern element includes not far from 35 per cent of the entire St. Marys fauna."

**YORKTOWN FORMATION AND DUPLIN MARL.**

Miss Gardner has kindly prepared the following statement: "The change in the paleontologic character at the close of the St. Marys is much more significant than that preceding it. Although the percentage of new forms in the Yorktown is not remarkably large, the general facies shows a distinct advance over the St. Marys. The more primitive types, such as *Ostrea compressirostra*, had become extinct or they show an abrupt decrease in prominence, while a number of more advanced types such as *Arca lienisosa*, which constitute conspicuous elements in the later faunas, are initiated at this horizon.

"The views advanced by Dall on the approximate synchronicity of the Yorktown and Duplin faunas have been verified by subsequent investigations. Doctor Dall, in his discussion of Tertiary conditions along the East Coast, suggested the elimination of the cool inshore current of the earlier Miocene and the reestablishment of a Tertiary Gulf Stream as the probable cause of the subtropical aspect of the Duplin fauna. This late Miocene warm current apparently hugged the North Carolina shore even more closely than does the present Gulf Stream, but swung off into the open sea in the vicinity of Hatteras so that its influence upon the Yorktown fauna was almost negligible. The sea floor, on which the Dulphin marl, as at present known, was deposited, was apparently more sandy than that on which the St. Marys and Yorktown formations were laid down, as the conspicuous abundance in Virginia and northern North Carolina of such a form as *Mulinia congesta* indicates dominantly muddy bottom in some..."
portions at least of the area covered by deposits belonging to the Chesapeake group, while the profusion of *Oliva literata* and *Olivella mutica* give evidence of extensive sand flats in the area covered by the Duplin marl. Already in the late Tertiary, present day conditions had been approximated along the East Coast. The faunas of Virginia and North Carolina flourished in rather shallow inshore waters into which mud and sand were being freely carried, the waters of the Yorktown basin being slightly but not much warmer than those off the Virginia coast today; while the Duplin fauna was apparently in more direct communication with the Floridian life than are the present faunas off Hatteras and Cape Fear and indicate slightly warmer climatic conditions than do those of the Yorktown."

The Yorktown formation and the Duplin marl are the correlatives of the European stage next younger than the Tortonian, which would be the Sarmatian or Pontian or both.

**Choctawhatchee Marl.**

The study that I made of the Mollusca from the Duplin marl as exposed at Porters Landing, Savannah River, Georgia,¹ and of Mollusca from exposures of the same formation in South Carolina, led me to the conclusion that the Choctawhatchee marl of Florida, exposed between Ocklocknee River, on the east, and Choctawhatchee Bay, on the west, is of very nearly the same, if not of the identical, age as the Duplin marl. Therefore, the Choctawhatchee marl and its correlative, the Jacksonville formation of east Florida, are about the same in age as the Sarmatian and Pontian of Europe.

The brackish water Pascagoula clay of the coastal area in Mississippi and Louisiana is probably of about the same age—that is, late Miocene.

**Pliocene.**

In the South Atlantic and Coastal Plain of the United States four formations, the Waccamaw marl of the Carolinas, the Nashua and Caloosahatchee marls of Florida, and the Citronelle formation of the Gulf States are definitely considered of Pliocene age. References to literature are not necessary, as they are given in the papers mentioned in the footnotes on pages 565, 566. At present correlation of these formations with the three recognized European stages, Plasian, Astian, and Sicilian is not warranted. According to Berry, the flora of "the Citronelle formation belongs in the later half of the Pliocene epoch and is directly ancestral to the Pleistocene and Recent floras of the same region."

¹ Georgia Geol. Survey Bull. 26, pp. 367-369, 1911.

EOCENE.

The oldest deposit from which Eocene fossils were obtained is a dark-gray argillaceous sandstone near Tonosi. Here specimens of *Venericardia planicosta* closely resembling a variety found at Claiborne, Alabama, were collected. The evidence of one species is meager, but as much as there is points to the deposit being of Claibornian-Lutetian (or Auversian) age.

Deposits of Claibornian age extend as a belt from South Carolina across Georgia into Alabama, thence through Mississippi, eastern Arkansas, Louisiana, and Texas, and into Mexico.1

Although deposits of upper Eocene (Jacksonian) age have not been positively identified in Panama, they probably are there. Doctor Cushman inclines to the opinion that the limestone containing *Orthophragmiumina minima* at David is of upper Eocene age. Upper Eocene deposits occur in Nicaragua, St. Bartholomew, Jamaica, Cuba, in the southeastern and southern United States from North Carolina to Mexico, and probably in northern Colombia. The correlation and distribution of deposits of this age are discussed on pages 193–198 in the account of the fossil coral-faunas. They are the American representatives of the European Bartonian-Ludian-Priabonian stage.

It is highly probable that upper Eocene marine sediments are present on the island of Antigua. Hussakoff has described 2 a fossil fish, *Zebriasoma deani*, from a quarry belonging to Mr. Oliver Nugent. I did not visit this quarry but saw it from a distance. It is at a place known as Golden Grove, which is 1.4 nautical miles nearly due south from the Cathedral in St. John, about 400 feet east of the southern end of a north and south line, and is in a sandstone or bedded tuff that is stratigraphically below the middle Oligocene Antigua formation. I believe Hussakoff is correct in assigning a probably Eocene age to the fossil.

Although it is probable that deposits of upper Eocene age occur in a number of other West Indian islands, Haiti, Porto Rico, the Virgin Islands, St. Croix, Guadaloupe, Martinique, and Barbados, the available evidence is indecisive. Gregory 3 expressed the opinion in 1895 that the Scotland "beds" of Barbados are of lower Oligocene age.

According to Douvillé, in his latest paper 4 on the orbitoids of Trinidad, there are in that island deposits of Lutetian, Auversian, and

---

1 See p. 565 of this volume.
Priabonian age. Miss Maury \(^1\) correlates the basal bed of the exposure at Soldado Rock, Trinidad, with the Midway group of the Gulf Coastal Plain of the United States, but I am not convinced that the fauna is quite so old. In fact, the paleontologic evidence seems to me just about as strongly in favor of the horizon corresponding to one in the Wilcox group. Douvillé is of the opinion that most of Miss Maury’s horizons are younger than the age she has assigned them. There are discrepancies between Miss Maury’s and Douvillé’s correlations that probably can be reconciled only by a critical study of Foraminifera positively known to be associated with the respective beds in which the Mollusca were collected. I have had considerable experience in checking M. Douvillé’s results, and, except that he does not understand all of the stratigraphic nomenclature and is greatly confused as to some of the stratigraphic relations in the southeastern United States, I have usually found his deductions as to the age of formations valid. It seems to me that the table in his last paper on the Trinidad orbitoids is correct, except that it seems to me more appropriate to refer the Aquitanian to the Oligocene than to the Miocene.

**Oligocene.**

**Lower Oligocene.**

The quotation, page 549, from Douvillé indicates the presence on the Haut Chagres of limestone of lower Oligocene (Lattorfian) age, as it contains specimens of *Orithophragmina (Asterodiscus)* species in association with *Lepidocyclina* species resembling *L. chaperi*.

Doctor MacDonald collected in the river bed at David, station 6512, *Lepidocyclina macdonaldi, L. duplicata, L. panamensis, Orithophragmina minima,* and *Nummulites davidensis*; at station 6526, in limestone which according to his section immediately underlies the limestone at station 6512, where he obtained *Lepidocyclina* species undetermined and *Nummulites davidensis*; and he found at station 6523, 2 miles north of David, *Lepidocyclina macdonaldi* and *L. duplicata*. These three localities represent very nearly, if not precisely, the same horizon, and have faunal characters very similar to those of the horizon in Trinidad that Douvillé correlates with the “Stampien inférieur,” which, according to him, is Lattorfian. It therefore seems that the limestone in and north of David is of lower Oligocene (Lattorfian) age, and is the correlative of the Vicksburg group of the eastern Gulf States of the United States. Doctor Cushman’s opinions as to the probable Eocene age of this limestone was given on page 550.

It is probable that the Bohio conglomerate is of this age, for it contains the Oligocene plant, *Taenioxylyon multiradiatum* Felix, which

---

also occurs in the Oligocene of Antigua, and according to Doctor MacDonald the Bohio underlies the Culebra formation, the lower part of which seems to be of middle Oligocene age. However, the Bohio may be of middle Oligocene instead of lower Oligocene age.

Romanes reports from Manzanilla, on the Pacific coast of Costa Rica, a shorty rock in which there are remains of Foraminifera, including Globigerina and "a complex form allied to Tinoporusb which according to Dr. R. L. Sherlock is "most probably a species of Orbitoides." As the so-called species of Tinoporus from Trinidad, according to Douvillé, are referable to Orhopragmina (Asterodiscus), it appears almost certain that the "form allied to Tinoporus" mentioned by Romanes is a species of Asterodiscus. Dr. J. A. Cushman has examined Romanes's figure, based on a photomicro-graph of a thin section of the rock from Manzanilla, and writes me that it shows "Orhopragmina and abundant Globigerina, and that the rock may be similar to that at David and on Haut Chagres."

The evidence is not entirely decisive, but the probability is very strong that the rock from Manzanilla, Costa Rica, is of lower Oligocene (Lattoronian) age as is that at David and on Haut Chagres. It is unfortunate that the box containing Mr. Romanes's most important specimens was lost in transit, but, notwithstanding this loss, he has made a valuable addition to the literature on the geology of Costa Rica.

Hill, in his description of a geologic section from San Jose, Costa Rica, to the coast at Port Limon, says: "At Guallava, the next station east of Las Animas, the Tertiary rocks are of Vicksburg age, according to Dr. Dall."

On page 275 of Hill's paper, Doctor Dall lists from this locality "the genuine Orbitoides manelli, Phos, Dentalium, Plicatula, Anomia, etc., all Vicksburg species."

Between Costa Rica and Mexico there is no definite evidence as to the presence or absence of lower Oligocene deposits, but as Sapper mentions Nummulites from Zacaupala, Yucatan, either Eocene or Oligocene occurs at this place; and, judging from the indefinite statements of Sapper, deposits of either Eocene or Oligocene age underlie extensive areas in Chiapas and northern Guatemala.

Felix and Lenk report Nummulites and "Orbitoides" in northern Chiapas, from collections made by Karsten, and refer them to the Eocene, but sufficient data are not given to decide whether the

---

1 Romanes, J., Geology of a part of Costa Rica, Geol. Soc. London Quart. Journ., vol. 68, pp. 130, 131, pl. 9, fig. 4, 1912.
2 Idem., pl. 9, fig. 4.
4 Sapper, Carlos, La geografia fisica y la geologia de la Peninsula de Yucatan, Mexico Inst. geol. Bol. 3, p. 7, 1896.
deposits are of Eocene or Oligocene age. Aurelius Todd collected at Tumbala, Chiapas, station 6403 U.S.N.M. register, *Lepidocyclina* in quantity and a *Nummulites* possibly allied to a species described by Cushman from St. Bartholomouw. Cushman says, "I should say that the material represents a lower Oligocene horizon."

*Lepidocyclina* and other Foraminifera that appears to be nummulitic were obtained by P. C. Steward and C. W. Washburne 500 meters southeast of Pecien, 8 leagues southwest of Ozuluama, Vera Cruz, Mexico, station 5462 U.S.N.M. register. Doctor Cushman says that at best some of this material is from strata of Oligocene age, but he does not express an opinion as to what part of the Oligocene it represents.

Lower Oligocene deposits probably occur in eastern Mexico, north of the Tamaulipas Range, for Dumble reports a *Pecien* recalling *Pecien poulsoni* Morton, specimens identified by Doctor Dall.\(^1\) South of that range, the same author records "*Orbicoides papyracea*, *Criseli- loria*, and *Nummulites*, from the Buena Vista to the Tancochin at Cerro del Oro."\(^2\) The paleontologic evidence is indecisive, for the "*Orbicoides papyracea*" is certainly misidentified; but the specimens probably represent a large species of *Lepidocyclina*, of the kind abundant in the lower Oligocene and upper Eocene of the southeastern United States and in the middle Oligocene of Antigua and Georgia. The deposits from which the Foraminifera were obtained may be of upper Eocene or of upper or middle Oligocene age, but the probability is that they are lower Oligocene in age.

No marine Oligocene deposits are known in the State of Texas. Berry reports *Palloxylon texense* Stenzel, from 5 miles north of Jasper, Texas, from "beds of Vicksburg age,"\(^3\) and states that "Unstudied material indicates the probable presence of this species at several localities in the Catahoula sandstone of Texas and in the Vicksburg limestone of Alabama." There is marine lower Oligocene in Louisiana at Rosefield, near Washita River; and east of Mississippi River it outcrops in a belt running from Vicksburg eastward to Georgia and Florida.

Marine deposits in Cuba have been questionably referred to the lower Oligocene, but a definite opinion must be withheld until Doctor Cushman has completed his study of the Cuban orbitoid Foraminifera.

The geologic formation in Jamaica to which Hill applied the name Montpelier white limestone\(^4\) contains many Foraminifera,

---

2 Dumble, E. T., Some events in the Eocene history of the present coastal area of the Gulf of Mexico in Texas and Mexico, Journ. Geol., vol. 23, No. 6, p. 496, 1915.
one of which was identified by Bagg as *Orbitoides mantelli*, and is definitely correlated by Hill with the Vicksburg deposits of Mississippi. The identification of *Orbitoides* (*Lepidocyclina*) *mantelli* is subject to doubt, and the doubt attaching thereto affects the validity of Hill’s correlation. However, the fact that the Montpelier limestone overlies the upper Eocene Cambridge formation and that a stratigraphic break occurs between it and the Bowden marl is strong stratigraphic evidence in favor of the correctness of Hill’s opinion. The stratigraphic evidence leads to the supposition that the orbitoidal Foraminifera belong to the genus *Lepidocyclina*, and their having been identified as *Orbitoides mantelli* indicates that they have the form of that species. From the available evidence I consider Hill’s conclusion justified, but until the Foraminifera have been critically studied the correlation is only tentative.

Hill\(^1\) presents a correlation of Tippenhauer’s columnar section for the island of Haiti with the Jamaican formations. Tippenhauer gives very meager information on the paleontology of Haiti, but he does say that the yellow limestone, the formation overlying Eocene conglomerate, contains “*Orbitoides*.”\(^2\) Gabb mentions the abundance of “*Orbitoides*” in Santo Domingo,\(^3\) but his statements are indefinite. It will later be made clear (p. 591 of this volume) that orbitoidal Foraminifera are absent in Santo Domingo in deposits of the same age as and younger than the Bowden marl. The orbitoidal limestones of Santo Domingo are therefore older than the Miocene of Rio Gurabo, etc., and are probably of lower or middle Oligocene age, although they may be of upper Oligocene age. Additional stratigraphic and paleontologic work is needed before reliable conclusions on these matters are possible.

There is at present no information that suggests the presence of lower Oligocene marine deposits in the West Indies east and south of Haiti. At the base of the Pepino formation in Porto Rico and of the Antigua formation in Antigua there are erosion unconformities, indicating periods of uplift during the lower Oligocene. I have not been able to procure information on Guadaloupe or Martinique that would serve as a basis for an opinion on the age of the lower formations in these islands.

On the island of Trinidad lower Oligocene (Sannoisian and lower Stampian of Douvillé)\(^4\) is well developed.

There is no information on northern South America.

---

\(^1\) The geology and physical geography of Jamaica, p. 172.
\(^2\) Tippenhauer, L. G., Die Insel Haiti, vol. 1, pp. 86, 87, 1892.
MIDDLE OLIGOCENE.

As stated on page 203 in the discussion of the coral faunas, the Antiguan Oligocene must, in my opinion, be taken as the type formation and type locality of the middle (Rupelian) Oligocene of America. I have definitely correlated with this horizon the reef-coral fauna from Tonosi, Panama, station 6587, which I consider to be the stratigraphic equivalent of the lower part of the Culebra formation. *Lepidocyclina panamensis* and *L. duplicata* are associated Foraminifera. The presence of marine deposits of this age in Antigua, Porto Rico, Santo Domingo, Cuba, Florida, Alabama, and eastern Mexico has been mentioned on pages 199-207.

Messrs. Roy E. Dickerson and W. S. W. Kew have recently published a paper\(^1\) in which they say: "most of the localities listed below appear to belong to the San Fernando formation of Dumble." This name is invalid, because it is preoccupied by the name of certain formations in Trinidad, and has been renamed San Rafael formation by E. T. Dumble. On page 205 of this volume I correlate it with the middle Oligocene Antigua formation, the basal part of the Chattahoochee formation, and the European Rupelian, on the basis of the corals, which possess no such heterogeneous stratigraphic affinities as the fossils recorded by Messrs. Dickerson and Kew. I will not here undertake to analyze the fauna they report, but will say that it contains names of species of upper Eocene (Jackson-Ludian), lower Oligocene (Vicksburgian-Lattorfsian), upper Oligocene (upper Chattahoochee-Tampa-Aquitanian), and lower Miocene (lower part of the Alum Bluff and the higher horizon represented by the Bowden marl-Burdigalian) age. In fact their list includes nearly every horizon from upper Eocene almost to middle Miocene. I will not attempt to explain this surprising paleontologic assemblage as the collections may represent a number of horizons, the species may be misidentified, or some of the species may have extraordinary stratigraphic ranges; and it will be mentioned that, as in at least one instance Cotteau made an error in stating the locality at which the type of a species was collected, there is some confusion for which Messrs. Dickerson and Kew are not responsible. An attempt will be made to remove in the forthcoming memoirs on West Indian paleontology as much of this kind of confusion as is possible.

West of Alabama in Mississippi and Louisiana there are plant-bearing beds of middle Oligocene age, for a considerable part of the Catahoula sandstone is certainly of that age, but that formation seems to include beds of lower, middle, and probably upper Oligocene age. No middle Oligocene deposits are known in Texas. There is no

---

information on Central American between Mexico and Panama, nor is there any on northern South America.

H. Douvillé ¹ has referred the “couches de San Fernando” of Trinidad to what he designates “Chattien et Tongrien” or “Stampien supérieur.” The species of Foraminifera occurring at this horizon, according to Douvillé, are Nummulites cf. N. vascus, Lepidocyclina (Isolepidina)² pustulosa, L. (Isolepidina) “du type ogival,” L. (Eu- lepidina) formosa, L. (Eulepidina) cf. L. dilatata. The species in Panama that would represent about the same horizon, according to my interpretation, are Lepidocyclina panamensis and L. multiplicata, stations 6586e and 6587 (see page 555). L. panamensis, it should be stated, may range upward into the Emperor limestone, but this is not certain.

The evidence for Barbados is not altogether decisive. Franks and Harrison ³ present the following classification of the Barbadian formations:

- **Pleistocene and Pliocene.**
  - Low-level reefs.
  - High-level reefs.

- **Miocene.**
  - Oceanic series. Break.

- **Eocene or Oligocene.**
  - Scotland beds.

The Globigerina-marls are referred to in the section on page 544 of the paper cited, as the Bissex Hill “beds.” The only comment I will here make on this section is that it seems to me physically impossible to have a fringing reef conformably built on Globigerina ooze deposited in water 1,000 fathoms deep.

After bringing to bear on the problem of the age of the Scotland beds the information accumulated by R. J. L. Guppy, Harrison and Jukes-Browne, and others, as well as that obtained through his own studies, Gregory says:⁴ “It is therefore advisable at present to correlate the whole of the beds in Barbados below the Oceanic Series with the San Fernando or Naparima marls of Trinidad. Guppy has recently referred these (and the lower part, at least, of the Scotland beds, goes with them) to the Eocene. They are, however, now generally assigned to the Oligocene, as, for example, by Heilprin.”

A preceding paragraph of this paper contains Douvillé’s correlation of the “couches de San Fernando” of Trinidad, with the “Stampien

---

² This subgeneric name is invalid, for it is proposed for Lepidocyclina maniilli, which is the type-species of Lepidocyclina. The name should be written Lepidocyclina (Lepidocyclina) pustulosa or [Lepidocyclina] Lepidocyclina pustulosa.
supérieur," which is Rupelian. Should the correlation of the Scotland "beds" with the San Fernando be valid, the Scotland "beds" are of the same age as the Antigua formation of Antigua, and corroborates the opinion expressed by Gregory.

Allusion will here be made to two species of fossil corrals, that were submitted to me by Dr. J. W. Spencer and were said to have been collected in Barbados, near the Cathedral at Bridgetown; and I gave him the generic names used in his paper referred to below.\(^1\) The specimens are no longer accessible to me, but I have photographs of the species I listed as Astrocoenia species, which is the species to which I have applied the name Astrocoenia portoricensis, page 350 (pl. 76, figs. 4, 4a, pl. 78, figs. 1, 1a) of this volume; and I have notes on the other species, referred to by me as Stylophora species. The latter species, as well as Astrocoenia portoricensis, is exceedingly abundant in Antigua, where I collected between 60 and 70 specimens. It has six septa and a styliform columella, characters that led me to refer it to Stylophora, but as there are well-developed styles in the corners between many corallites, I am now placing it in Stylocoenia. As these two species not only occur in Antigua, but as the matrix, yellowish clay, in which the specimens were embedded is similar to that usual in Antigua, I have wondered if the specimens did not really come from that Island, and not from Barbados.

Messrs. Harrison and Jukes-Browne, it seems, became much excited over the reported occurrence in Barbados of the two species of corals mentioned above.\(^2\) I will not enter the controversy between these authors and Doctor Spencer further than to say that if the two species whose tentative identification I gave Doctor Spencer actually came from Barbados, their evidence is decisive as to beds of the age of the Antigua formation being in Barbados, and that the evidence of the corals is in accord with Gregory's correlation of the Scotland "beds"; but if the specimens were obtained at the locality at which Doctor Spencer says he found them, the Scotland "beds" must be very near the surface in Bridgetown, and the veneer of the elevated coral-reef limestone decidedly thin. The area 2.75 miles northeast of Bridgetown is indicated on Messrs. Harrison and Jukes-Browne's geological map of Barbados as "limestone probably underlain here by Scotland beds." Careful search should be made for corals in the material underlying the elevated reef in Bridgetown, and if the older coral-fauna is there, additional specimens will almost certainly be found, for the two species reported from there are usually represented not by occasional but by numerous specimens, if present at all.

---


According to Hill\(^1\) this epoch is represented in Jamaica by an erosion unconformity that intervenes between the Montpelier white limestone and the Bowden marl. The orbitoids and nummulites of Jamaica are greatly in need of critical study. It is entirely probable that part of Hill's Montpelier limestone is of middle Oligocene (Rupelian) age.

**Upper Oligocene.**

It is my opinion, as expressed on a previous page (555), that the upper part of the Culebra formation and the Emperador limestone are the correlatives of the European Aquitanian, and on page 571 I have given my reasons for preferring to refer the Aquitanian to the upper Oligocene rather than to the basal Miocene. The reference of the upper part of the Culebra formation, in which *Lepidocyclina caneliei* R. Douvillé and Lemoine and *L. chaperi* R. Douvillé and Lemoine occur, to the upper Oligocene is old, for it was first published by H. Douvillé in 1898.\(^2\) Later he refers the beds in which *L. caneliei* is found to the upper Aquitanian, which he considers lower Miocene. M. Douvillé apparently is confused as regards the stratigraphic relations of *L. chaperi*, for the section, station 6019e–f, page 538, shows that it occurs stratigraphically above *L. caneliei*, station 6019a, page 538, in Gaillard Cut.

As has been said, I correlate that part of the Culebra formation in which *Lepidocyclina caneliei*, *L. chaperi*, *L. vaughani*, *Heisterstegnoides panamensis*, *Nummulites panamensis*, *Orbibiolithes americana*, and the corals listed on page 208, with the upper half of the Chattahoochee formation of Georgia and Florida and a part of the Tampa formation of Florida, and I consider it the American correlative of the European Aquitanian-Chattian.

The Emperador limestone is paleontologically very closely related to the underlying top of the Culebra formation. In fact, except in the Canal Zone, where they are separable because of lithologic differences, it seems to me doubtful if the horizons represented by them can be positively identified.

As a part of my discussion of the fossil corals it was necessary for me to discuss the geographic distribution of coralliferous deposits of this age in America. Besides those in Panama, marine deposits of the same age also occur in Anguilla, probably in Porto Rico, in Cuba, Florida, and Georgia, and H. Douvillé's researches on the Foraminifera of Trinidad show their presence on that island. It is probable that they are also present in Martinique, Santo Domingo, and eastern Mexico, but precise data are lacking.


Recently Dr. Sidney Powers has presented to the United States National Museum some specimens he collected at the entrance to Rio Dulce, Guatemala. The rock is a massive light-colored, fine-textured limestone, with a conchoidal fracture, and contains many poorly preserved fossils. Among the fossils are Orbuliolites species; several corals, one of which resembles Siderastrea, another is probably a specimen of Goniopora, and a third seems to be a branching poritid coral that looks precisely like a coral obtained by Doctor MacDonald in limestone, referred by him to the Emperor limestone, in the swamp north of Ancon Hill and about one-quarter of a mile south of Diablo Ridge, Canal Zone; and there are specimens of Ostrea, Pecten, and Lima. This material is too poor to warrant a positive opinion, but it is worth noting, and it probably represents a horizon very near that of the Emperor limestone.

According to Hill's account of the stratigraphic succession in Jamaica, the correlatives of these uppermost Oligocene deposits are represented there by a stratigraphic break, the unconformity between the Montpelier white limestone and the Bowden marl.

**Miocene.**

The definite correlation of the Canal Zone Miocene with European horizons was first attempted by H. Douvillé in his paper, already cited, on the age of the deposits along the Panama Canal. He says regarding the deposits overlying those discussed in the foregoing remarks: "Leur âge est incontestablement Miocène." He considers the lower part of these deposits as Burdigalian, the upper part as Helvetian in age. That part of the Gatun formation exposed at Monkey Hill is referred to the Helvetian.

The literature on the age of the Gatun formation is considerable, but a lengthy review of it appears unnecessary. The papers by Toula and by Pilsbry and Brown have already been cited on page 560 of this volume. Actually there is in most cases more apparent than real discrepancy between the correlations of the different investigators, due to the fact that the Alum Bluff formation, including the Chipola marl member at its base, has been referred to the upper Oligocene. The Alum Bluff formation is certainly of Miocene age, according to European usage, and is the American equivalent of the Burdigalian. All available evidence indicates that the lower part of the Gatun formation in the Canal Zone is the equivalent of the Alum Bluff formation of Florida and Georgia. Although the Gatun formation contains numerous species of Foraminifera, echinoids, and Crustacea, the fauna is predominantly molluscan, and the discrimination of zones within it must await the completion of the study of the careful zonal collections Doctor MacDonald and I

---

made. At present I have not strong evidence, but it is nevertheless my belief that, while the lower part of the formation is of Burdigalian, the upper part is of Helvetian age, as Douvillé in essence said so long ago as 1898. This would still signify that the Gatun formation is geologically older than the Miocene of the Chesapeake group in Maryland and Virginia and the Marks Head, Duplin, and Choctaw-hatchee marls of the Carolinas, Georgia, and Florida.

Deposits of old Miocene (Burdigalian = Alum Bluff) age are widely distributed around the perimeters of the Gulf of Mexico and the Caribbean Sea. The Gatun formation extends from Panama into Costa Rica on one side and into Colombia on the other. The lists of corals, Bryozoa, and Crustacea already given show the extension into Costa Rica. Pilsbry and Brown say regarding a collection from near Cartagena, Colombia, that it is from beds “about equivalent in age to the Gatun in the Canal Zone.” They record the following species:

Fossil mollusks from near Cartagena, Colombia.

Conus proteus Hwass.

Polinices mammillaris (Lamarck).

Potamides avus Pilsbry and Brown.

Turritella cartagencnsis Pilsbry and Brown.

lloydsmithi Pilsbry and Brown.

subgrundifcra Pilsbry and Brown.

Drilla gatunensis Toula.

Turrilitllacartagencnsis Brown.

Cancellaria darjena Toula.

Dentalium solidissimum Pilsbry and Brown.

MargincUa Pilsbry and Brown.

cartagenense Pilsbry and Brown.

Oliva sayana immortua Pilsbry and Brown.

tornata Guppy.

Strombina cartagenensis Pilsbry and Brown.

Petaloeconchus domingensis Sowerby.

lloydsmithi Pilsbry and Brown.

Pitar (Ifyysterocoench) casta Pilsbry and Brown.

Yoldia pisiformis Pilsbry and Brown.

Area consobrina Sowerby.

Solenostea dalli Brown and Pilsbry.

Glysymeris tumefactus Pilsbry and Brown.

Soworby.

Murex gatunensis Brown and Pilsbry.

trilobicosta Pilsbry and Brown.

pomum Gmelin.

lloydsmithi Pilsbry and Brown.

Typhis linguisferus Dall.

Ostrea sculpturata osculum Pilsbry and Brown.

Cassis monilifera Guppy.

In 1916, Mr. George C. Matson was engaged in geologic work in northern Colombia, near Usiacuri, and sent to the United States National Museum collections of fossils for use in comparing with those from the Canal Zone and Costa Rica. Dr. C. W. Cooke, before being detailed to other work, had prepared preliminary lists of the species of mollusks received up to the time he had to undertake other duties.

BULLETIN 103, UNITED STATES NATIONAL MUSEUM.

Preliminary list of fossils from Colombia.
(All determinations subject to revision.)

By Charles Wythe Cooke.

7852. Las Sierras, between el Carmen and Zambrano; from surface on top of knoll. F. L. Wilde, collector, December 8, 1916.

Conus, probably C. imitator Brown and Pilsbry.
2 species.

Terebra gatunensis Toula.
subsulcifera Toula.
Drillia gatunensis (Toula)?
Turris barretti (Guppy)?
Cancellaria dariena trachystraca Brown and Pilsbry?
2 species.
Oliva gatunensis Toula?
Marginella species.
Latirus aff. L. protractus (Conrad).
Strombina gatunensis (Toula).
Distorsio gatunensis Toula.

Correlation: Gatun formation.

7873. About one-half kilometer east of Usiacuri, Colombia. G. C. Matson, collector.

Septastrea matsoni Vaughan.
Terebra cf. T. gausapata Brown and Pilsbry gatunensis Toula.
Conus dalli Toula.
2 species.
Turritidae, several species.
Cancellaria, 3 species.
Oliva, several species.
Mitra longa Gabb?
Fusinus species.
Latirus species.
Acteon species.
Columbellidae, several species.
Murex species.
Typhis species.
Turritella mimetes Brown and Pilsbry.
altilira Conrad.
gatunensis Conrad.
Petaloconchus domingensis Sowerby?

Correlation: Gatun formation.

7855. Two kilometers west of Usiacuri, Colombia.
Arca aff. A. grandis Broderip and Sowerby.
Correlation: Probably Gatun formation.

7856. Three kilometers north of Usiacuri, Colombia.

Olivia species.          Ostrea species.
Canellaria species.     Pecten species.
Peiteconchus dominicensis Sowerby? Anomia species.
Turritella gatunensis Conrad. Basta species.

Glycymeris species (also at 7873). Cardium species.
Area aff. A. grandis Broderip and Sowerby Barnacle.

Correlation: Probably Gatun formation.

7857. Weathered surface of calcareous hard sandstone at San Antonio, 18 miles east of Tenerife, Colombia. Rogers and Wilson, collectors.

Terebra 2 species.        Turritella altilira Conrad.
Turris, like T. albida (Perry). Cerithium, 2 species.
Canellaria cf. C. guppyi Gabb. Chama species, etc.

7858. Creek bed at San Antonio. Same bed as 7857.

Cerithium species.        Scapharea species.

7859. Creek at San Antonio.

Scapharea cf. S. chiriquiensis (Gabb). Ostrea species, etc.

Other material was forwarded by Mr. Matson, but it has not been examined.

Marine deposits of similar age are found in Venezuela at Cumana and in Trinidad. R. J. L. Guppy has published two interesting papers in which he compares the species found at Springvalle, Trinidad, with species from Cumana (Venezuela), Jamaica, and Haiti. Douvillé, in his account of the orbitoids of Trinidad, places the “couches de Cumana à Turritella tornata” in the Burdigalian.

The “Oceanic Series” of Barbados (see p. 583 of this paper) is referred to the Miocene by all the recent students of that island. They are deposits supposed to have been laid down in water at least 1,000 fathoms deep, as they contain beds of radiolarian earth and specimens of a deep-sea echinoid, Cystechinus crassus Guppy.

H. Douvillé reports Lepidocyclina giraudi. R. Douvillé from the “Burdigalien de la Martinique.” Subsequently (p. 591) Mollusca from Martinique, thought by M. Cossmann to represent a higher horizon, will be considered.


Dall said, in 1903, regarding the age of the Bowden marl of Jamaica: "It is perhaps with the Oak Grove sands, or between the Chipola and the Miocene, that the position of the Bowden fauna would be marked most plausibly against the Tertiary column of Florida formations."

This correlation has essentially been made by students of other groups of organisms, but instead of considering the Bowden of Oligocene age, they refer it to the Miocene. W. P. Woodring, in a recently published summary of his conclusions based upon a study of the Bowden pelecypods,^2 says: "Though many of the post-Chipolan elements are found among the characteristically tropical groups, yet the introduction of superspecific groups, some of which are not exclusively tropical, can hardly be disregarded. The Bowden pelecypods are distinctly younger than those of the Alum Bluff faunas, as these faunas are now known. It may be suggested that the Bowden fauna is Burdigalian, that is, lower Miocene in the sense of most American stratigraphers."

Dr. J. A. Cushman, from his study of the Foraminifera, and Messrs. Canu and Bassler from their investigations of the Bryozoa consider the Bowden fauna Miocene. My opinion, based upon the fossil corals (see pp. 212, 213 of this volume), is the same as that of the authors mentioned. Until the results of Miss Gardner’s work on the Mollusca of the Alum Bluff formation are tabulated and comparisons made with the Bowden fauna, only approximate correlation is practicable. It is my opinion that the Bowden is equivalent to a horizon high in the Alum Bluff, perhaps about that of the Shoal River marl. In other words, the Bowden corresponds to upper rather than to lower Burdigalian.

There are in Santo Domingo at least three Miocene horizons, according to the results recently obtained there by Miss C. J. Maury. She transmitted the Foraminifera, corals, echinoids, and Bryozoa to me for study in connection with the investigation of the stratigraphic paleontology of Central America and the southern United States, and Miss M. J. Rathbun has delivered to me a manuscript in which she has included descriptions of the fossil Crustacea collected by Miss Maury. Besides Miss Maury’s report on the Mollusca, I am able to use Doctor Cushman’s report on the Foraminifera, my own on the corals, Doctor Jackson’s on the echinoids, Messrs. Canu and Bassler’s on the Bryozoa, and Miss Rathbun’s on the Crustacea. Miss Maury’s zone II on Rio Cana is the same horizon as the Bowden; and she considers her zones G and I to be the same

horizon as her zone H. The age of the Santo Domingan corals is discussed on page 218 of this volume. The Foraminifera, among which are no orbitoids, and the Bryozoa, both groups abundantly represented, give essentially the same result as the corals. Messrs. Canu and Bassler consider the Bryozoa from zones H–I as of unquestionably Burdigalian age.

This same horizon, that of the Bowden, has been recognized at numerous places in Cuba, as has been stated in discussing the fossil coral faunas of Cuba (p. 218). It has been identified at Baracoa and Matanzas, and perhaps at Havana and Santiago. The lower (Alum Bluff) Miocene of the southeastern United States has been discussed at some length on pages 572–574. Marine deposits of this age occur in Florida, Georgia, and southern Alabama; in Mississippi they are represented by the nonmarine, plant-bearing Hattiesburg clay.

A fauna of very nearly the same, if not identical, age occurs on the Isthmus of Tehuantepec. It has been particularly considered by Böse and Toula. Böse says, regarding the specimens collected by him: "Eine ganze Reihe von Arten steht solchen nahe, die nur aus dem Oligocän der Antillen bekannt worden sind." Although precise correlation of this material is not now practicable, it seems that a lower Miocene horizon is represented.

Dr. C. W. Hayes collected on the Pacific coast of Nicaragua, 75 miles northwest of Brito Harbor, station 6400, worn specimens of a species of bryozoan that Dr. R. S. Bassler says is apparently Cupularia canariensis Busk, which ranges from a horizon in the Alum Bluff formation to Recent. The matrix is a calcareous, sandy, consolidated marl, and was included by Hayes in his Brito formation. The age of these specimens is not older than, and it probably is, old Miocene. The Brito formation, therefore, includes deposits ranging stratigraphically from upper Eocene to lower Miocene, but the beds at the type locality are of upper Eocene age (see previous pp. 193–197).

It was stated on page 586 that H. Douvillé considered that part of the Gatun formation exposed around Mount Hope as Helvetican Miocene, and that I provisionally accept his determination. It is probable that some of the Miocene deposits of northern Colombia are also of this age. Information on Venezuela and between there and Martinique is lacking.

For Martinique we have the following statement from Cossmann:

D'après un premier aperçu qui ne porte que sur une partie des Siphonostomes, il pratt à peu près certain qu'un grand nombre de Gastropodes se trouvent à la fois dans


3 Cossmann, M., Etude comparative de fossiles mioëniques recueillis à la Martinique et à l'Isthme de Panama, Journ. conchylologie, vol. 61, pp. 1-64, pls. 1-5, 1913.
M. Cossmann considers this material from Martinique as younger than the Bowden fauna.

Precise information on the paleontology of the Tertiary formations of Guadeloupe is exceedingly meager, in fact it is almost nothing. Dr. J. W. Spencer submitted to me a specimen of *Stylophora* collected by him in a limestone near Les Abîmes. Accurate identification of a species of *Stylophora* may be a proper basis for precise correlation, but the genus ranges from upper Eocene to middle Miocene (about Helvetian) in the West Indian Tertiaries. In 1849 Milne Edwards and Haime described a coral from the "Terrain tertiare" of Guadeloupe, under the name *Thecosmilia ponderosa*, and subsequently transferred it to the genus *Montlivaltia*. I have photographs of the type of this species, kindly sent me by my friend Dr. Charles Gravier of the Muséum d'Histoire Naturelle, Paris. It belongs to the genus *Antillia* and is closely related to *A. bilobata* Duncan. *Montlivaltia guesdesi*, described by Duchassaing and Michelotti from Guadeloupe and said to be associated with *Antillia ponderosa*, is also a species of *Antillia*. *A. guesdesi* is so similar to *A. bilobata* that Duchassaing and Michelotti placed the latter in its synonymy. As I have seen no specimens of *A. guesdesi*, I must base any opinions concerning it upon its authors' figures and descriptions. It seems to me different from *A. bilobata*, but as the distinction between the two consists in the relative number of teeth within 1 centimeter on the septal margins, and as the details of the figures of *A. guesdesi* may be inaccurate, it would be improper to insist that they are different. However that may be, there are in Guadeloupe two supposed, very nearly related species of *Antillia*, and they are actually or almost indistinguishable from species that occur in Santo Domingo at a horizon near or above that of the Bowden marl. The evidence for Guadeloupe, therefore, indicates the presence there of deposits of uppermost Burdigalian or Helvetian age. There may be Tertiary deposits both older and younger than the bed in which the specimens of *Antillia* were collected. Doctor Spencer's structure section across the island strongly suggests that such deposits are there.

---


3 Mém. corall. Ani., p. 69 (of reprint), pls. 5, fig. 13, 1860.
It has already been stated that the fossils obtained by Miss Maury in Santo Domingo at horizons higher than her zones G, H, and I are younger than the Bowden fauna. A line of demarcation between the Burdigalian and higher Miocene is not at present practicable, but it is almost, if not quite, certain that her upper zones are not older than Helvetian. This would still seem to indicate a horizon below the lowest formation of the Chesapeake group of Maryland and Virginia and the Marks Head marl of eastern Georgia, but the available data do not warrant a positive opinion. However, it appears that the higher Miocene deposits of the Santo Domingan section are represented in Florida and Georgia by the erosion interval between the deposition of the uppermost beds of the Alum Bluff formation and that of the overlying Marks Head marl.

The presence in Cuba of deposits, the La Cruz marl, of the same age as the Santo Domingan deposits above Miss Maury’s zones H–I, was noted on page 219 of this volume.

It seems that there are in the southeastern United States no Miocene marine deposits of the same age as the upper part of the Gatun formation, the Santo Domingan deposits above Miss Maury’s zones H–I, and the La Cruz marl of Cuba, unless some of the latter deposits are younger than is at present supposed.

Except for the Isthmus of Tehuantepec, there is no information on marine Miocene formations of this age in eastern Mexico, or in the area between Yucatan and Costa Rica. The extension of the Gatun formation into Costa Rica has already been discussed.

**Pliocene.**

The Toro limestone is the only formation within the Canal Zone that is supposed to be of Pliocene age. The determination of the age of this formation is necessarily by means of its stratigraphic relations, as only one identifiable species of fossil, *Epitonium toroense* Dall, was collected in it, but the stratigraphic relations, described by Doctor MacDonald on pages 544, 545 of this volume, are such that the formation can scarcely be of any age other than Pliocene.

The Pliocene deposits in the vicinity of Limon, Costa Rica, were first observed by W. M. Gabb,¹ who described a number of species from there, and they were later visited by R. T. Hill,² who made additional collections, on which Doctor Dall supplies notes published in the paper cited.³ Doctor Dall has recently described an interesting species of *Pecten, P. pittieri*,⁴ collected by Mr. H. Pittier at Moin Hill, near Port Limon. This species will be referred to in

a subsequent paragraph. Pliocene corals from this locality are considered on page 223.

Mr. George C. Matson collected at Barranquilla, Colombia, some fossils that belong to a fauna younger than that obtained around Usiacuri, and may be of Pliocene age. Glycymeris, Ostrea, Pecten, and Lucina are the genera represented.

The Bissex Hill "beds" of Barbados (see p. 583 of this paper) are considered Pliocene in age by Franks and Harrison; but I infer, from his remarks on the Foraminifera, that Chapman inclined to the opinion that they are of Miocene age. I strongly doubt any of the elevated, terraced coral reefs of Barbados being so old as Pliocene, but present evidence is not decisive. The only known extensive Pliocene coral fauna in America is that of the Waccamaw and Caloosahatchee marls of the southeastern United States. This is discussed on page 222 of this volume. I have studied both the specimens on which Gregory based his account of the Barbadian elevated-reef corals and a collection (see p. 255 of this volume) later sent me by Professor Jukes-Browne. All of the species seem to me inseparable from the species at present living in the Caribbean area, except one that was erroneously identified by Gregory as Lithophyllum walti (Duncan).

Pliocene deposits have been recognized at very few places in the West Indies; in fact, about the only locality at which there is reasonable certainty of there being beds of this age is near Guantánamo, Cuba, where Mr. O. E. Meinzer collected Pecten pittieri Dall, identified by C. W. Cooke.

R. T. Hill considers the Jamaican formations, to which he applies the names Manchioneal and Kingston, as Pliocene, and it seems that he is correct, but the evidence adduced is not completely convincing. In other words, from the evidence available, Hill was justified in his age classification of the deposits mentioned, but their palontology needs more detailed investigation.

The marine Pliocene of the southeastern United States has been considered on page 576 of this paper.

Heilprin was the first to call attention to the extensive Pliocene "gray or white shell limestone" of Yucatan. His examinations were made "at several points in and about Merida, in numerous cuttings along the line of the Merida-Kalkini Railroad, on the line of the railroad connecting the capital city with Ticul, all along the traverse between Merida and Tunkas," and "at various points between Tekanto and Cilam." Sapper has published a rough out-

---

<table>
<thead>
<tr>
<th>U.S. States</th>
<th>European Time Subdivisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nashua marl, near marl (near-ous).</td>
<td>Sicilian, Astian, Plaisian.</td>
</tr>
<tr>
<td>Duplin marl, dream marl (near-ous).</td>
<td>Pontian, Sarmatian.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Head marl.</td>
<td>Helvetian.</td>
</tr>
<tr>
<td>River marl member. Grove sand member.</td>
<td>Burdigalian.</td>
</tr>
<tr>
<td>Maca formation.</td>
<td>Aquitanian, Chattian.</td>
</tr>
<tr>
<td>Mam calcareous marl, Mam limestone, Bluff clay.</td>
<td>Rupelian.</td>
</tr>
<tr>
<td>Ala limestone.</td>
<td>Lutetian.</td>
</tr>
<tr>
<td>Sport sand, combination formation. Lahatta bunter.</td>
<td>Auversian, Lutetian.</td>
</tr>
<tr>
<td>Teche formation, Shiro forma- tion, Seaboma formation, Napha formation.</td>
<td>Ypresian, Sparnacian.</td>
</tr>
<tr>
<td>Coa formation, Karnochee clay, Chiton limestone.</td>
<td>Thanetian, Montian.</td>
</tr>
</tbody>
</table>

Red to the upper Eocene and placed...
line map of the Pliocene area in Yucatan,¹ and he repeated Heilprin's lists of fossils.

No information is available for British Honduras, the Republic of Honduras, or Nicaragua.

The accompanying table presents the approximate stratigraphic equivalence of the Tertiary marine formations in Central America, the Antilles, the southeastern United States, and Europe. It will be noticed that the table indicates two great stratigraphic breaks, namely, one in lower and middle Eocene time, the other in upper Miocene time.

PRE-TERTIARY FORMATIONS IN CENTRAL AMERICA AND THE WEST INDIES.

The foregoing discussion of the marine geologic formations of Panama has included more or less consideration of all of those of Tertiary age, concerning which we have knowledge, in the southern United States, eastern Mexico, Central America, and the West Indies, and a few notes have been made on northern South America. Since the publication of Bailey Willis's Index to the stratigraphy of North America,² there has been no important addition to our knowledge of the pre-Tertiary formations of the West Indies and Central America. As this volume and the geologic map of North America it was prepared to accompany are both easily accessible to geologists, and as a review of the formations of those ages would be mostly repetition of information contained in that work, I will make only a few general remarks.

Rocks of supposed Archean age outcrop as follows: State of Oaxaca, Mexico, granites and gneisses; Chiapas and Guatemala, granites, talc, and chloritic schists; Nicaragua and Honduras, fundamental granite; Venezuela, granite from Puerto Cabello to Trinidad. Granitic débris was found in Eocene sediments in Costa Rica and along Rio Chagres in Panama by Hill. There is granite overlain by arkose below the Upper Cretaceous near the city of Santa Clara, Cuba, and marble and schists in the Isle of Pines.

Paleozoic rocks of undertermined age occur in northern Sonora, Mexico, and in Chiapas; in Guatemala there are formations of both pre-Carboniferous and Carboniferous age; Mierisch reports Devonian in northern Nicaragua; and Paleozoic rocks apparently are present in Honduras. The rocks, largely serpentine, forming the proto-axis of Cuba, and some of the formations in the Trinidad Mountains, Cuba, may be of Paleozoic age, but there is no definite proof.

Triassic deposits occur near Zacatecas, and perhaps at Miqueluna, State of Tamaulipas, Mexico; the Todas Santos formation in Chiapas and Guatemala is of Triassic age, and it appears, according to Mierisch,

¹ Supper, Carlos, La geografía física y la geología de la Península de Yucatan, Mexico Inst. Geol. Bol. No. 3, pp. 57, 6 pls., 1896.
<table>
<thead>
<tr>
<th>American time subdivisions</th>
<th>Panama</th>
<th>Jamaica</th>
<th>Other Antilles</th>
<th>Mexico and Central America</th>
<th>Southeastern United States</th>
<th>European time subdivisions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper</td>
<td>Emperor limestone</td>
<td>Anguillia formation (Anguilla), and beds at many localities in Cuba.</td>
<td>Upper horizon in Santo Domingo.</td>
<td>San Rafael formation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper part of Culebra.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower part of Culebra and limestone at Tonosi.</td>
<td>Montpelier white limestone.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td>Limestone with Orthophragmia on Haut Chagres and limestone at David (contemporaneous).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cambridge formation. Richmond formation.</td>
<td>St. Bartholomew limestone (St. Bartholomew). Widespread in Cuba; also in Haiti.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>Eocene of Tonosi.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Reported by H. Donville and referred to “Stampien inferior” — Vicksburgian = Lattorfan; Cushman thinks these deposits should be referred to the upper Eocene and placed opposite the St. Bartholomew limestone in the table.
* May belong stratigraphically somewhat higher.
* Correlation proposed by E. W. Berry.

37149–19. (To face page 595.)
also to occur in northern Nicaragua. Sapper records Triassic rocks from several areas in Honduras.

Jurassic limestone from the axis of the Organos Mountain, Province of Pinar del Rio, Cuba; and marine Jurassic is extensively developed in Mexico and west Texas.

The Lower Cretaceous, so greatly developed in Mexico and Texas, is not known in the West Indies or in Central America proper, that is, below the Isthmus of Tehuantepec, except in Honduras.¹

With regard to the Upper Cretaceous, it will be said that the peculiar Upper Cretaceous fauna of Jamaica has been found in Cuba and St. Thomas. Hill has noted in Porto Rico "volcanic tuffs and conglomerates with interbedded Cretaceous rudistean limestone similar to that of Jamaica," thereby confirming a previous inference of Cleve that the horizon he recognized in St. Thomas also occurs in Porto Rico; and it is reported from the Island of Haiti. Quin figures a specimen of Barrettia from the "Blue-beach" formation of St. Croix (but without recognizing its affinities); and Sapper records Barrettia from northwest of Coban, Guatemala, and a somewhat similar fauna from Chiapas, Mexico. As Cleve years ago pointed out, this fauna is more closely related to that of Gosau, Austria, than to any in North America north of the Gulf of Mexico. Hill reports Rudistes and Inocerami from his San Miguel formation, Costa Rica, but Romanes² doubts the correctness of the identifications.


The following pages will present only the broad outlines of the geologic history of the region of which Panama forms a part. The details for Panama are given by Doctor MacDonald in the manuscript of his report on the geology of the Canal Zone and adjacent areas, to be published by the Smithsonian Institution. Three manuscripts on the physiography and stratigraphy of Cuba are now in my possession. One of these is on an area adjacent to Guantanamo, by Mr. O. E. Meinzer; the second is on an area northwest of Guantanamo by Mr. N. H. Darton; and the third is a general account of the physiography and stratigraphy of the entire island and the Isle of Pines by myself. The paleontology of the different formations is considered in as much detail as available information permits. A similar account of the geology of the Lesser Antilles, by Mr. Robert T. Hill and myself, is nearly ready for press, and paleontologic monographs of the fossil biota of St. Bartholomew, Antigua, and Anguilla are almost complete. The geologic history of these

¹ Dr. T. W. Stanton has recently verified the age determination of these deposits. (Oral communication.)
² Romanes, James, Geology of a part of Costa Rica, Geol. Soc. London Quart. Journ., vol. 68, pp. 103-139, pl. 8, 9, 1912.
areas is discussed in the reports mentioned, which I hope may, within a few months, be submitted for publication by the Carnegie Institution of Washington.

The discussion of the age and geographic distribution of the different geologic formations on preceding pages partly prepares the way for an account of the paleogeography of the region under consideration; but before proceeding the geographic relations of the Three Americas should receive attention.

Geographic Relations of the Three Americas.

This subject has attracted many investigators, some of whom considered only segments of the perimeters of the two American seas, the Caribbean Sea and the Gulf of Mexico, while others considered the relations between Central America and the West Indies to the continent of North America, on the north, and to the continent of South America, on the south. Some of the important facts in the alignment of the West Indies were recognized so long ago as 1848, for Schomburgh called attention to the fact that in the Lesser Antilles there are an outer and an inner group of islands, the outer largely composed of calcareous rocks, the inner composed of volcanic rocks. Knowledge of the geographic and geologic relations within this region has grown gradually, and there have been so many contributors to it that no attempt will be made to credit each of them for what he has done. However, special acknowledgments should be made to R. T. Hill for his investigations in a number of the West Indian and Central American areas; to Carl Sapper for his exploration in Yucatan, Tabasco, Chiapas, Guatemala, parts of Honduras, and San Salvador; and to Karsten and Sievers for their work in northern South America. The footnotes below gives the titles of some of the more important publications, and they contain references to earlier literature.

1 Schomburgh, Sir R., History of Barbados, p. 532, 1848.


Hill, R. T., Fundamental geographic relations of the Three Americans, Nat. Geog. Mag., vol. 7, pp. 175-181, 1896; The physical geography of Mexico [Abstract], Eighth Internat. Geog. Cong. Rept., pp. 765-766, 1903. (See also papers by Hill listed on p. 604, this volume.)

Karsten, Iermann, Géologie de l'ancienne Colombie bolivienne, Venezuela, Nouvelle-Grenade et Ecuador, pp. 62, 1 map, 8 pls., 1889, Berlin.


Suess, E., Les Antilles, La face de la terre (translated under the direction of E. de Margerie), vol. 1 pp. 724-737, 1897.
The boundaries of the Gulf of Mexico and the Caribbean Sea form a parallelogram (see pl. 73); those on the north and south extend along east and west lines, those on the east and west are northwest to southeast, while the basins are separated by east and west structures.

The bottoms of the continental slopes on both sides of the continents range between 2,500 and 3,000 fathoms in depth. On the east the 2,500-fathom curve is either at or near the base of the slope from off the Banks of Newfoundland southwestward to off Jacksonville, Florida, whence it bends toward the southeast, passing east of the Bahamas, north of Porto Rico, east of the Caribbean arc, east of Trinidad, and northeast of the Guianas. The 2,500-fathom contour lies farther offshore on the Pacific side than on the Atlantic side of North America, but is nearer shore from the Revilla Gigedo Islands, west of Manzanillo, Mexico, to off Guatemala, whence southward the 2,000-fathom contour is near the base of the slope until off Peru, where there is a drop to over 3,000 fathoms in the great Callao deep.

Land areas bound the Gulf of Mexico on the east, north, west, and south. The land on the west continues without interruption through Central America and northern South America, forming the western and southern boundaries of the Caribbean Sea. Between southern Florida and Trinidad there are relatively shallow-water connections with the Atlantic Ocean through passages between Florida and Cuba, and through passages between both the Greater and the Lesser Antilles to Trinidad. Depths of about 1,000 fathoms or somewhat more are found between Cuba and Haiti in the Windward Passage, and between Anegada and Anguilla in the Anegada Passage, but they are usually less than 500 fathoms.

The Gulf of Mexico is separated from the Caribbean Sea by the Yucatan Peninsula and Cuba, but connects with it through the Yucatan Channel. The deepest part of this basin, which is a simple basin, is slightly over 2,000 fathoms.

The Caribbean Sea is a compound basin, separated into two parts by the ridge that extends from Honduras to Jamaica. The northern division is almost subdivided by the Cayman ridge, which extends westward from the Sierra Maestra of Cuba. Depths of 2,500 fathoms are attained between the Caymans and Cape San Antonio, Cuba, while south of them depths exceeding 3,000 fathoms are recorded in the Bartlett deep. The southern division is a simple basin with depths ranging between 2,250 and 2,900 fathoms.

The data presented show that these two basins are land-locked, except that between Florida and Trinidad shallow passages between land areas connect with the Atlantic Ocean, that the two basins are separated by structures transverse to the continental trend in Yucatan.
and Cuba, and that the Gulf of Mexico is a simple while the Caribbean Sea is a compound basin.

The major tectonic features surrounding and occurring within the basins will now be briefly considered.

TECTORIC PROVINCES.

In order to give an adequate conception of the relations of the two basins the general features of both the North and South American continents must be considered as well as the details of the land areas and submarine banks and ridges immediately adjacent to and within the region. The provinces germane to the area will be more particularly considered, while the boundaries of those more remote will be only indicated. Twelve major with several subordinate provinces may be discriminated as follows:

1. Bahamas.
2. Atlantic and Gulf Coastal Plain.
4. Oaxaca-Guerrero.
5. Yucatan.
7. Cuba and northern Haiti.
8. Honduras, and its continuation to Jamaica, southern Haiti, Porto Rico, the Virgin Islands, and the outlying island of Saint Croix.
9. Costa Rica—Panama.
10. Andes.
12. Caribbean Islands:
   12b. Main Caribbean Arc.
   12c. Aves Ridge.

1. Bahamas.—The Bahama Islands and their accompanying shoals occupy a triangular area which lies east of Florida and north of Cuba and Haiti. The islands either occur on one of two large banks, the Little Bahama and the Great Bahama banks, or they rise to the southeast of the latter bank as isolated eminences separated by water as much as 1,000 fathoms in depth. Two bodies of water over 1,000 fathoms deep, Exuma Sound and The Tongue of the Ocean, indent the Great Bahama Bank. Water 1,000 fathoms in depth is close to the eastern shore of the Bahamas as far north as Elbow Cay on Little Bahama Bank. Eastward from the 1,000-fathom curve the bottom rapidly descends to a depth between 2,000 and 3,000 fathoms. The Bahama Islands are subaerial protuberants above the nearly level, slightly submerged surfaces of extensive plateaus which on one or more sides rise precipitously from oceanic depths.
2. *Atlantic and Gulf Coastal Plain.*—This plain extends beyond Rio Grande to the Sierra Madre, Mexico, and as far southward as Tampico. A narrow, more or less broken plain continues beyond Vera Cruz to the lowland plain of Yucatan, where it meets the transverse Oaxaca-Guerrero structural line.

Throughout its extent, notwithstanding irregularities in surface configuration, the Coastal Plain in general slopes from its landward margin to the edge of the Continental Shelf. The inner margin ranges from 300 to 600 feet in altitude between Maryland and central Texas; while in west Texas it attains a height of slightly more than 1,000 feet above sea level.

3. *Mexican Plateau.*—At least four provinces of major rank are recognized in the western Cordilleran region of the United States, according to Ransome,¹ namely: (1) The Rocky Mountains, (2) the Colorado Plateau, (3) the Nevada-Sonoran region, (4) the Pacific ranges. Nos. 1 and 2 are parts of the Laramide mountain system; No. 3 is the intermontane belt; and No. 4, the Pacific mountain system. Fenneman dissents from this classification in that he refers the Colorado Plateau to the Intermontane plateaus, along with the Nevada-Sonoran region,² and considers the Mexican "highland" as a part of his Basin-and-Range province lying south of the Colorado Plateau. Toward the south in trans-Pecos Texas the Colorado Plateau and the Nevada-Sonoran region of Ransome are delimited by a rather vague boundary from the Mexican Plateau, which Ransome also considers a part of the Laramide mountain system. The Mexican Plateau comprises the high plateaus and central mountains of Mexico. Southward from Rio Grande, below the mouth of Pecos River, it forms the western boundary of the Coastal Plain. The boundary, according to Hayes (oral communication), is a fault scarp which lies a little east of Monterey and trends east of south through Ciudad Victoria to Misantla; where volcanic mountains reach the shore and interrupt the continuity of the plain. The province is terminated on the south by a fault scarp beyond which are the east and west trending structural axis of Michoacan, Guerrero, and Oaxaca.

4. *Oaxaca-Guerrero.*—A structural axis extends through Michoacan, Guerrero, and Oaxaca, almost at right angles to the trend of the Mexican Plateau. The northern boundary of this province is the escarpment at the southern margin of the Mexican Plateau; the western and southern boundary is the Pacific Ocean; while the eastern boundary is the Isthmus of Tehuantapce. It is thus set off from the Mexican Plateau, and the Yucatan lowland.

5. Yucatan.—This province consists of lowlands, under 600 meters in height, underlain by only slightly deformed Tertiary strata, except some problematic rocks west of Belize. The Yucatan Peninsula and Campeche Bank are comparable to the Floridian Plateau. They are developed along a structural axis almost at right angles to the continental trend. Campeche Bank projects northward from the shore line of the peninsula 170 nautical miles to the 100-fathom curve and has a width of nearly 360 nautical miles along an east and west line. On the east the depth of water between it and Cuba exceeds 1,000 fathoms and the axial trends are not coincident, but the axis of Yucatan Bank and that of the Province of Pinar del Rio, Cuba, curve so that they are nearly parallel, with a trough, Yucatan Channel, between them.

6. Guatemala-Chiapas.—This province lies between the Yucatan lowland on the north and Rio Motagua on the south. It is an upland dominated by east and west tectonic lines, and has been called the Guatemala-Chiapas Plateau by Tower.¹

7. Cuba.—This province is coincident with Cuba and its submarine continuation, the Cayman Ridge. At least four subdivisions should be recognized: (1) The Isle of Pines, which is composed of mountains of schists and marbles with piedmont plains and marsh, separated from the main island by water less than 10 fathoms deep. (2) Organos Mountains of Pinar del Rio and the accompanying piedmont plains. The 1,000-fathom curve is less than 20 miles off the north shore. (3) Central Cuba, from the east end of Organos Mountains to Cauto River, is mostly a plain broken by some hills of serpentine and granite, and in Santa Clara Province, near Trinidad, mountains reported to be composed of Paleozoic sediments attain an altitude of about 2,000 feet. (4) Sierra Maestra and Cayman Ridge. This subprovince lies between the Cauto Valley and the south shore and is continued westward as the submarine Cayman Ridge, along the axis of which only the Cayman Islands project above water level. The axial trend is nearly east and west between Cabo Cruz, Cuba, and Little Cayman, whence it curves to the southwest and pitches toward the head of the Gulf of Honduras, which is an area of depression. Between the Caymans and the Isle of Pines the depth of water exceeds 1,000 fathoms, while the Bartlett deep to the south, separating Cuba and Jamaica, exceeds 3,000 fathoms in depth.

7a. Haiti, northern part.—The island of Haiti lies at the convergence of the trend of the axis of the central subprovince of Cuba and the Honduran-Jamaican axis. The dividing line in Haiti is from Port au Prince to Ocoa Bay. The area south of this line belongs to a Jamaican axis, while that to the north belongs to the central

Cuban trend. The structural axes of the mountains in the northern and northeastern part of Haiti are from northwest to southeast and are parallel to the axis of elongation of Cuba from the Sierra Maestra to Santa Clara. In Cuba this trend is cut diagonally by the axis of the Sierra Maestra, which is bounded on the south by a tremendous fault scarp. Previous to this faulting it seems that central Cuba and Haiti formed parts of the same land area. The island of Haiti might be treated as separate from Cuba and Jamaica, but lying at the intersection of two tectonic trends.

8. **Honduras and the Jamaican Ridge.**—The Honduran Province in Central America is dominated by tectonic lines extending from southwest to northeast, of which the Telusa Mountains are representative. A line from the Gulf of Honduras along Motagua River to a point north of Jalapa, thence southwest to the Pacific coast, may be taken as the northern boundary and Rio San Juan and the southern side of Lake Nicaragua as the southern boundary.

From the northeast coast of Honduras and Nicaragua a great submarine plateau continues with depths of less than 1,000 fathoms to Jamaica. Above it rise numerous banks and keys and along its course are Thunder Knoll, Rosalind, Seranilla, and Pedro banks between the continental shore and Jamaica.

The principal old tectonic lines of Jamaica trend northwest to southeast. As these are parallel to the shore northwest of Cape Gracias a Dios and to the northeast edge of Mosquito Bank, there are evidently cross tectonic lines nearly at right angles to each other in this ridge.

A submarine ridge extends from the east end of Jamaica some 45 miles and overlaps on the south side a ridge which protrudes westward from the west end of Haiti. The two ridges, however, do not connect but are separated by water over 1,000 fathoms deep. The ridge representing an eastward submarine continuation of Jamaica indicates a third tectonic line in that island. The last-mentioned line nearly parallels the Bartlett deep, which lies to the north. The submarine slopes to the southeast are toward the bottom of the Caribbean basin.

8a. **Haiti (southern part), Porto Rico, and the Virgin Islands.**—The political division of Haiti designated Sud is dominated by east and west trending mountains, which parallel in direction the east and west axis of Jamaica. As the maximum depth between Haiti and Porto Rico is about 318 fathoms, they rise from a common, not greatly submerged bank. (See statement on preceding page in regard to considering Haiti as a separate Province.)

The main mountain mass of Porto Rico, the Sierra Central, the maximum altitude of which is 3,750 feet at El Yunque, trends east and west, paralleling in direction Sud, Haiti. There is coincidence
in the direction of elongation of the Jamaican bank, Sud (Haiti), and Porto Rico.

The relative truncation of the west end of Porto Rico, except the protuberant which forms Cabo de San Francisco, is striking and suggests faulting. The declivities both to the north and south of the island are great, over 4,000 fathoms in depth being reached within 40 miles of the north coast, while 2,000 fathoms are attained within a shorter distance from the south coast.

A submarine bank extending from the east end of Porto Rico to Anegada Passage is known as Virgin Bank. The depth of water between the islands rising above this bank is less than 20 fathoms, which is a minimum for the amount of submergence they have recently (geologically speaking) undergone. These islands are detached outliers of Porto Rico.

88. Saint Croix.—Although St. Croix is separated from the Virgin Islands by a depth as great as 2,400 fathoms and is joined to the St. Christopher chain by a ridge less than 1,000 fathoms deep, it possesses great similarity to members of the Virgin group. The west end is truncate and the submarine slope precipitous; the submarine slope to the north is also steep. There is clear evidence of faulting on the west and north sides. A ridge, largely of igneous rock, stands against the north shore from the west end of the island for some distance to the east. South of the ridge is a sloping, rolling, calcareous plain. The east end has a submarine continuation in a bank less than 50 fathoms deep. The tectonic axis is east and west, the rocks resemble those of the Virgins, and the zoogeography indicates former connection with them. For these reasons it seems probable that this island was formerly a part of the Porto Rican-Virgin Island land-mass and has been sundered from it by diastrophic processes. However, Saint Croix might be accorded separate status as a province, or referred to the St. Christopher axis; but it appears to me preferable to classify it with the Virgin Islands.

9. Costa Rica-Panama.—Between the Nicaragua-Costa Rican boundary and the mouth of Rio Atrato is an S-shaped land area which does not exhibit striking major tectonic lines, although some deformation axes are obvious in Panama. The region is largely one of vulcanism, present or past, which although occurring within definable limits does not follow continuous straight axes but occurs in a curving belt. The topography appears disordered, with volcanic protuberants here and there without perceptible system. The volcanic heaps range from a few hundred to nearly 10,000 feet in altitude.

10. Andes.—The south-north trending ranges of the Andes reach the shores of the Caribbean Sea between the Gulf of Darien and Venezuela, and send a spur, Cordillera de Merida, northeastward to
Porto Cabello where the main Andean trend is crossed by that of the Maritime Andes. The shore of the Caribbean Sea lies across the northern end of the Andes in a way similar to the manner in which the landward border of the Coastal Plain crosses the southwestern end of the Appalachian Mountains.

The islands Curaçao, Aruba, and Bonaire, lie off the Venezuelan coast in the angle between the ends of the main Andes and the Cordillera de Merida.

11. Maritme Andes.—The Maritime Andes lie along the Venezuelan coast from Caracas eastward. Trinidad and Tobago are outlying islands. On the south side of these mountains is the great Valley of the Orinoco.

12. Caribbean Islands.—These islands lie along triple arcuate ridges, the Barbadian Ridge, the main Caribbean Arc, and Aves Ridge, the second of which is double at its northern end.

12a. Barbadian Ridge.—As Barbados is connected undersea with Tobago Island by a ridge less than 1,000 fathoms deep, and as the depth between it and St. Lucia is less than 1,000 fathoms, there is a closed basin over 1,000 fathoms deep between the Barbadian Ridge and the main Caribbean Arc.

12b. Caribbean Arc.—The Caribbean arc is a ridge that extends from north of the Gulf of Paria to Anegada Passage. The islands occurring along it from the Grenadines to Dominica are entirely or predominantly volcanic. Guadeloupe is a compound island; the western half is volcanic, the eastern half with the outlying Marie Galante is mostly composed of calcareous sediments. North of Martinique the arc splits; along the inner fork are the volcanic islands Montserrat, the St. Christopher Chain, and Saba; along the outer fork are Antigua and Barbuda, and the St. Martin group. The latter islands are largely or predominantly composed of sedimentary rocks resting on an igneous basement of pre-Tertiary or early Tertiary age.

12c. Aves Ridge.—This ridge takes its name from Aves Island, which stands on a ridge running from the north coast of Cumana to Saba Island at depths slightly less than 1,000 fathoms, while water of greater depth occurs both east and west of it.

Paleographic Summary.

There are many publications dealing with this subject, some of which, such as those of Gregory, Hill, and Guppy, are specially

devoted to the West Indies and Central America, or consider parts of the regions; others are devoted to the geologic history of smaller areas that are parts of the region and are too numerous for mention here, but many of them have been referred to in my papers on the fossil corals and the correlation of the geologic formations of Panama, forming parts of this volume; while still other works, for instance those by Schuchert and Willis, treat Central America and the West Indies only as parts of much larger areas.

Schuchert in his work cited undertakes to reconstruct for this region the distribution of land and sea; that is, connections and barrier between the Atlantic and Pacific Basins during Paleozoic time, basing his inferences upon the affinities of the Paleozoic faunas. As I can add nothing to what he says, I will not summarize his conclusions—the reader may consult his memoir.

**LATE PALEOZOIC.**

The great Appalachian revolution occurred in late Paleozoic—Permian time, and resulted in the northern boundary of the Gulf of Mexico—the southern Appalachian, the Ouachita, and Wichita Mountains.

The east and west trend in southern Mexico already existed or was developed about this time; while farther to the southeast, as Sapper has shown, Río Motagua in Guatemala divides two chains of this age, one to the north, the other to the south, with spurs of a third chain farther toward the southeast. The nearly north and south trend of the Coxcomb Mountains in British Honduras, which are composed of sediments apparently of pre-Paleozoic age indicates that the Yucatan protuberant had been outlined in Paleozoic, perhaps early Paleozoic time. Granitic débris in Costa Rica and Panama suggests old deformation along east and west lines in those areas. The east and west mountains of Venezuela have an old foundation and certainly date back to the Paleozoic in origin. There is evidence of old deformation in Cuba, rendering it highly probable, if not certain, that the major tectonic trends of Cuba are as old as Paleozoic. Although no Paleozoic rocks have been identified in Jamaica, the inference appears warranted that Jamaica itself dates back to late Paleozoic, as it has been shown by Sapper that the west end of the tectonic features represented in Mosquito and Rosalind Banks and Jamaica already existed in late Paleozoic time. The Cuban and Jamaican trends meet in Haiti and continue through Porto Rico to the Virgin Islands.

2 Willis, Bailey, Paleographic maps, in Outlines of geologic history with special reference to North America, pp. 335, Chicago, 1910.
while St. Croix, which is closely related in its geologic features to the Virgins, was probably at one time a member of that group and has been separated from them by faulting of comparatively late geologic date. There is no direct evidence of the existence at this time of any of the Caribbean Islands, but certain relations suggest that at least parts of the Caribbean Arc may be old. St. Croix stands on the western end of a ridge between 600 and 700 fathoms deep, on the eastern end of which is St. Christopher. This ridge extends northward to the St. Martin Plateau, eastward to Antigua and Barbuda, and southward from the latter islands through Guadeloupe, St. Lucia, and the Grenadines to South America. These relations suggest that the eastern perimter of the Caribbean Basin may have been outlined in late Paleozoic time.

From the preceding statement it is evident that the principal tectonic lines of the perimeters of the Gulf of Mexico and Caribbean Sea existed at the close of the Paleozoic. The northern, western, and southern boundaries had been outlined and the major transverse trends had also been formed, the more northern through Oaxaca and Chiapas, including the northward trending Coxcomb Mountains of British Honduras; the more southern through Honduras and Nicaragua. The first may have connected along the axis of the Coxcomb Mountains with Cuba and thence Haiti; the second probably connected with Jamaica, Haiti, Porto Rico, and the Virgin Islands, and there are vague suggestions that the Caribbean Arc also existed. As the positive and negative areas so early outlined dominated the tectonic development during later geologic time, the subsequent history consists in tracing the modification of these old features.

**TRIASSIC, JURASSIC, AND CRETACEOUS.**

It seems necessary to infer diastrophic movements previous to or during Jurassic and Cretaceous time, for there was no connection between the Atlantic and Pacific oceans across Central America during these periods, with the possible exception of certain connections during Jurassic and upper Triassic (Karnic) time, as shown in the table on page 612. During Triassic and Jurassic time the eastern part of the North American continent, except areas of Triassic in Mexico and several Central American States and areas of Jurassic in Mexico and trans-Pecos Texas, was emerged probably to the limits of the present Continental Shelf, while the western end of Cuba was submerged. The eastern end of Cuba apparently was a land area and may have been joined to the southeastern United States. During upper Cretaceous time there was extensive submergence throughout the West Indies and Central America, but the Lower Cretaceous, as represented in Mexico and Texas, is not known in them, except in Honduras. As the Jurassic and Cretaceous faunas are Atlantic in their facies,
the Atlantic Ocean must have had access to these oceanic basins during a part if not all of these periods.

According to Hill, vulcanism existed prior to later Mesozoic in Guatemala, Oaxaca, Jamaica, and the Andes, and perhaps in Cuba and Haiti, as well as in the Cordilleras of North America. Probably there was vulcanism in Porto Rico, the Virgin Islands, St. Croix, St. Martin, St. Bartholomew, and Antigua. In the two last mentioned islands there are volcanic rocks older than Eocene sediments.

At the close of the Cretaceous there was general emergence of the Coastal Plain, an event probably due to diastrophism and a resultant of Laramide mountain making.

**EOCENE AND OLIGOCENE.**

The West Indian islands, because no old Eocene sediments are known in any of them except Trinidad, which is South American in its relations, are supposed to have stood above sea level at that time. In Cuba and Jamaica there are Upper Cretaceous and late Eocene sediments without the intervention of early Eocene deposits. During later Eocene (Ludian) and middle and upper Oligocene (Rupelian and Aquitanian) time there was extensive submergence in the West Indies and interoceanic connection through a number of straits across Central America. There may have been interoceanic connection during lower Oligocene (Lattorfian) time, but this is not established. The maximum submergence was in middle Oligocene (Rupelian) time. Vulcanism was widespread in Central America and the Antilles during Eocene and probably also during earlier Oligocene time. The line of the great Mexican volcanoes had its inception at the close of the Cretaceous, near the beginning of the Tertiary, according to Felix and Lenk.

In Jamaica, Cuba, St. Bartholomew, and Antigua the later Eocene age of some of the volcanic rocks is established. There was between the upper Eocene and the middle Oligocene deposition periods great deformation in the Antilles. The folding in the principal mountains of Jamaica, the Sierra Maestra of Cuba, and apparently those of Haiti, Porto Rico, the Virgin Islands, and St. Croix appears to have taken place at this time. Diastrophism seems also to have been active in Chiapas, Tabasco, Petén, Guatemala, Nicaragua, Costa Rica, and Panama.

**MIocene.**

During older Miocene (Burdigalian) time apparently there was in places connection between the Atlantic and Pacific oceans, as is shown by deposits of this age containing fossils of Atlantic affinities on the Pacific coast of Costa Rica ¹ and Nicaragua, and perhaps at

---

other places, but such connections seemingly were restricted, not of wide extent as in upper Eocene and Oligocene time.

As no upper Miocene has yet been identified in the West Indies this is supposed to have been a period of high uplift which terminated the connection between the Atlantic and Pacific oceans. The middle and upper Oligocene and lower Miocene sediments of Mexico, Panama, Cuba, Haiti, Jamaica, Porto Rico, Anguilla, and Antigua, although deformed by tilting and faulting are not intensely folded, as are the older sediments. According to Hill, "in mid-Tertiary time granitoid intrusions were pushed upward into the sediments of the Great Antilles, the Caribbean, Costa Rican, and Panamic regions." The information I obtained in Antigua and St. Bartholomew accords with this opinion.

That there was at some place interoceanic connection subsequent to lower Miocene (Burdigalian) time is suggested, if not actually proven, by the presence on Carrizo Creek, Imperial County, California, of a coral fauna of post-Miocene Atlantic affinities.1

Roy S. Dickerson2 in the paper cited below says regarding my conclusion that the coral fauna of Carrizo Creek is of probably Pliocene age: "His [Vaughan's] conclusions concerning the Pliocene age of these beds rests upon the infirm basis of comparison with a Pliocene coral fauna of Florida," and "All the coral genera except one occur in the Bowden or associated horizons." The last statement is correct in the restricted sense in which I use Bowden and its related zones, and the first is correct in that I compared the fauna from Carrizo Creek with that from the Pliocene Caloosahatchee marl of Florida; but Doctor Dickerson evidently did not comprehend the entire basis for my opinion. The following eight genera, now extinct in the Atlantic Ocean but present in the Pacific, occur in the Bowden marl and related zones, that is in Miss Maury's Santo Domingan section and the La Cruz marl of Cuba, but are not known from Carrizo Creek or from the Caloosahatchee marl:

\[
\begin{align*}
\text{Placorocathus} & \quad \text{Antillia} \\
\text{Placotrochus} & \quad \text{Syzygophyllia} \\
\text{Stylophora} & \quad \text{Pavona}^3 \\
\text{Pocillopora} & \quad \text{Goniopora}
\end{align*}
\]

Neither the coral fauna of Carrizo Creek nor that of the Caloosahatchee marl, as at present known, contains any of the coral genera distinctive of the Bowden and related zones. These distinctive

---

1 Vaughan, T. W., The reef-coral fauna of Carrizo Creek, Imperial County, California, etc., U. S. Geol. Survey Prof. Paper 98, pp. 355-356, pls. 92-102, 1917.
3 Added from Miss Maury's Santo Domingan collections.
genera became extinct in the Atlantic during upper Miocene time, according to the present information, but, they persist in the Indo-Pacific region. It, therefore, seems that the fauna of Carrizo Creek migrated to the head of the Gulf of California after the extinction of these forms.

PlIOCENE AND LATER.

Subsequent to the Miocene there have been many oscillations of the West Indian area, and during perhaps Pliocene time there was profound deformation. Zeogeographic data in the opinion of several investigators seem to demand former connection, probably during late Miocene or Pliocene time from Yucatan across Cuba to Haiti, Porto Rico, and the Virgin Islands; from Honduras to Jamaica; and from Anguilla to South America. It also appears that St. Croix was once joined to Anguilla and to the eastern end of the Virgin Islands. There are certain geologically late fault-lines which perhaps date from this time and the severance of the old ridges into the islands we now know may be largely due to movement along them. One of these fault lines forms the northern boundary of the Bartlett Deep, and passes between the east end of Cuba and the west end of Haiti. Another tectonic line which forms the south side of the Bartlett Deep seems to converge toward the former in the Windward Passage. A down-thrown block between these lines has separated Cuba and Haiti and produced the Bartlett Deep. Probably there was also faulting or flexing between Cayman Ridge and the southern shore of Cuba, west of Manzanillo Bay, while either faulting of flexing may have separated Cuba and Yucatan. There is evidence of a downthrown fault block between St. Thomas and St. Croix, the two sides converging toward Anegada Passage. This will account for the deep of over 2,400 fathoms north of St. Croix, and the severance of St. Croix and the St. Martin Plateau group of islands from the Virgin group.

There are three kinds of evidence that bears on the age of this faulting, namely: (1) In eastern Cuba, as the Miocene La Cruz marl is abruptly cut off at the shore line in the vicinity of the Morro at the mouth of Santiago Harbor, the faulting must be subsequent to old or middle Miocene; (2) as the sea along the fault shores has been able since the faulting to cut only narrow benches into the fault planes on the up-thrown side, the fault planes are physiographically young; (3) the biologic evidence, in the opinion of most of those who have recently considered it, demands land connection in late Tertiary time between Cuba, Santo Domingo, Porto Rico, and thence
to South America. Miller has recently published an important paper on this subject, and states: "With the characters of so many [eight] genera known it becomes possible to gain some idea of the Antillean hystricine fauna. The most notable feature of these genera considered as a group is their similarity to the Santa Cruzian and Enterian rodents which Ameghino and Scott have described and figured. In no instance has the same genus been found in both the West Indies and Argentina or Patagonia; but the Antillean rodents thus far discovered never show such peculiarities that their remains would appear out of place among those of their extinct southern relatives, while as a whole they would at once be recognized as foreign to the present South American fauna."

On the following page of the same paper he says: "So far as can be judged from eight very distinct genera the Antillean hystricine rodents do not present the characters that would be expected in animals derived from South America during any period geologically recent. Neither have they the appearance of an assemblage brought together at different times by migration or chance introduction. On the contrary they suggest direct descent from such a part of the general South American fauna, probably not less ancient than that of the Miocene, as might have been isolated by a splitting off of the archipelago from the mainland. Of later influence from the continent there is no trace."

The mammals furnish more evidence of this kind than I am presenting here, and Barbour and Stejneger, from their study of reptiles, have reached the same conclusions. These conclusions accord with the tectonic history of the region, namely, that in late Tertiary, probably Pliocene time, the West Indian Islands as we know them were produced by block-faulting which broke into pieces a far more extensive land area. Although I greatly respect the scholarship and appreciate the valuable researches of Dr. W. D. Matthew, I am unable to agree with his opinions as to the means of distribution of West Indian mammals and some of the other land vertebrates.

According to Hill, the volcanoes of the Windward Islands date back at least to the Eocene. He says: "After the Miocene, volcanism became quiescent in the Great Antilles and the Coastal Plain of Texas, but has continued to the present in the four great foci of present activity—southern Mexico, the northern Andes, Central America, and the Windward Islands. In the last two regions mentioned, the greater masses of the present volcanic heights were piled

1 Miller, Gerrit S., Jr., Bones of mammals from Indian sites in Cuba and Santo Domingo, Smithsonian Misc. Coll., vol. 65, No. 12, 10 pp., 1 pl., 1915.
2 Idem., p. 3.
up before the Pliocene, and the present craters are merely secondary and expiring phenomena."

The last important shift in position of strand line along the Atlantic coast of the United States and around the shore of the Gulf of Mexico and the Caribbean Sea has been by submergence of land areas, but subsequent to this there has been local emergence, often accompanied by minor tilting or warping.

Except vulcanism, the following table presents a succinct summary of the major events considered in the foregoing remarks. It is the primary intention of the present paper to characterize biologically and to correlate the marine formations of the Canal Zone and the geologically related areas in Central America and the West Indies, and to lay particular stress upon the successive periods of emergence and submergence of the land and the crustal deformation, folding and faulting, concomitant with changes of that kind. Comparison of the table opposite page 594, showing the correlation of the Tertiary formations of Panama, with the following tabular summary, will reveal that the story told by the two tables is essentially identical, the erosion intervals and the marine formations in the correlation table representing respectively the periods of emergence and the periods of submergence in the tabular summary.

**TABULAR SUMMARY OF SOME OF THE IMPORTANT EVENTS IN THE GEOLOGIC HISTORY OF THE WEST INDIES AND CENTRAL AMERICA.**

<table>
<thead>
<tr>
<th>Time subdivisions.</th>
<th>Events.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent..............</td>
<td>Submergence of land areas probably resulting from deglaciation, except local differential crustal movements in places producing uplift.</td>
</tr>
<tr>
<td>Pleistocene.........</td>
<td>Emergence of large areas, probably due to withdrawal of water to form the continental ice sheets; also oscillation of land areas by differential crustal movement.</td>
</tr>
<tr>
<td>Pliocene...........</td>
<td>Local moderate submergence, period of cataclysmic faulting breaking up a large land area and forming the Antilles nearly as they are at present. Probably a narrow interoceanic connection that admitted an Atlantic fauna into the present site of the Gulf of California.</td>
</tr>
<tr>
<td>Miocene [upper]...</td>
<td>Extensive emergence of the land joining North and South America through Central America; Greater Antilles joined to each other, and possibly to Central America by bridges from Jamaica to Honduras and from western Cuba to Yucatan, and to South America along the Caribbean arc. All these supposed connections not necessarily contemporaneous.</td>
</tr>
<tr>
<td>Miocene [middle and lower]...</td>
<td>Extensive submergence in the West Indies and around the continental margin; narrow, areally limited interoceanic connections in lower Miocene time, none known in upper Miocene time; land emerging in Central America.</td>
</tr>
<tr>
<td>Oligocene [upper]...</td>
<td>Extensive submergence with interoceanic connections. Maximum areal submergence with extensive interoceanic connections.</td>
</tr>
<tr>
<td>Oligocene [middle]...</td>
<td>Extensive submergence in Central America and southeastern United States; local emergence in the West Indies.</td>
</tr>
<tr>
<td>Oligocene [lower]...</td>
<td>Extensive diastrophism and mountain making by folding.</td>
</tr>
<tr>
<td>Eocene [upper]...</td>
<td>Extensive submergence with interoceanic connections. Apparently interoceanic connection across Central America.</td>
</tr>
<tr>
<td>Eocene [lower]...</td>
<td>Emergence of the Greater Antilles and Central America, no known interoceanic connection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time subdivisions</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Cretaceous</td>
<td>Extensive submergence; but without interoceanic connection.</td>
</tr>
<tr>
<td>Lower Cretaceous</td>
<td>Submergence in Mexico and Central America, especially in late Comanche time. Probable emergence in the Greater Antilles; no interoceanic connection.</td>
</tr>
<tr>
<td>Jurassic (Upper)</td>
<td>Submergence in western Cuba, eastern Mexico, and west Texas without interoceanic connection, except possibly in late Upper Jurassic time.</td>
</tr>
<tr>
<td>Jurassic (Middle)</td>
<td>Submergence in southern Mexico (Oaxaca and Guerrero) with possible interoceanic connection.</td>
</tr>
<tr>
<td>Jurassic (Lower)</td>
<td>Submergence in southeastern Mexico (Puebla, Vera Cruz, and Hidalgo, possibly also in Guerrero) with possible interoceanic connection. Nonmarine plant-bearing beds in same region and also in Oaxaca. Possibly the latter may be of same age as the supposed Rhaetic plant-bearing beds of Honduras and Nicaragua.</td>
</tr>
<tr>
<td>Triassic (Upper)</td>
<td>Plant-bearing beds in Honduras and Nicaragua, above mentioned, bespeak land conditions in latest Triassic or earliest Jurassic.</td>
</tr>
<tr>
<td>Triassic (Middle)</td>
<td>Submergence in central Mexico (Zacatecas) with probable interoceanic connection.</td>
</tr>
<tr>
<td>Triassic (Lower)</td>
<td>Probable land conditions throughout Mexico and Central America.</td>
</tr>
<tr>
<td>Late Paleozoic</td>
<td>Formation of the major tectonic axes of Central America and the initial east and west axes of the Greater Antilles.</td>
</tr>
</tbody>
</table>

* Mesozoic history of Central America, Mexico, and the West Indies, by T. W. Stanton.