The Field workshop (March 1-7th, 2004) was organized by Percy Denyer (Escuela Centroamericana de Geología, Costa Rica), who did a great job taking the group to well chosen exposures of the so-called "Nicoya Complex" and related rocks. The workshop was attended by 11 persons, 3 from Puerto Rico (W. Ramírez, H. Schellekens, I. Carre), 3 from USA (J. Lewis, C. Greene, K. Johnson), one from Guatemala (S. Bonis), Nicaragua (M. Valle), Germany (K. P. Stanek), Spain (A. García Casco) and Cuba (M. Iturralde-Vinent).

The first day four lecturers from de Escuela Centroamericana de Geología (ECG), addressed the group with important presentations concerning the Geotectonic of Central America (Walter Montero), the stratigraphy and tectonics of Costa Rica (Alain Astorga), the geology of the Nicoya Complex (Guillermo Alvarado), and an introduction into the Field workshop (P. Denyer). Dr. Teresita Aguilar, director of ECG, welcomes the IGCP group.

The next six days were dedicated to visit outcrops from north to south, along the Pacific margin of Costa Rica, including the Santa Elena peninsula, the Nicoya peninsula, and the Osa peninsula (see map below). The last day in the afternoon there was a group
discussion, organized by the project's co-leader, in order to summarize our observations and experiences. Some of these are described in the following paragraphs.

Overview

Stops visited during the field trip. Some photographs and text refer to these stops.

Summary of the field observations
In the Santa Elena peninsula crops out a thrust sheet composed of peridotites crossed by gabbroid dikes, but as blocks along the river are also found layered gabbroids, plagiogranites? and amphibolites. This sheet, a few hundred meters thick, overlies a
strongly deformed basaltic complex with radiolarites. One sample of these basalts has MORB geochemical signature (Beccaluva et al., 20XX), but other samples, dated as Lower Cretaceous (110-96 Ma), present a PIA affinity (Hauff et al., 1997, 2000). Radiolarian cherts of Middle Jurassic (Bajocian) to Late Cretaceous (Cenomanian) age have been found within the basaltic complex. Latest Cretaceous (Campanian-Maastrichtian) limestones overlie the deformed basement, suggesting that the emplacement of the peridotites took place before the Campanian.

Some authors suggest that Santa Elena is part of the Nicoya complex, while others concluded that they represent an independent oceanic terrane attached to the Chortis block. Mantle plume igneous rocks have not yet been identified in the area. We believe that in Santa Elena may be present, intermingled, several relatively independent elements: 1. The Mesozoic radiolarites and MORB basalts as fragments of the Pacific ocean crust; 2. The PIA rocks probably as part of a volcanic arc, and 3. The ultramafic rocks probably as a sliver derived from the mantle. In the future more dates and geochemistry of the basalts associated with the radiolarites needs to be done, in order to learn if they belong to the Pacific crust (pre-Campanian), to the mantle plume (Turonian-Santonian), or to the PIA (Aptian-Albian). The Lower Cretaceous PIA arc can be either a fragment of the present Antillean basement (of the eastern edge of the Caribbean plate), or may be part of the pre-Campanian arc found in the Nicoya peninsula (on the western edge of the Caribbean plate). Will come back to this matter below.

As in the Santa Elena peninsula, in the Nicoya peninsula crops out strongly deformed Lower Jurassic to Cenomanian radiolarian cherts embedded in basalts and related rocks. Originally the age of the basalts was identified according to the age of the associated radiolarites. But in recent years, several samples of the basalts have been radiometrically dated as Late Cretaceous (92.5 - 83.2 Ma; Turonian-Santonian), suggesting that they belong to the Caribbean plateau basalts (mantle plume). As a consequence, the relationship of the radiolarites with the igneous rocks was revisited, finding that the contacts are magmatic (Punta El Encanto). This means that probably much of the extensive outcrops of gabbroids, dolerites, plagiogranites, and pillow and massive basalts of Nicoya peninsula may be a representative of the Caribbean Late Cretaceous plateau basalt province. On the other hand, the Mesozoic radiolarites embedded in this igneous complex, can be interpreted as punctuated remnants of the original Pacific crust, generally absorbed and incorporated into the magmas produced by the activity of the mantle plume. The fact that only some radiolarites (but certainly not all of them) are found embedded in the igneous complex, may be due to the poor absorption of highly siliceous rocks by mafic magmas. On the other hand, the rare occurrence of Jurassic-Cretaceous associated basalts may be due to its absorption and integration into the newly formed magmatic rocks. We considered Nicoya peninsula as an excellent example of an exposed plateau basaltic crust.

In the Rivas-Tempisque area including Nicoya peninsula (northwestern part of Costa Rica), outcrop sedimentary and igneous rocks of Albian (or older) to Santonian age, which encompass the Loma Chumico, Berrugate, Sabana Grande and related Formations. These units were generally deposited in deep-water environments, and include cherts and well-bedded turbidites represented by conglomerates, sandstones and shales. These rocks contain glass, grains and crystals derived from a contemporaneous volcanic arc source. Up to the present it is not evident if the Late Cretaceous mantle plume event somehow overprinted these rocks. The ?Albian-Santonian arc-derived sections of the Rivas-Tempisque area may be interpreted in two
ways. First, it can be considered as autochthonous remnants of a pre-Campanian volcanic arc originally located along the Pacific edge of the Caribbean plate. In the coast of Manzanillo beach outcrop pillow basalts (with large number of small pillows) overlain by cherts and turbidites with rounded clasts of basalts and other volcanic rocks. The geochemical signature of the basalts is not known for certain, neither the precise age of the section. If the section can be ascribed to the Cenomanian-Turonian Berrugate Fm (Flores 2003), and the basalts are MORB, it may probe that the ?Albian-Santonian arc is authontonous in the Caribbean plate. Second, the Rivas-Tempisque ?Albian-Santonian sections can also be interpreted as an allochthonous suspected terrane, which originated somewhere along the Pacific margin of the Chortis block, and became amalgamated as part of the Chorotega block. In favor of this interpretation are two points: 1. The location of the sections within the Rivas-Tempisque area, northwest of Costa Rica; and 2. The observation that in the locality of Loma Chumico outcrops a well-bedded section of Albian quartz sandstone with mica, which probably derived from a mixture of continental and volcanic arc sources. The hypothetical continental crust source may be the Chortis block, probably the Todos Santos Formation or older units. In the future more detailed research is needed of the Loma Chumico Formation, in order to verify if it really had a continental crust source; and if it does, where it may have been located. The problem with this suspected terrain is the age of its hypothetical emplacement. Such emplacement into the Chorotega block, may have happened only very recently, when the western edge of the Caribbean plate was in line with the Chortis block.

One of the most outstanding tectonic events in Costa Rica, a general deformation, uplift and exposure, is recorded by the pre-Campanian regional unconformity, which can be observed in many localities. Above the unconformity rest transgresional sections of Campanian to Eocene sedimentary rocks composed by red breccias, conglomerates, sandstones and limestones, representing a variety of environments from terrestrial to deep marine. These rocks contain volcanic-derived materials, which suggest the nearby evolution of a volcanic arc. As with the ?Albian-Santonian volcanic-derived turbidites, no traces of the actual arc rocks (arc plutons' and calc-alkaline lavas) have been found in Costa Rica. A mid-Maastrichtian unconformity and hiatus is recorded in these sections, which were also deformed in the Eocene.

The are several difference between the ?Albian-Santonian and Campanian-Eocene volcaniclastic sections. The first probably include PIA rocks (Santa Elena), was overall deposited in deeper waters, probably contain continentally derived sediments, and it may represent a suspected terrane derived from the north. The second include terrestrial deposits, more limestones, and overlie the Caribbean plateau basalt complex, so it was originally deposited above the Caribbean crust.

The Osa-Caño accretionary complex is developed in the Osa peninsula and surroundings. It is composed by a Late Paleocene to Middle Eocene melange including Late Cretaceous to Early Eocene blocks. It may represent the accretionary complex of the Campanian-Eocene volcanic arc.

Plate tectonic implications of the field observations
As preliminary conclusions of the field observations and previous research in the area, we concluded that the following tectonocratigraphic units are present in Costa Rica: (1) A Lower Jurassic to Late Cretaceous radiolarian cherts and basaltic complex representing an oceanic crust segment of the Pacific Ocean. This unit have been
included in the Nicoya complex, or named the Lower Nicoya complex, or the Matapalo Formation along with other rocks. Probably all these names have to be abandon to avoid confusion.

(2) An ?Albian-Santonian oceanic arc complex including PIA basalts, radiolarian cherts and volcanic derived turbidites, which may be either autochthonous to the Caribbean crust, or an allochthonous suspected terrane derived from the Chortis block. Usually these rocks were included in the Nicoya complex, but this usage should be abandon to avoid confusion.

(3) A latest Cretaceous (92.5 - 83.2 Ma) igneous complex derived from a mantle plume, known as the Caribbean plateau basalts. Usually these rocks were included in the Nicoya complex, but this usage should be abandon to avoid confusion.

(4) A Campanian-Eocene arc-related complex, autochthonous to the Caribbean plate, and

(5) The Osa-Caño accretionary complex of the previous arc.

These conclusions have important implications for the plate tectonic evolution of the Caribbean Plate:

First, now can be hypothesized that the Caribbean plate may encompass Lower Jurassic to Late Cretaceous crust. If this is the fact, it is interesting to underline that, associated to mafic-ultramafic rocks, have also been found radiolarian cherts of similar antiquity in Cuba-Late Jurassic, Dominican Republic-Middle Jurassic, Puerto Rico-Lower Jurassic, La Desirade-Late Jurassic, and Venezuela-Middle Jurassic (Siquisiqui).

Second, the occurrence of ?Albian-Santonian arc-derived rocks, in the Rivas-Tempisque area, may suggest that already since the Lower Cretaceous the Caribbean plate was independent and its westernmost edge was a convergent one with an active arc-subduction system. Although this is the more simple and parsimonious explanation, still there is the possibility that these rocks may be allochthonous from the North, in which case, they would represent a fragment of the Antilles arc basement. We believe that this is a major question to be addressed, in order to reach an agreement about the ?Albian-Santonian evolution of present Central America.

Third, in the area of the so-called Chorotega block occurs arc-derived rocks of at least four distinct stages: ?Albian-Santonian, Campanian-Maastrichtian, Maastrichtian-Eocene, Miocene to Present. These stages are separated by tectonic events including deformations, unconformities, hiatus, and modification of the orientation of the arc.

Fourth, the Osa-Caño subduction complex suggests that tectonic erosion of the Caribbean plate was not a permanent event, but took place also in the past. The occurrence of Late Cretaceous to Early Eocene blocks probably derived from seamounts, suggest that tectonic erosion may have taken place in the past. Therefore, erosion and accretion may be common events along a subduction front.

USEFUL REFERENCES

Denyer, P., 1997: Geología básica de los proyectos Santa Cruz y Morote, Guanacaste, Costa Rica.- 87 págs. Univ. de Costa Rica. [Inf. interno]

Donnelly, T.W., 1973: Late Cretaceous basalts from the Caribbean, a possible flood basalt province of vast size, Eos Transactions American Geophysical Union, v. 54, p. 1004.

Pons, J. & Schmidt-Effing, R., 1998a: Caribbean rudist fauna from the pacific coast of Costa Rica.-Contribution to geology, University of West Indies, Jamaica (Congreso).

Protti, R., 1981: Geología y geofísica con fines hidrogeológicos en la planicie costera Jicaral-Santa Rita, península de Nicoya, Costa Rica.- 47 págs. Univ. de costa Rica, San José.[Tesis Lic.]

Sick, M., 1989, Paleomanetism of the Ophiolite Complex from the Southern Middle American Landbridge (Costa Rica and Western Panama), p. 108.

Hot Picks

In several localities visited during the field trip we have observed very interesting sections and/or outstanding features which we would like to share in the following pictures and paragraphs:

PLEASE LISA ADD LINK HERE TO PHOTOS